Triterpeno<mark>id</mark> saponins and other glycosides from the stems and bark of *Jaffrea xerocarpa* and their biological activity.

Dima Muhammad^a, Nathalie Lalun^b, Hélène Bobichon^b, Elisabeth Le Magrex Debar^c, Sophie C. Gangloff^c, Mohammed Nour^d and Laurence Voutquenne-Nazabadioko^a*

^a UMR CNRS 7312, Université de Reims Champagne-Ardenne, Bât. 18, Moulin de la Housse, BP 1039, 51687 Reims, Cedex 2, France

^b CNRS FRE 3481, Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51095 Reims cedex, France

^c Laboratoire de Microbiologie, EA 4691, UFR de Pharmacie, 1 Rue du Maréchal Juin, 51096 Reims Cedex, France.

^d Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), EA 4243, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa Cedex, Nouvelle-Calédonie

*Correspondance to: L. Voutquenne-Nazabadioko, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Bât. 18, Moulin de la Housse, BP 1039 51687 Reims, Cedex 2, France. Tel.: +33-3-26-91-82-09; Email: <u>laurence.nazabadioko@univ-reims.fr</u>

Supporting Materials

- Details of biological activities (experimental sections 3.6 to 3.9)
- Table S1. Antioxidant (DPPH) and anti-tyrosinase activities of J. xerocarpa
- Table S2. KB cells death (%) induced by compounds 1-3, 5-6, 10-12, 22 and 23 at 10 μ g/mL and IC₅₀ of compounds 1-2 and 11-12
- Table S3: Antimicrobial activities of compounds **1**, **2**, **5**, **10-12**, **22** and **23** by disc diffusion and broth diffusion methods
- Fig. S1-S2. 1D NMR spectra of compound 1
- Fig. S3. 1D NMR spectra of compound 2
- Fig. S4-S6. 1D and 2D NMR spectra of compound 3
- Fig. S7. 1D NMR spectra of compound 4
- Fig. S8-S9. 1D and 2D NMR spectra of compound 5
- Fig. S10-S12. 1D and 2D NMR spectra of compound 6
- Fig. S13-S14. 1D NMR spectra of compounds 7 and 8
- Fig. S15-S16. 2D NMR spectra of compound 7
- Fig. S17-S19. 2D NMR spectra of compound 8
- Fig. S20-S21. 1D NMR spectra of compound 9
- Fig. S22-S23. 1D NMR spectra of compounds 19-21

3.6 DPPH radical scavenging assay

The radical scavenging activity of the EtOAc and hydromethanolic extracts of *J. xerocarpa* stems and bark was determined using the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. Briefly, a stock solution of DPPH was prepared at 158 μ M in EtOH/H₂O (1:1, v/v). Each sample was dissolved in DMSO (200 μ g/mL) and 5 μ L were added to the DPPH stock solution (95 μ L), in triplicate in 96-well plates. The DPPH[•] absorbance in each reaction mixture was monitored at λ 515 nm. The EtOAc and hydromethanolic extracts were then tested at 200, 100, 50 and 10 μ g/mL to calculate the concentration able to quench 50% of the reaction system (EC₅₀) at 30 min. The EtOH/H₂O (1:1, v/v) solution was used as a blank, the free DPPH solution was used as a negative control and ascorbic acid (5 μ g/mL) was used as a positive control. Results were expressed as percentage decrease with respect to control values.

3.7 Tyrosinase inhibitory activity assay

The tyrosinase inhibitory activity of the EtOAc and hydromethanolic extracts of *J. xerocarpa* stems and bark and the four lupane derivatives (**1**, **10-12**) was determined against fungi tyrosinase. The assay was performed according to a previously described method using L-DOPA as substrate (Muhammad *et al.*, 2015, 2016). Briefly, the tested compounds were dissolved in DMSO 10% and mixed (1:1) with Na-phosphate buffer (PBS, pH 6.8) to obtain a concentration of 4 mg/mL for the extracts or 1 mg/mL for the compounds. Tyrosinase (100 μ L; 135 U/mL) was first pre-incubated with the tested compounds (100 μ L) at 25 °C for 10 min, and then 100 μ L of L-DOPA (0.5 mM, PBS pH 6.8) was added. The enzyme reaction was monitored by measuring the change in absorbance at λ 475 nm (at 25 °C) after 10 min incubation. These solutions were prepared in triplicate in 96-well plates. Kojic acid (1 mM) was used as positive control. The inhibitory percentage of tyrosinase was calculated as follows: % inhibition = {[(*A* - *B*) - (*C* - *D*)]/(*A* - *B*)} × 100 (*A*: OD at 475 nm without test substance; *B*: OD at 475 nm without test substance, but without tyrosinase).

