J. M. Maki, Lysyl Oxidases in Mammalian Development and Certain Pathological Conditions, Histol. Histopathol, vol.24, pp.651-660, 2009.

P. C. Trackman, Enzymatic and Non-Enzymatic Functions of the Lysyl Oxidase Family in Bone, Matrix Biol, pp.52-54, 2016.

M. I. Uzel, I. C. Scott, H. Babakhanlou-chase, A. H. Palamakumbura, W. N. Pappano et al., Multiple Bone Morphogenetic Protein 1-Related Mammalian Metalloproteinases Process pro-Lysyl Oxidase at the Correct Physiological Site and Control Lysyl Oxidase Activation in Mouse Embryo Fibroblast Cultures, J. Biol. Chem, 2001.

S. D. Vallet, A. E. Miele, U. Uciechowska-kaczmarzyk, A. Liwo, B. Duclos et al., Insights into the Structure and Dynamics of Lysyl Oxidase Propeptide, a Flexible Protein with Numerous Partners, Sci. Rep, vol.8, p.11768, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109680

J. L. Grimsby, H. A. Lucero, P. C. Trackman, K. Ravid, and H. M. Kagan, Role of Lysyl Oxidase Propeptide in Secretion and Enzyme Activity, J. Cell. Biochem, vol.111, pp.1231-1243, 2010.

P. C. Trackman, Functional Importance of Lysyl Oxidase Family Propeptide Regions, J. Cell. Commun. Signal, p.45, 2018.
DOI : 10.1007/s12079-017-0424-4

URL : https://link.springer.com/content/pdf/10.1007%2Fs12079-017-0424-4.pdf

S. Ricard-blum and S. D. Vallet, Proteases Decode the Extracellular Matrix Cryptome, Biochim, vol.122, pp.300-313, 2016.
DOI : 10.1016/j.biochi.2015.09.016

S. Ricard-blum and S. D. Vallet, Fragments Generated upon Extracellular Matrix Remodeling: Biological Regulators and Potential Drugs, Matrix Biol, pp.170-189, 2019.
DOI : 10.1016/j.matbio.2017.11.005

URL : https://hal.archives-ouvertes.fr/hal-02109885

X. Chen and F. T. Greenaway, Identification of the Disulfide Bonds of Lysyl Oxidase, J. Neural Transm, vol.118, 1111.

S. X. Wang, M. Mure, K. F. Medzihradszky, A. L. Burlingame, D. E. Brown et al., A Crosslinked Cofactor in Lysyl Oxidase: Redox Function for Amino Acid Side Chains, Science, vol.273, pp.1078-1084, 1996.

S. X. Wang, N. Nakamura, M. Mure, J. P. Klinman, and J. Sandersloehr, Characterization of the Native Lysine Tyrosylquinone Cofactor in Lysyl Oxidase by Raman Spectroscopy, J. Biol. Chem, 1997.

J. A. Bollinger, D. E. Brown, and D. M. Dooley, The Formation of Lysine Tyrosylquinone (LTQ) Is a Self-Processing Reaction. Expression and Characterization of a Drosophila Lysyl Oxidase, Biochemistry, vol.44, pp.11708-11714, 2005.

A. Borel, D. Eichenberger, J. Farjanel, E. Kessler, C. Gleyzal et al., Lysyl Oxidase-like Protein from Bovine Aorta. Isolation and Maturation to an Active Form by Bone Morphogenetic Protein-1, J. Biol. Chem, vol.276, pp.48944-48949, 2001.
DOI : 10.1074/jbc.m109499200

URL : https://hal.archives-ouvertes.fr/hal-00313824

W. Li, K. Nellaiappan, T. Strassmaier, L. Graham, K. M. Thomas et al., Localization and Activity of Lysyl Oxidase within Nuclei of Fibrogenic Cells, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.12817-12822, 1997.

M. Giampuzzi, R. Oleggini, and A. Di-donato, Demonstration of in Vitro Interaction between Tumor Suppressor Lysyl Oxidase and Histones H1 and H2: Definition of the Regions Involved, Biochim. Biophys. Acta, vol.1647, pp.245-251, 2003.

