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ABSTRACT 
High-dynamic range imaging permits to extend the dynamic range 
of intensity values to get close to what the human eye is able to 
perceive. Although there has been a huge progress in the digital 
camera sensor range capacity, the need of capturing several 
exposures in order to reconstruct high-dynamic range values 
persist. In this paper, we present a study on how to acquire high-
dynamic range values for multi-stereo images. In many papers, 
disparity has been used to register pixels of different images and 
guide the reconstruction. In this paper, we show the limitations of 
such approaches and propose heuristics as solutions to identified 
problematic cases.  

Keywords 
Multiscopic images, high-dynamic range images, image 
registration. 

1. INTRODUCTION 
Conventional digital images are called LDR (Low Dynamic 
Range). They correspond to most images acquired so far with 
cameras SLRs and compact cameras but also with the cameras 
available in the cell phones for example. They are usually captured 
and stored in an 8 to 10-bit precision format. When the dynamic 
color range is extended on at least 16 bits, the images are called 
HDR (High Dynamic Range) [21]. Digital HDR imaging has 
existed for more than twenty years and is now well integrated to the 
general public because its feature is now accessible on mobile 
phones in particular. HDR imaging is intended to overcome the 
shortcomings of current sensors while approaching solutions 
representing the range of intensities perceptible by the human eye. 
In parallel with digital imaging that can be considered two-
dimensional, the three-dimensional images (3D images) enable to 
perceive the relief of a scene. This technology is based on the 
geometry defined by stereoscopic vision.  

The fields of HDR imaging and 3D imaging have evolved a lot but 
independently. The development of methods allowing the 
acquisition or the generation of 3D and HDR images is booming 
but remains without real solution for the general public. The 
methods we propose deal with the fusion of the two domains of to 
obtain 3D HDR images with a wider dynamic range of colors than 
conventional 3D LDR images. 

In a previous approach, we proposed a disparity-based framework 
for 3D HDR imaging, from acquisition to generation [3]. In this 
paper, we propose a two-step solution to correct local errors. Our 
first contribution is an automatic detection of errors. Our second 
contribution is a set of proposed approaches to generate HDR 
values for identified problematic pixels.  

After reviewing previous work (section 2) and providing more 
details on our original approach (section 3), we describe our two 
contributions: automatic error detection (section 4) and HDR value 
computation for erroneous pixels (section 5). In section 6, we give 
detailed objective results on tests run on different datasets.  

2. PREVIOUS WORK 
3D reconstruction by stereovision. 3D reconstruction by 
stereovision relates to the automatic depth extraction of a 3D scene 
structure from different viewpoints (2 to n) acquired at the same 
time. It comes down to match all homologous pixels from the 3D 
point projections on the n images. This paper considers simplified 
multi-epipolar geometry, reached either by using directly a capture 
configuration in parallel geometry [17] or applying a pre-
processing step of rectification on each image [9], leading to 
epipolar lines parallel to image columns or rows. A matching 
scheme defines data similarity (or dissimilarity) within a given 
neighborhood between potential homologous pixels, rendered 
difficult by lack of information in images (such as occlusions) or 
ambiguous information (such as homogeneous/repetitive area or 
luminosity variations). Multiscopic methods usually gain 
robustness with information redundancy by computing 
simultaneously the n depth maps [16].  

HDR imaging Traditional HDR image reconstruction methods [21] 
combine information captured at different exposure times to 
acquire different intensities of a scene [6][11]. One difficulty with 
this approach is to handle dynamic scenes, where objects can move 
during the acquisition process. Several methods were proposed [11] 
but very few of them aim at reconstructing HDR values for dynamic 
environments[19]. Combining HDR with stereovision enables 
high-quality depth perception reproduction of real-world scenes, 
but few contributions have been made in this domain. Solutions 
were proposed for 3D HDR images with stereo cameras [22][10] or 
multi-stereo cameras [3] following stereovision-based procedures, 
with remaining inaccuracies in under- or over-exposed areas. This 
is improved using patch-map along the epipolar line [20] but spatial 
coherence is lost.  