3.8 WST cytotoxicity assay

The cytotoxic activities of compounds **1-3**, **5-6**, **10-12**, **22**, and **23** on KB cell lines (ATTC[®] CCLTM-17) were determined by using a colorimetry method based on the cleavage of the WST-1 tetrazolium salt, and using DMEM F12 medium for cells culture (Muhammad *et al.*, 2015). The stock solutions of compounds (1 mg/mL) were prepared in DMSO. Sample dilutions were then performed in medium DMEM F12 (1, 2.5, 5, 7.5 or 10 μ g/mL). After removal of pre-incubated culture medium, 200 μ L of

DMEM F12 containing various concentrations of samples were added and further incubated for 48 h at 37 °C. Cell viability was determined by adding WST-1 tetrazolium salt and by measuring the absorbance at λ 450 nm after \approx 1 h. Each assay was realized in triplicate in 96-well microplates. α -hederin was employed as a positive control, which exhibited an IC₅₀ value of 5.5 μ M under the above conditions (Chwalek *et al.*, 2006).

3.9. Disc diffusion antibacterial assay

Disk diffusion was used to screened antibacterial activity of compounds 1-2, 5, 10-12, 22 and 23 against *Staphylococcus aureus* (ATCC 25923), *Enterococcus faecalis* (CIP10907) as gram positive bacteria, and *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853) as gram negative bacteria (Acebey-Castellon *et al.*, 2011). 50 μ L (of the solution at 10 mg/mL in H₂O) were applied in a sterile atmosphere to 8 mm diameter paper disks corresponding to 500 μ g/disk of each compounds. After evaporation of the solvent, paper disks were placed in Petri dished of 9 cm diameter containing nutrient Mueller-Hinton agar previously inoculated with 0.2 mL of suspension of bacteria (15 10⁷ CFU/mL for *S aureus* and *E. faecalis*; 15 10⁶ CFU/mL for *E coli* and *P. aeruginosa*). After 18 hours of incubation at 37°C, the inhibition zone for the active extract was measured (CLSI, 2005). The antimicrobial gentamicin was used as positive control and tested at 50 μ g/disk.

	antioxidant activity (%) at 200 µg/mL	antioxidant activity EC50 (µg/mL)	Tyrosinase inhibitory activity (%) at 4 mg/mL
AcOEt stem	18.5		5
AcOEt bark	22.6		б
MeOH stem	78.5	73	29.9
MeOH bark	82.5	73	49.6
1	nt	nt	36.5
10	nt	nt	28.4
11	nt	nt	44.8
12	nt	nt	36.6
Ascorbic acid	100		
Kojic acid (1mM)			69.3 ± 1.6

Table S1: Antioxidant (DPPH) and anti-tyrosinase activities of J. xerocarpa

nt : not tested

Table S2: KB cells death (%) induced by compounds 1-3, 5-6, 10-12, 22 and 23 at 10

	cells death % at 10 µg/mL	IC ₅₀ (µg/mL)	$IC_{50} \pm \sigma (\mu M)$
1	72.9	3.6	7.9±0.12
2	77.0	3.2	7.0 ± 0.17
3	14.8		
5	9.2		
6	10.3		
10	30.8		
11	79.5	1.2	2.6±0.16
12	79.3	4.0	8.5 ± 0.25
22	13.0		
23	2.5		
α-hederin			5.5 ± 0.11

 μ g/mL and IC₅₀ of compounds **1-2** and **11-12**

Table S3: Antimicrobial activities of compounds 1, 2, 5, 10-12, 22 and 23 by disc diffusion and broth diffusionmethods