W. Li, M. A. Nugent, Y. Zhao, A. N. Chau, S. J. Li et al., Lysyl Oxidase Oxidizes Basic Fibroblast Growth Factor and Inactivates Its Mitogenic Potential, J. Cell. Biochem, vol.88, pp.152-164, 2003.
DOI : 10.1002/jcb.10304

H. A. Lucero, K. Ravid, J. L. Grimsby, C. B. Rich, S. J. Dicamillo et al., Lysyl Oxidase Oxidizes Cell Membrane Proteins and Enhances the Chemotactic Response of Vascular Smooth Muscle Cells, J. Biol. Chem, vol.283, pp.24103-24117, 2008.

J. M. Maki, R. Sormunen, S. Lippo, R. Kaarteenaho-wiik, R. Soininen et al., Lysyl Oxidase Is Essential for Normal Development and Function of the Respiratory System and for the Integrity of Elastic and Collagen Fibers in Various Tissues, Am. J. Pathol, vol.167, pp.927-936, 2005.

D. Guo, E. S. Regalado, L. Gong, X. Duan, and R. Santos-cortez,

L. P. Arnaud, P. Ren, Z. Cai, B. Hostetler, E. M. Moran et al., LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections, Circ. Res, vol.118, pp.928-934, 2016.

V. S. Lee, C. M. Halabi, E. P. Hoffman, N. Carmichael, I. Leshchiner et al., Loss of Function Mutation inLOXcauses Thoracic Aortic Aneurysm and Dissection in Humans, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.8759-8764, 2016.

J. T. Erler, K. L. Bennewith, M. Nicolau, N. Dornhofer, C. Kong et al., Lysyl Oxidase Is Essential for Hypoxia-Induced Metastasis, Nature, vol.440, pp.1222-1226, 2006.

T. R. Cox, R. M. Rumney, E. M. Schoof, L. Perryman, A. M. Høye et al., The Hypoxic Cancer Secretome Induces Pre-Metastatic Bone Lesions through Lysyl Oxidase, Nature, vol.522, pp.106-110, 2015.

T. R. Cox, A. Gartland, and J. T. Erler, Lysyl Oxidase, a Targetable Secreted Molecule Involved in Cancer Metastasis, Cancer Res, vol.76, pp.188-192, 2016.

A. Gartland, J. T. Erler, and T. R. Cox, The Role of Lysyl Oxidase, the Extracellular Matrix and the Pre-Metastatic Niche in Bone Metastasis, J. Bone Oncol, vol.5, pp.100-103, 2016.

E. Pastel, E. Price, K. Sjo?olm, L. J. Mcculloch, N. Rittig et al., Lysyl Oxidase and Adipose Tissue Dysfunction, Metab., Clin. Exp, vol.78, pp.118-127, 2018.

K. M. Lopez and F. T. Greenaway, Identification of the CopperBinding Ligands of Lysyl Oxidase, J. Neural Transm, vol.118, pp.1101-1109, 2011.

N. Papadantonakis, S. Matsuura, and K. Ravid, Megakaryocyte Pathology and Bone Marrow Fibrosis: The Lysyl Oxidase Connection, Blood, vol.120, pp.1774-1781, 2012.

V. Aumiller, B. Strobel, M. Romeike, M. Schuler, B. E. Stierstorfer et al., Comparative Analysis of Lysyl Oxidase (like) Family Members in Pulmonary Fibrosis, Sci. Rep, vol.7, p.149, 2017.

H. E. Barker, T. R. Cox, and J. T. Erler, The Rationale for Targeting the LOX Family in Cancer, Nat. Rev. Cancer, vol.12, pp.540-552, 2012.

P. C. Trackman, Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer, Expert Opin. Ther. Targets, vol.20, pp.935-945, 2016.

C. R. Harlow, X. Wu, M. Van-deemter, F. Gardiner, C. Poland et al., Targeting Lysyl Oxidase Reduces Peritoneal Fibrosis, PLoS One, vol.12, 2017.

S. R. Pinnell and G. R. Martin, The Cross-Linking of Collagen and Elastin: Enzymatic Conversion of Lysine in Peptide Linkage to AlphaAminoadipic-Delta-Semialdehyde (Allysine) by an Extract from Bone, Proc. Natl. Acad. Sci. U. S. A, vol.61, pp.708-716, 1968.