3. METHOD OVERVIEW 
3.1 Original framework for multiscopic 
HDR reconstruction 
In [3], we presented a framework to obtain, from a set of multi-view 
and multi-exposure LDR images, a set of HDR images, one image 
being generated for each point of view. The depth information 
provided by the multi-view aspect of the images is used to find 
matching pixels in all images. The information provided by the 
different exposures is then used to obtain a radiance value for each 
pixel. An example of acquisition and results is given Figure 1. The 
output of our method can be used as an input for autostereoscopic 
display after application of a tone-mapping algorithm. Moreover, 
since a disparity map is produced for each image, augmented reality 
applications are also conceivable. 

Our approach consists of two main steps. First, we identify pixels 
representing the same point of the scene on different views. For this 
step, we adapted an approach from Niquin et al. [16] to the multi-
exposure context. Second, for each view, we calculate an HDR 
image, based on the list of matching pixels. We reformulated the 
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well-known method of Debevec and Malik [6] to consider the 
multi-view aspect of the images. 

 

Figure 1. Example of input (top) and output (bottom) of 
our method (HDR images tone mapped using [7] ). 

3.2 Stereo matching 
Usually, the images acquired to obtain an HDR image are captured 
from a single viewpoint. In this case, the pixels representing the 
same point in the scene are in the same position in each image. This 
is no longer the case when the acquisition of the images is carried 
out from different points of view. These pixels, to which an HDR 
value is to be assigned, are then at different coordinates in each 
image where they are represented. A matching step is therefore 
necessary in order to match the pixels representing the same point 
in each image constituting the dataset. 

We call a match a set of matching pixels, i.e., a set of pixels 
representing the same point of a scene which will get a unique HDR 
value. Using this notion of match, the method proposed by Niquin 
et al. [16] aims to simultaneously build a map of disparities for each 
image and a match list in order to perform a 3D reconstruction of 
the scene. 

It is worth noticing that this stereo matching method is based on 
color similarity and only processes images with the same exposure. 
Therefore, we bring the images of different exposures back to a 
common exposure in order to use the method as is. If the data are 
linear, a factor based on the percentage of light reaching the sensor 
is applied to the images. If they are not linear, a first step consists 
in estimating the response curve associated with the sensor in 
question. For this, we exploit the method of Debevec and Malik [6]. 

3.3 Multi HDR value computation 
In our framework we adapt the commonly used formula of Debevec 
and Malik [6] for calculating the HDR value (radiance E) 
associated with a pixel. The initial equation is recalled in Eq. (1). 
This equation considers the set of points on the scene at the same 
position (i, j) in the set of images considered. The calculation is 
carried out separately on each color component.  

𝑬(𝒊, 𝒋) =  
∑ 𝝎(𝑰𝒏(𝒊,𝒋))(

𝒇 𝟏(𝑰𝒏(𝒊,𝒋))

∆𝒕𝒏

𝑵
𝒏 𝟏

∑ 𝝎(𝑰𝒏(𝒊,𝒋))𝑵
𝒏 𝟏

  ( 1 ) 

where is the total number of images, In(i,j) the color value of the 
coordinate pixel (i,j) in the image In acquired with an exposure time 
tn et f-1 the inverse function of the camera response and  a weight 
function for penalizing under- or over-exposed pixels. 

We adapted Eq. (1) to allow the computation of a radiance value Ec 
on the color component c associated with each match m. 

𝑚 =   {   𝑞  | 𝑖 ∈ 𝐴 ⊆ { 1. . 𝑁} },  

𝑬𝒄(𝒎) =
∑ 𝝎(𝒒𝒊𝒄)

𝒇 𝟏 𝒒𝒊𝒄
𝚫𝒕𝒊

𝒊∈𝑨

∑ 𝝎(𝒒𝒊𝒄)𝒊∈𝑨
  ( 2 ) 

where m is a match, qic the color value of the pixel qi belonging to 
the m match on the color component c {R,G,B}, ti the exposure 

time of the image Ii to which the pixel qi belongs, f-1 the inverse 
function of the camera response and  a weight function. 

3.4 Proposed extension 
We have shown in previous articles [3][4] that the results of our 
original framework presented objectively quantifiable 
imperfections. We propose an automatic algorithm to detect invalid 
pixels (see details in section 4). We identified several possible 
methods to compute a corrected HDR value on these detected 
invalid pixels. They are presented in section 5. These additional 
steps to our original approach are presented in Figure 2.  