		Inhibition zo	CMI (µg/mL)			
Compounds (500 µg/disc)	S. aureus	E. faecalis	E. coli	P. aeruginosa	S. aureus	E. faecalis
1	10	12	-	-	4	4
2	-	-	-	-		
5	-	-	-	-		
10	-	-	-	-		
11	16	14	-	-	8	16
12	-	-	-	-		
22	-	-	-	-		
23	-	-	-	-		
Gentamicin	22	22	25	18	5	5

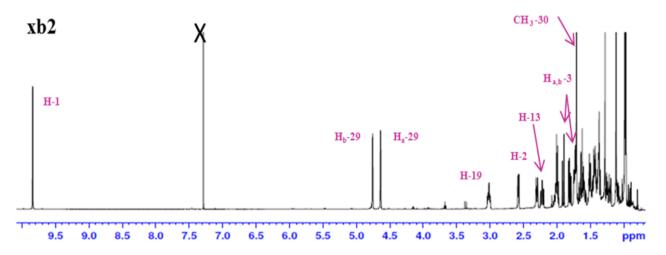


Figure S1: ¹H NMR spectrum of compound 1 (CDCl₃, 500 MHz)

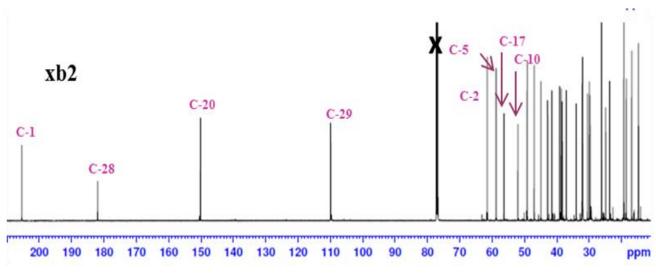


Figure S2: ¹³C NMR spectrum of compound 1 (CDCl₃, 125 MHz)

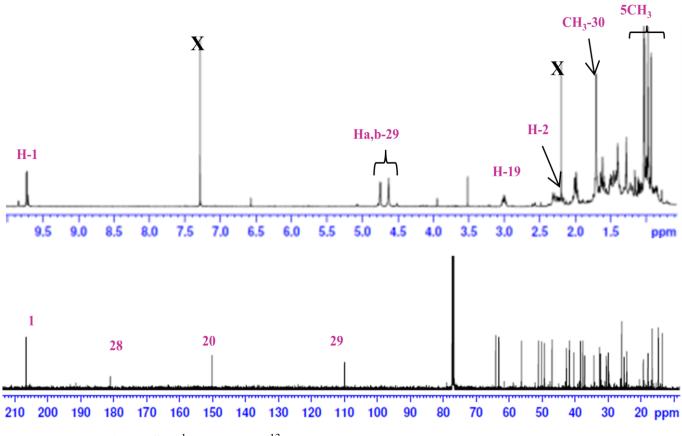


Figure S3 : ¹H NMR and ¹³C NMR spectrum of compound 2 (CDCl₃, 600 MHz)

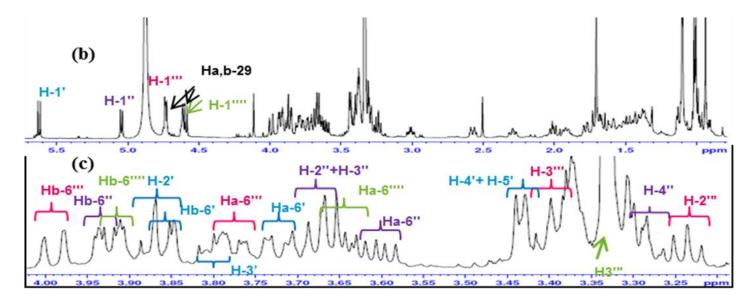


Figure S4: ¹H NMR spectrum of compound 3 (CD₃OD, 600 MHz)