A. P. Duff, A. E. Cohen, P. J. Ellis, J. A. Kuchar, D. B. Langley et al., The Crystal Structure of Pichia Pastoris Lysyl Oxidase, Biochemistry, vol.42, pp.15148-15157, 2003.

A. P. Duff, A. E. Cohen, P. J. Ellis, K. Hilmer, D. B. Langley et al., The 1.23 Å Structure Pichia Pastoris Lysyl Oxidase Reveals a Lysine-Lysine Cross-Link, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1073-1084, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-01718563

H. M. Kagan and F. Ryvkin, Lysyl Oxidase and Lysyl Oxidase-Like Enzymes. In The Extracellular Matrix: an Overview, Biology of Extracellular Matrix

R. P. Mecham and E. Springer, , vol.335, 2011.

R. Bhuvanasundar, A. John, K. N. Sulochana, K. Coral, P. R. Deepa et al., A Molecular Model of Human Lysyl Oxidase (LOX) with Optimal Copper Orientation in the Catalytic Cavity for Induced Fit Docking Studies with Potential Modulators, Bioinformation, vol.10, pp.406-412, 2014.

C. J. Krebs and S. A. Krawetz, Lysyl Oxidase Copper-Talon Complex: A Model, Biochim. Biophys. Acta, vol.1202, pp.7-12, 1993.

X. Zhang, Q. Wang, J. Wu, J. Wang, Y. Shi et al., Crystal Structure of Human Lysyl Oxidase-like 2 (HLOXL2) in a Precursor State, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.3828-3833, 2018.

Y. Song, F. Dimaio, R. Y. Wang, . .-r, D. Kim et al., High-Resolution Comparative Modeling with RosettaCM, Structure, vol.21, pp.1735-1742, 2013.

Y. Kim, C. D. Boyd, and K. Csiszar, A New Gene with Sequence and Structural Similarity to the Gene Encoding Human Lysyl Oxidase, J. Biol. Chem, vol.270, pp.7176-7182, 1995.

O. Livnah, E. A. Stura, S. A. Middleton, D. L. Johnson, L. K. Jolliffe et al., Crystallographic Evidence for Preformed Dimers of Erythropoietin Receptor before Ligand Activation, Science, vol.283, pp.987-990, 1999.

S. Unni, Y. Huang, R. M. Hanson, M. Tobias, S. Krishnan et al., Web Servers and Services for Electrostatics Calculations with APBS and PDB2PQR, J. Comput. Chem, pp.32-1488, 2011.

R. N. Oldfield, K. A. Johnston, J. Limones, C. Ghilarducci, and K. M. Lopez, Identification of Histidine 303 as the Catalytic Base of Lysyl Oxidase via Site-Directed Mutagenesis, Protein J, vol.37, pp.47-57, 2018.

S. N. Gacheru, P. C. Trackman, M. A. Shah, C. Y. O'gara, P. Spacciapoli et al., Structural and Catalytic Properties of Copper in Lysyl Oxidase, J. Biol. Chem, vol.265, 1990.

B. E. Suzek, Y. Wang, H. Huang, P. B. Mcgarvey, and C. H. Wu, UniRef Clusters: A Comprehensive and Scalable Alternative for Improving Sequence Similarity Searches, Bioinformatics, vol.31, pp.926-932, 2015.

O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, M. S. Sansom et al., A Program for the Analysis of the Pore Dimensions of Ion Channel Structural Models, J. Mol. Graph, vol.14, pp.354-360, 1996.

J. J. Wilson, O. Matsushita, A. Okabe, and J. Sakon, A Bacterial Collagen-Binding Domain with Novel Calcium-Binding Motif Controls Domain Orientation, EMBO J, vol.22, pp.1743-1752, 2003.

J. Laimer, H. Hofer, M. Fritz, S. Wegenkittl, P. Lackner et al., Agent Stability Prediction upon Point Mutations, BMC Bioinf, vol.16, p.116, 2015.

J. Laimer, J. Hiebl-flach, D. Lengauer, and P. Lackner, MAESTROweb: A Web Server for Structure-Based Protein Stability Prediction, Bioinformatics, vol.32, pp.1414-1416, 2016.

A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., SWISS-MODEL: Homology Modelling of Protein Structures and Complexes, Nucleic Acids Res, vol.46, pp.296-303, 2018.