 

Figure 2. Extended pipeline: the green box represents 
the additional steps proposed to improve the radiance 

of the pixels of invalid matches. 

4. AUTOMATIC DETECTION OF 
INVALID MATCHES 
An invalid match is a match where the radiance of its pixels is 
considered as incorrect. To automatically detect the invalid 
matches in a set of HDR images, we based our algorithm on a 
subjective evaluation that the colors of the pixels belonging to these 
matches are colored differently than their neighbors, as shown in 
the examples of the Figure 3. 

  
(a) (b) 

Figure 3. HDR images produced by our method on the 
first view for the image set (a) Moëbius and (b) Dwarves 
of the Middlebury database. Black boxes outline pixels 

inconsistent with their neighborood. 

The determination of the non-acceptance of the radiance of the 
pixels of a match is based on the sum of the RGB values of each 
pixel of this match. This sum must belong to an interval [a,b] so 
that the match is not considered invalid. The limits of this interval 
depend on the range of LDR values on which the original images 
are stored, and correspond to a selection of non under- or over-
exposed pixels. A second criterion considers the number of 
different exposures represented in the match under consideration. 
If the complete set of exposures available in the processed images 
is not represented, we consider that the radiance of the pixels of this 
match must be corrected. In this way we can distinguish a dark-
colored pixel from an under-exposed pixel and a light-colored pixel 
from an over-exposed pixel. The set of invalid matches detected is 
then placed in a list treated by each of the methods of improvement 
of the radiances proposed in the following sections. 

5. HDR VALUE FOR INVALID 
MATCHES 
We propose three solutions to correct the radiance of the invalid 
pixels detected by the method described in the previous section. 
The first method permits to assign a new pixel radiance to the 
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current pixel by using the radiance of the pixels in its 
neighbourhood (see section 5.1). The two other methods are 
decomposed in two steps: correction of the initial disparities and 
then correction of the radiances of the pixels. The first method 
modifies the disparity of the pixels by taking into account the 
disparity that is attributed to the pixels of the neighborhood while 
the second method takes into account the disparities calculated on 
each of the color components R, G and B separately. The new 
disparity maps lead to new lists of matches: the correction of the 
radiances of the pixels treated by these two methods is then based 
on the exploitation of these new list of matches. 

5.1 Correction by interpolation of 
radiances 
The steps for assigning new radiances to the pixels of invalid 
matches by the color-based method are detailed in algorithm 1. The 
method consists in interpolating the HDR values by considering the 
pixels of the 33 neighbourhood of all the pixels of an invalid 
match. The radiance of the set of pixels of a neighborhood is 
considered with a confidence index  in order to distinguish 
between the pixels of a valid match and the pixels of an invalid 
match. This confidence index can have three values: 0 for invalid 
matches pixels, 0.5 for invalid matches pixels whose radiance has 
been corrected and 1 for valid matches pixels. Thus, a pixel of an 
invalid match can see its confidence index rise from 0 to 0.5 but 
never to 1, this value being reserved for the pixels of a valid match. 

 
The zero confidence index means that as long as the radiance of a 
pixel from the list of invalid matches has not been corrected, it 
cannot be considered in the computation of the radiance of another 
pixel. To treat the pixels whose neighborhood is of better quality, 
we impose a constraint on the sum of the confidence indices of the 
neighboring pixels. This constraint is gradually released so that all 
pixels can be processed. The processing algorithm is iterative in 
order to manage the priority constraint in the main loop. It implies 
the impossibility of  processing all of the invalid matches in a single 
iteration. Therefore, the process is repeated until all the radiances 
of the pixels are replaced. When there is no change for a given 
confidence index, it is decremented by 0.5. It is only at the end of 
the current iteration that the radiance values calculated during this 
iteration are allocated to the pixels concerned.  