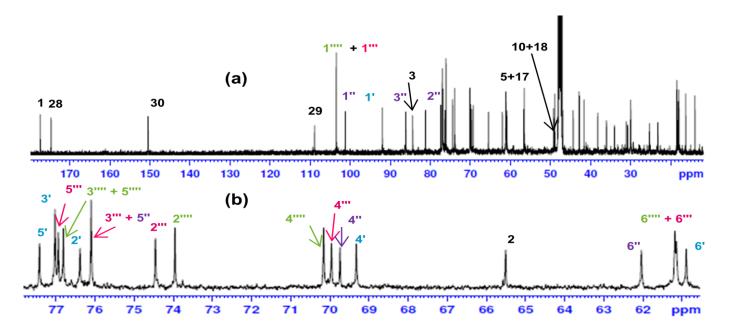


Figure S5: ¹³C NMR spectrum of compound 3 (CD₃OD, 600 MHz)

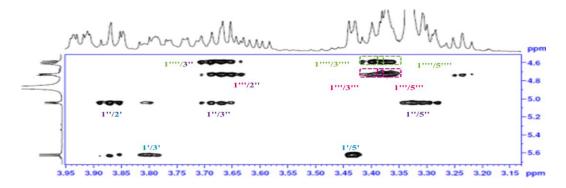


Figure S6: ROESY spectrum of the anomeric zone of compound 3 (CD₃OD)

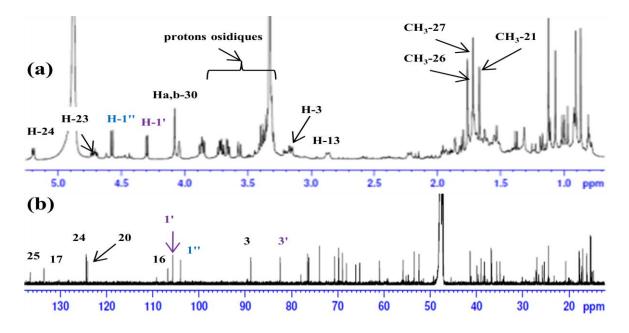
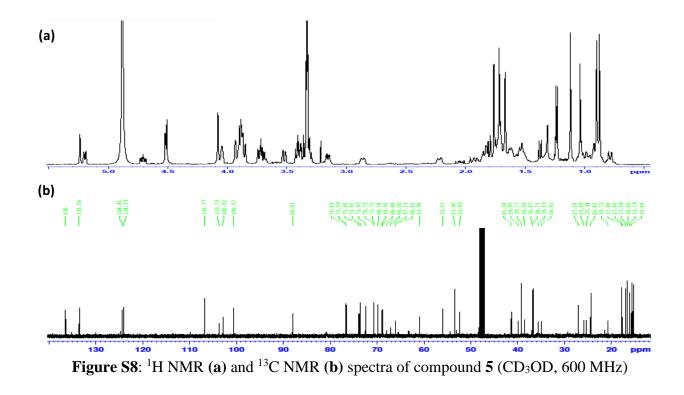
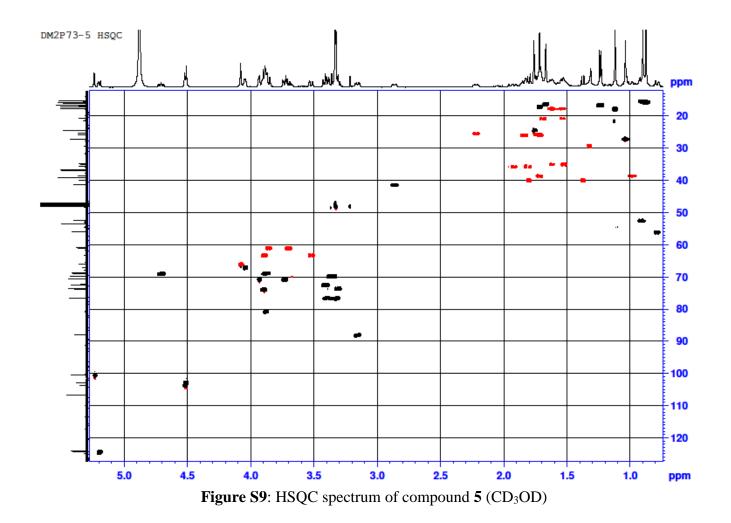




Figure S7: ¹H NMR (a) and ¹³C NMR (b) spectra of compound 4 (CD₃OD, 600 MHz)