J. Lenffer, P. Lai, W. El-mejaber, A. M. Khan, J. L. Koh et al., Protein Classification Based on Cysteine Pairing Patterns, Nucleic Acids Res, vol.32, pp.350-355, 2004.

S. Montgomerie, J. A. Cruz, S. Shrivastava, D. Arndt, M. Berjanskii et al., PROTEUS2: A Web Server for Comprehensive Protein Structure Prediction and Structure-Based Annotation, Nucleic Acids Res, vol.36, pp.202-209, 2008.

T. Ishida and K. Kinoshita, Prediction of Disordered Regions in Proteins Based on the Meta Approach, Bioinformatics, vol.24, pp.1344-1348, 2008.

Z. Doszta?yi, B. Me?za?os, and I. Simon, ANCHOR: Web Server for Predicting Protein Binding Regions in Disordered Proteins, Bioinformatics, vol.25, pp.2745-2746, 2009.

B. Me?za?os, I. Simon, and Z. Doszta?yi, Prediction of Protein Binding Regions in Disordered Proteins, PLoS Comput. Biol, vol.5, 2009.

N. Malhis, M. Jacobson, J. Gsponer, . Morfchibi, and . System, Software Tools for the Identification of MoRFs in Protein Sequences, Nucleic Acids Res, vol.44, pp.488-493, 2016.

D. E. Kim, D. Chivian, and D. Baker, Protein Structure Prediction and Analysis Using the Robetta Server, Nucleic Acids Res, vol.32, pp.526-531, 2004.

J. Soding, A. Biegert, and A. N. Lupas, The HHpred Interactive Server for Protein Homology Detection and Structure Prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.

V. Alva, S. Nam, J. Soding, and A. N. Lupas, The MPI Bioinformatics Toolkit as an Integrative Platform for Advanced Protein Sequence and Structure Analysis, Nucleic Acids Res, vol.44, pp.410-415, 2016.

R. H. Moore, M. A. Spies, M. B. Culpepper, T. Murakawa, S. Hirota et al., Trapping of a Dopaquinone Intermediate in the TPQ Cofactor Biogenesis in a Copper-Containing Amine Oxidase from Arthrobacter Globiformis, J. Am. Chem. Soc, vol.129, pp.11524-11534, 2007.

A. Ray, E. Lindahl, and B. Wallner, Improved Model Quality Assessment Using ProQ2. BMC Bioinf, vol.13, p.224, 2012.
DOI : 10.1186/1471-2105-13-224

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-13-224

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys, vol.79, pp.926-935, 1983.
DOI : 10.1063/1.445869

G. Bussi, D. Donadio, M. Parrinello, S. Pronk, S. Pa?l et al., Canonical Sampling through Velocity Rescaling, 5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics, vol.126, pp.845-854, 2007.
DOI : 10.1063/1.2408420

URL : http://arxiv.org/pdf/0803.4060

K. Lindorff-larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis et al., Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field, Proteins, vol.78, 1950.
DOI : 10.1002/prot.22711

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.22711

R. B. Best and G. Hummer, Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides, J. Phys. Chem. B, vol.113, pp.9004-9015, 2009.

R. B. Best, J. Mittal, M. Feig, A. D. Mackerell, and . Jr, Inclusion of Many-Body Effects in the Additive CHARMM Protein CMAP Potential Results in Enhanced Cooperativity of ?-Helix and ?-Hairpin Formation, Biophys. J, vol.103, 1045.

J. Torras and C. Alema?, Determination of New Cu + , Cu 2+ , and Zn 2+ Lennard-Jones Ion Parameters in Acetonitrile, J. Phys. Chem. B, pp.117-10513, 2013.

M. Parrinello and A. Rahman, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys, vol.52, pp.7182-7190, 1981.

B. Hess and . P-lincs, A Parallel Linear Constraint Solver for Molecular Simulation, J. Chem. Theory Comput, vol.4, pp.116-122, 2008.

S. Miyamoto, P. A. Kollman, and . Settle, An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models, J. Comput. Chem, vol.13, pp.952-962, 1992.

T. E. Cheatham, J. L. Miller, T. Fox, T. A. Darden, and P. A. Kollman, Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins, J. Am. Chem. Soc, vol.117, pp.4193-4194, 1995.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph, vol.14, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5