For a set of 8 multiscopic images, the radiance attributed to the 
pixels of an invalid match m is obtained by the formula: 

𝑬(𝒑) =
∑ ∑ 𝛂𝒊𝒋𝑬𝒊 𝒑𝒋

𝟕
𝒋 𝟎

𝑪𝒂𝒓𝒅(𝒎)
𝒊 𝟏

∑ ∑ 𝛂𝒊𝒋
𝟕
𝒋 𝟎

𝑪𝒂𝒓𝒅(𝒎)
𝒊 𝟏

  ( 3 ) 

where p is the current pixel of the invalid match processed, pj is a 
pixel of the neighborhood of the pixel considered with j  {0, .., 7} 

its identifier, Ei(pj) is the radiance of the pixel pj and ij corresponds 
to the confidence index of the pixel pj.  

5.2 Correction based on disparities 
In this section, we propose a solution to correct the disparities 
originally attributed to the pixels of invalid matches. According to 
our observations, the disparity of these pixels is wrong because 
many of them are on the contours of the objects. A bad disparity 
leads to the pairing of pixels not representing the same point of the 
scene. Invalid matches cannot be kept as is. The pixels of these 
matches are separated so that they can be treated separately and are 
considered as singleton matches.  

The proposed methods are divided into three steps (see Figure 4). 
When the disparity maps are computed, a new pairing of the pixels 
is carried out. Then we look in this new list of matches which are 
now the pixels counterparts of the invalid matches. We can then 
calculate an HDR value only for the pixels of the invalid matches. 
The radiance of the other pixels remains unchanged.  

 

Figure 4. Pipeline generation of new HDR values from 
the list of invalid matches. 

Two methods are proposed for correcting disparities. The first one 
is based on heuristics about the disparities of the neighborhood. The 
second one performs the computation on monochromatic values.  

5.2.1 Method based on heuristics on the disparities 
of the neighborhood 
The choice of a method for modifying disparities by heuristics is 
guided by the knowledge we have of the disparity of each pixel of 
the images. We assume that, considering a restricted neighborhood, 
there is little risk of a large difference between the disparities of the 
pixels. The advantage of methods of estimating disparities is their 
sensitivity to the texture of the objects of the scene. Their 
calculation is then more precise than the modification of the colors 
presented in the previous section. It may then be possible to retrieve 
the texture details in a scene based on the continuity of the 
disparities. Horizontal continuities are favored over vertical 
continuities. If the disparities are equal, the pixels are inside an 
object, otherwise the pixels are at the edge of an object or on two 
different objects. 

 
The proposed method is summarized in the algorithm 2. 
Considering the neighborhood of size 33, the number of pixels 
considered decreases from 8 to 1, giving priority to the greatest 
number of exploitable pixels, then the condition is gradually 
released. The algorithm is interrupted when the threshold of the 
number of exploitable pixels becomes zero. This stop criterion 
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implies that the processing loop may stop before all pixels are 
processed. 

The consideration of the neighborhood to determine the new 
radiance to be allocated to a pixel is dependent on the disparities of 
the neighboring pixels, which can potentially propagate errors. The 
recalculated disparities are considered with the same reliability as 
the initial disparities. The distinction is made between a valid match 
and an invalid match but a differentiation is also made at the level 
of the pixels. A pixel can be exploitable or non-exploitable. Its 
exploitability is based on the LDR value of its color components. If 
at least one of them is not within a defined range, the pixel is 
considered to be non-exploitable. Otherwise, it is exploitable and 
can therefore be used in the proposed methods. In this definition, a 
pixel of which the set of the under-exposed or over-exposed color 
components is considered to be non-exploitable. 

 
Figure 5. Pixels and disparities labelling of the 

neighborhood 33 of a pixel p of an invalid match. 

The disparity d of the current pixel is calculated as a function of the 
disparities of the exploitable pixels of the neighborhood. It is 
defined by the algorithm 3. This choice is guided by the fact that 
the difficulties of pairing essentially take place at the edges of the 
objects. Horizontal and then vertical consistencies are favored first 
in equality and then in increment. If the neighboring disparities do 
not correspond to these cases, a median value of the disparities is 
attributed. 

 
The method is based on the assumption that the disparity is wrong, 
so it is necessary for the new disparity to be different from the initial 
one. However, this method does not ensure the modification of all 
the disparities of the pixels of the invalid matches. The new 
disparity may sometimes be identical to the original disparity 
without any other choice in the attribution. 