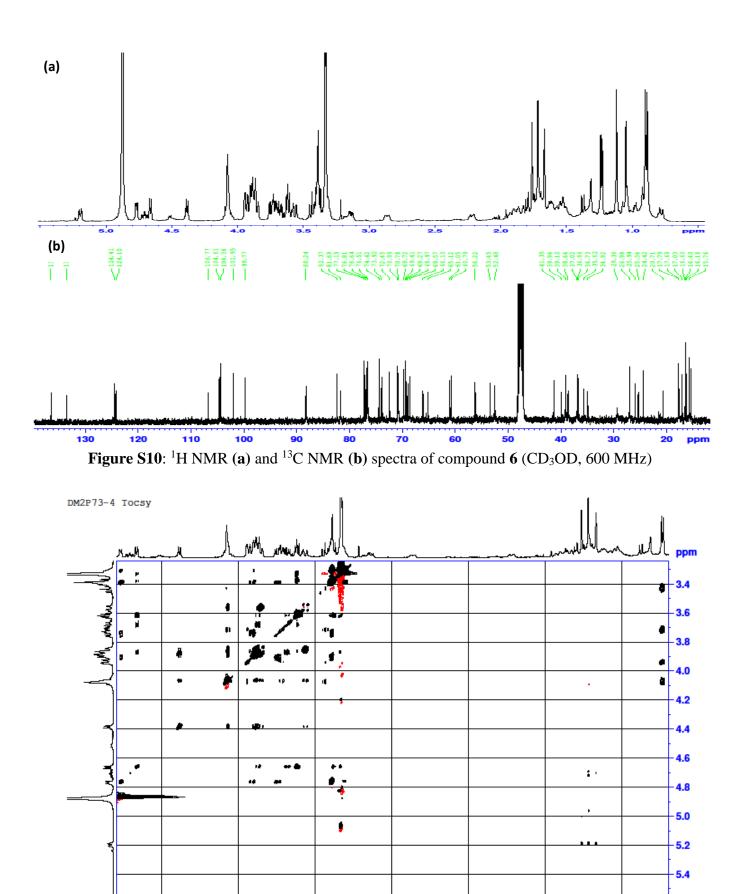


Figure S11: TOCSY spectrum of the osidic part of compound 6 (CD₃OD)

3.0

3.5

4.0

4.5

5.6

ppm

1.5

2.0

2.5

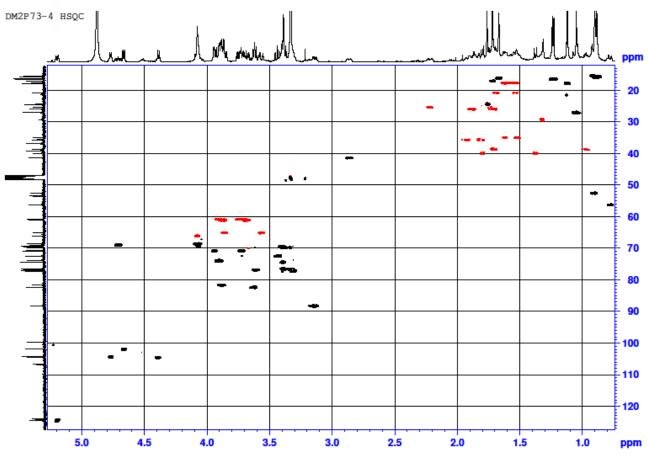


Figure S12: HSQC spectrum of compound 6 (CD₃OD)

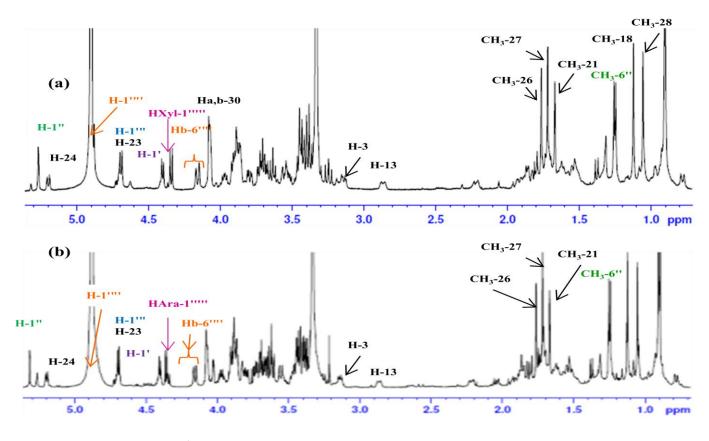


Figure S13: ¹H NMR spectra of compounds 7 (a) and 8 (b) (CD₃OD, 600 MHz)

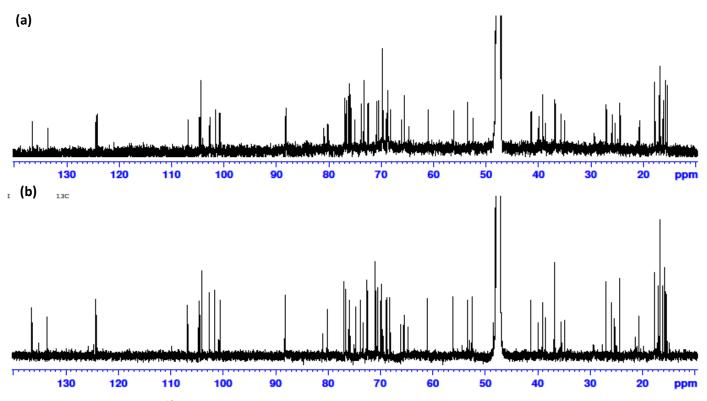


Figure S14: ¹³C NMR spectra of compounds 7 (a) and 8 (b) (CD₃OD, 600 MHz)

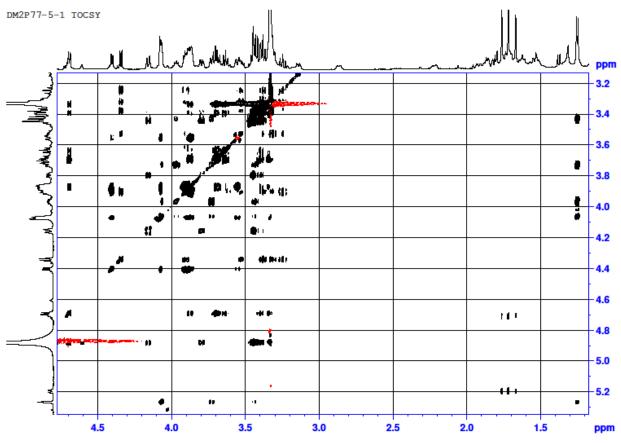


Figure S15: TOCSY spectrum of the osidic part of compound 7 (CD₃OD)

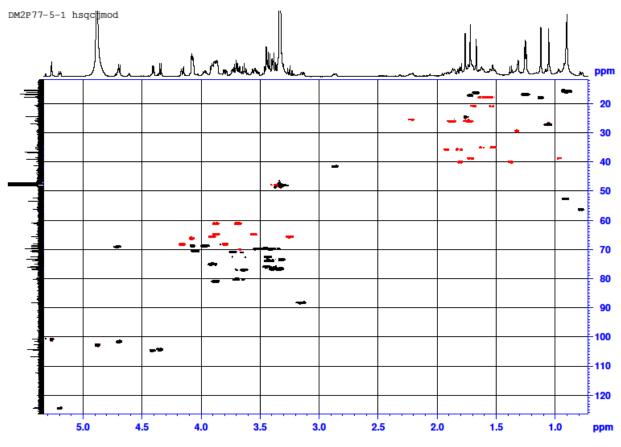


Figure S16: HSQC spectrum of compound 7 (CD₃OD)

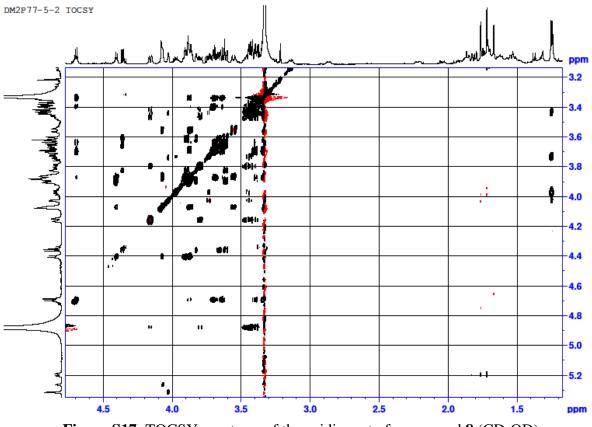


Figure S17: TOCSY spectrum of the osidic part of compound 8 (CD₃OD)