5.2.2 Method based on mono-chromatic disparities 
The second method proposed to modify the disparities of the pixels 
of invalid matches is based on disparity maps independently 
computed on each color component R, G, B. Assuming that a pixel 
may not be under-exposed or over-exposed on at least one of the 

                                                                    
 
1 http://vision.middlebury.edu/stereo/data/  

color components, we exploit this independence so as to modify the 
disparity of a pixel by taking into account the disparities calculated 
on the three color components separately. The method consists first 
of all of considering only one component on each of the multi-
exposure images. The same component is chosen for the set of 
images. Thus, from the RGB images, we obtain a set of images 
corresponding to the only R component (the same for the G and B 
components). Each of the three sets of images is therefore used 
separately to generate the disparity maps associated with each color 
component. 

For each pixel, we now have three disparities obtained respectively 
from the R images, the G images and the B images. The choice of 
the disparity is based on the LDR values R, G and B of the 
processed pixel. A pixel whose color is close to the median value 
range on which the LDR images are stored is neither underexposed 
nor overexposed. Its disparity is therefore likely to have been 
correctly calculated. We classify the values R, G and B as a 
function of their distance from the median. The disparity chosen is 
that calculated from the color component whose distance to the 
median is the lowest. We verify that this disparity is different from 
the initial disparity. If this is not the case, the choice is the disparity 
calculated on the second component whose value is closest to the 
median, and so on. As with the previous method, it is possible that 
the new disparity cannot be different from the initial disparity. In 
this case, the correction is not made and the initial disparity is 
retained. 

6. RESULTS AND DISCUSSIONS 
6.1 Image dataset 
We tested our approaches on three different datasets. The first one 
is generated using the OctoCam multiview camera [17] equipped 
with eight horizontally aligned and synchronized objectives 
designed to deliver 3D content for auto-stereoscopic displays. This 
camera is based on a simplified epipolar geometry that permits 
strong assumptions on 3D stereovision algorithms [18] and 
horizontally aligned epipolar lines. Each of its sensors allows the 
acquisition of 10 bits per color channel. A neutral density filter is 
fixed on each objective; consequently, a different percentage of the 
light reaches the sensor for each view, hence acquired images 
represent different exposures.  

The second series of images was generated using the POV-Ray ray-
tracer. We reproduced the geometry of the OctoCam to render eight 
images from aligned viewpoints of a synthetic scene. 

The third source of images is the database made available on the 
Internet by Middlebury University1 which offers images acquired 
from different points of view and different exposures. Contrary to 
those of OctoCam, the images proposed by Middlebury are 
acquired according to a parallel geometry so it was necessary to 
choose a region of interest in the original images in order to satisfy 
the requirements of the off-centered parallel geometry.  

6.2 Objective quality metrics  
To judge on the quality of an HDR image, the most common 
method is to compare it with a reference image. The HDR-VDP 
(High Dynamic Range Visible Difference Predictor), developed by 
Mantiuk et al.[13] has been developed for this type of image. An 
update of this metric was proposed by Narwaria et al. [14]. One of 
the major disadvantages of this predictor is the number of 
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parameters to be considered. However, for simplicity a version is 
available online2. On the same principle, the authors have 
developed a method for HDR videos[15]. Aydin et al. [1] and 
Valenzise et al. [23] proposed comparing two HDR images with the 
measures traditionally used to compare two LDR images such as 
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural 
Similarity Index) by adapting the data used. Instead of taking into 
account the color components Red, Green and Blue, the data is 
transformed to become perceptually uniform. When the data were 
not linear, Narwaria et al. [14] demonstrated better HDR-VDP 
performance.  

Hanhart et al. [8] conclude that HDR-VDP-2 and PQ2VIFP are the 
best generic predictors of visual quality as they show less content 
dependency than the other metrics. 

6.3 Evidence of limitation on objects’ edges 
Visual errors occur because of the difficulty of aggregating enough 
pixels in a match to obtain a correct HDR value. Whatever the set 
of images considered, errors are mostly localized at the contours of 
the objects since there are lower numbers of correspondents. Figure 
6 presents the image acquired on the view #0 for the Dolls image 
set of the Middlebury database and the number of pixels contained 
in the match to which the current pixel belongs. In the 
neighborhood of objects’ edges, the number of pixels contained in 
the matches decreases. 