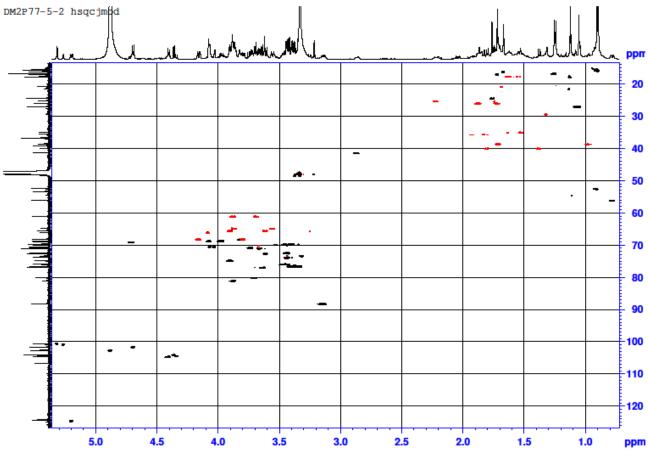
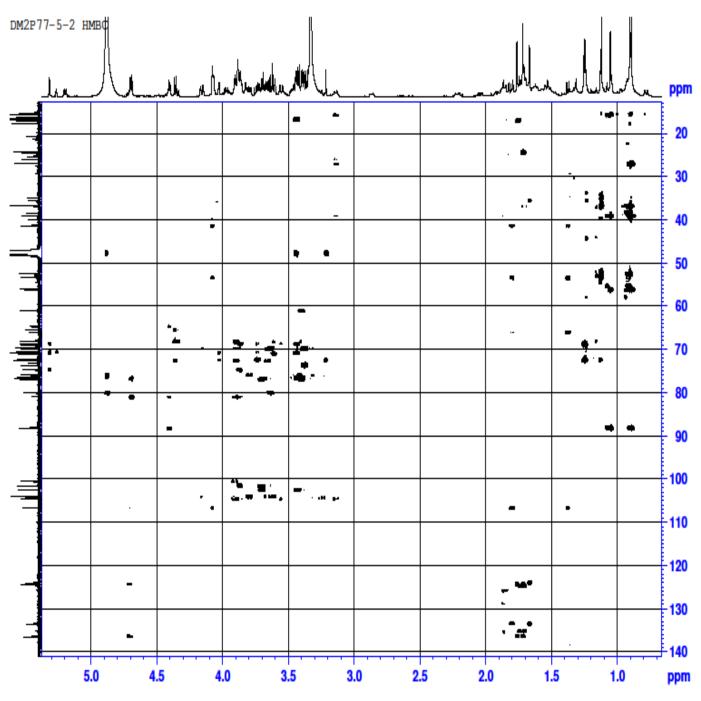
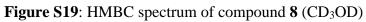




Figure S18: HSQC spectrum of compound 8 (CD₃OD)

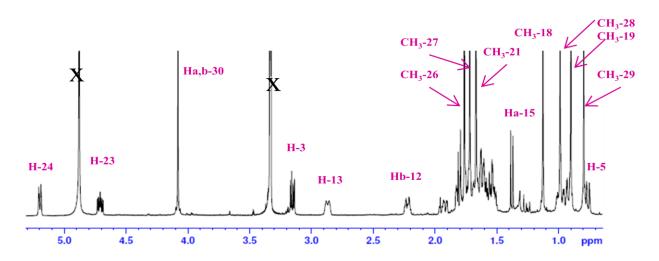


Figure S20: ¹H NMR spectrum of compound 9 (CD₃OD, 600 MHz)

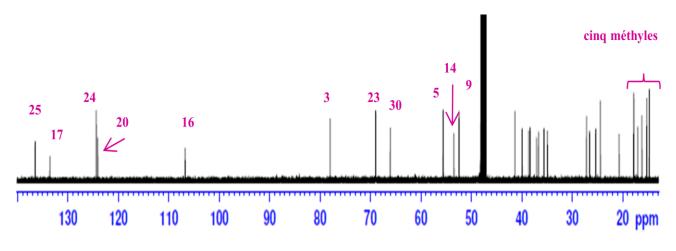


Figure S21: ¹³C NMR spectrum of compound 9 (CD₃OD, 600 MHz)

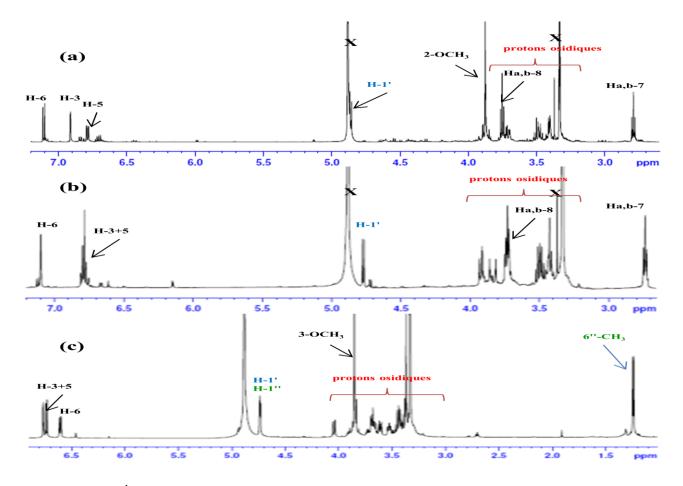


Figure S22 : 1 H NMR spectrum of compounds 19 (a) 20 (b) and 21 (c) (CD₃OD, 600 MHz)

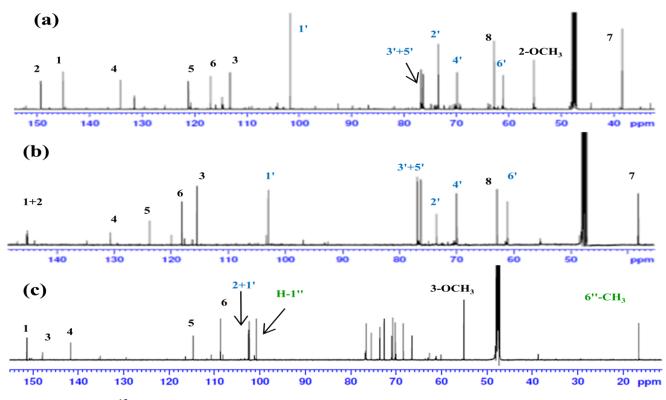


Figure S23 : ¹³C NMR spectrum of compounds 19 (a) 20 (b) and 21 (c) (CD₃OD, 600 MHz)

References

Acebey-Castellon I., L., Voutquenne-Nazabadioko, L., Doan Thi Mai, H., Roseau, N., Bouthagane, N., Muhammad, D., Le Magrex Debar, E., Gangloff, S.C., Litaudon, M., Sevenet, T., Van Hung, N., Lavaud, C., 2011. Triterpenoid saponins from *Symplocos lancifolia*. J. Nat. Prod. 74, 163–168 Chwalek, M, Lalun, N, Bobichon, H, Ple, K, Voutquenne-Nazabadioko, L., 2006. Structure–activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction. Biochem. Biophys. Acta 1760, 1418–1427

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial disk susceptibility Tests: Approved Standard M2-A7. 11 th ed. Clinical and Laboratory Standards Institute Wayne, Pa; 2005.

Muhammad, D., Hubert, J., Lalun, N., Renault, J.H., Bobichon, H., Nour, M., Voutquenne-Nazabadioko, L. 2015. Isolation of flavonoids and triterpenoids from the fruits of *Alphitonia neocaledonica* and evaluation of their anti-oxidant, anti-tyrosinase and cytotoxic activities. Phytochem Anal. 26, 137-144.

Muhammad, D., Lalun, N., Bobichon, E. Le Magrex Debar, S. C. Gangloff, Nour,

M., Voutquenne-Nazabadioko, L. 2016. Flavonoids and triterpenoids from the leaves of *Alphitonia xerocaprus* Baill and their biological activities. Phytochemistry 129, 45-57.