  
Figure 6. Distribution of the number of pixels per match 
in the HDR image generated on the view #0 of the Dolls 
image set. The associated color code is: gray-7 pixels, 
cyan-6 pixels, green-5 pixels, yellow-4 pixels, orange-3 

pixels, red-2 pixels and black-1 pixel. 

6.4 Evaluation of the method of automatic 
detection of invalid matches 
A comparison is made between the reference HDR images and the 
HDR images produced by our uncorrected method. This 
comparison is made independently on each of the points of view. A 
threshold, fixed at 6% of the range of pixel radiance values, is 
considered to be tolerable. The pixels whose Euclidean distance in 
the RGB space is greater than this threshold are considered 
incorrect. We obtain reference values on the number of correct 
pixels and the number of incorrect pixels. These values are 
compared to those obtained by our automatic detection. 

Table 1 shows a series of percentages calculated on the images 
acquired with the OctoCam when the neutral density filters are 
fixed on some of the camera lenses and on the image set Dwarves 
of the Middlebury database. The Correct Pixels column binds the 
number of pixels correctly classified as correct by our method to 
the correct number of pixels in the reference method. The Incorrect 
Pixels column corresponds to the number of pixels correctly 
classified as incorrect by the proposed detection method relative to 
the number of incorrect pixels in the reference method. The False 
                                                                    
 
2 http://driiqm.mpi-inf.mpg.de  

Positives column represents the number of pixels that are 
incorrectly classified as incorrect by our method relative to the total 
number of pixels that are classified as incorrect by the same 
method. The False Negatives column relates the number of pixels 
that are incorrectly classified as correct by the proposed method and 
the total number of pixels that are classified as correct in the same 
method. 

Table 1. Distribution of the detection of invalid matches 
in comparison with the difference between the 

reference HDR image and the generated HDR image. 

 

  
Figure 7. Erroneous pixels automatically detected by 

our presented approach.  

These results show that the incorrect pixels are less numerous by 
our method than by the reference method but they correspond to 
pixels whose radiance must absolutely be corrected. The reference 
method needs a threshold whose value is difficult to choose. Our 
experimentations show that the increase of this threshold increases 
the number of false positives and reduces the number of false 
negatives in the proposed method, and its reduction does not allow 
the detection of clearly identified pixels that are erroneous in the 
HDR images produced. An example case is shown in Figure 7. 

6.5 Evaluation of the quality of the 
generated HDR images  
For our work we have chosen to use HDR-VDP-2 (see Figure 8). 
However, in order to apply this metric, we need HDR reference 
images to compare to. To obtain the best possible reference images, 
we generate independently per-viewpoint reference HDR images 
by combining several exposures of a same viewpoint using the 
weighted average method of Debevec and Malik [6]. We use three 
exposures for Middlebury database sets and four for sets acquired 
with OctoCam and synthetic sets.  

 
Figure 8. Color scale of visibility difference probability 

detection used by HDR-VDP-2. 

Among the three correction methods proposed, the color-based 
method is the one that produces the higher quality HDR images for 
the images of the Middlebury database. Figure 9 shows particular 
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areas which clearly highlight the improvements made locally by the 
color-based method. 

As shown inFigure 10 and Figure 11, many of the perceptible 
defects in the HDR images have been corrected. The images 
produced by the HDR-VDP-2 show a larger blue color range with 
this method on views 0 and 6, which proves that human eye does 
not perceive any difference with the reference image in this area. 
By considering the neighborhood of a pixel, it is possible to assign 
an HDR value to each pixel, which is not allowed by the original 
method, because of the consideration of a saturation threshold on 
the pixels of a match, neither by the two methods based on 
disparities, since for some pixels the disparity cannot be modified.  

For the data set acquired with OctoCam (Figure 12) and the 
synthesis images (Figure 13), we can see that the results of the 
methods proposed are close. Using the HDR-VDP-2, we can see 
some differences between the images produced by each of the 
methods and those produced by the method without correction, but 
the pixels concerned are few in number. These two sets of images 
have fewer automatically detected pixels, which results in the 
correction of a small number of pixels in the whole image. 
Therefore, the differences between the methods are not perceived. 

Methods based on the improvement of the disparities do not make 
it possible to achieve the quality of the HDR images produced by 
the color-based method. The choice to change the disparities is 
based on the desire to reduce the number of invalid matches to the 
maximum but these two methods encounter two difficulties. The 
first is the need to find a disparity different from that originally 
attributed, which is not always possible since the algorithms may 
lead to the choice of the same disparity. The second difficulty is, 
despite the correction of the disparities, to be able to assign a new 
correct HDR value.  

The changes made by the color-based method are more important 
on the extreme views because the pixels belonging to invalid 
matches are on these images. Indeed, it is on these views that are 
placed the images of lower exposures, which makes their pixels 
more vulnerable. Few pixels are erroneous on the central views so 
the images appear to be identical to their initial value. 

 
Figure 9. HDR and HDR-VDP-2 images corresponding to 

selected areas in the Middlebury database images for 
color based, heuristic disparity and mono-chromatic 

methods. 

 
Figure 10. HDR and HDR-VDP-2 images on each point of 

view for color-based, heuristic-disparity and mono-
chromatic methods for the Moebius image set of the 

Middlebury database. 

 
Figure 11. HDR and HDR-VDP-2 images on each point of 

view for the color-based, heuristic-on-disparity and 
mono-chromatic methods for the Dwarves image set of 

the Middlebury database. 
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Figure 12. HDR and HDR-VDP-2 images on each point of 
view for color-based, heuristic-on-disparity and mono-

chromatic methods for the image set acquired with 
OctoCam mounted with neutral density filters. 

 
Figure 13. HDR and HDR-VDP-2 images on each point of 
view for color-based, heuristic-on-disparity and mono-

chromatic methods for the image set generated with the 
POV-Ray raytracing software. 

6.6 Highlighting errors due to the pixel 
mapping method 
The studies we carried out on the geometric and colorimetric 
coherence of the data acquired for the generation of 3D HDR 
images [4] do not completely justify the presence of all the errors.  

In order to highlight the role of the wrong results in the matching 
method, new reference images are computed. For these images, the 
disparity maps and the associated match lists are calculated from 
the same exposure images, which gives optimal disparity maps. An 
HDR image per point of view is then calculated from these new 
elements. This image becomes a new reference that we compare to 
the reference image used in previous comparisons (see Figure 14). 
The central image really emphasizes that the errors in the methods 

come from the method of disparities and not from its application on 
images of multiple exposures. 

   
(a) (b) (c) 

Figure 14. Comparisons: a) of the initial reference HDR 
image with the new reference HDR image, b) of the HDR 

image with the initial reference HDR image, c) of the 
HDR image with the new reference HDR image. 

The results of the color-based method clearly show that corrections 
have been made in areas where errors are due to multi-exposure 
frames B. The HDR-VDP-2 shows that the corrections made are 
generally better since the zones A are also improved. It is 
interesting to note, however, in Box C, errors reintroduced by the 
method appear (see Figure 15). The radiance attributed to them 
becomes of lower quality than the initial radiance. 

(a) (b) (c) 
Figure 15. Comparisons: a) of the initial reference HDR 
image with the new reference HDR image, b) of the HDR 
image with the new reference HDR image, c) of the HDR 

image after color-based correction with the new 
reference HDR image. 

7. CONCLUSION 
In this paper, we address the difficult topic of HDR generation for 
multiscopic data. The main difficulties, highlighted in this research 
work, come from the fact that HDR generation requires accurate 
registration of pixel. However, multiscopic images present non-
linear displacement, making thus this registration process difficult. 
Disparity is explored as a registration approach. We provide an 
indepth analysis on the limitation of disparity-based HDR 
generation. One difficulty comes from the fact that disparity solvers 
rely on color matching whereas data input in our case are differently 
exposed. Another difficulty is intrinsic to disparity algorithm, 
where object borders or outliers (highlights) have always been 
known as difficult to address.  

In this paper, we propose an automatic method to locally detect 
wrongly generated HDR values and we propose correction 
approaches. Our results show that we are able to correctly identify 
erroneous pixels and that we are able to significantly improve the 
results.  

As future work, we would like to explore solutions that solve 
together disparity and HDR values, thus beneficiating both on 
depth and HDR knowledge. Akhavan et al. [1] demonstrated the 
benefice of HDR imaging to disparity computation.    
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