Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii
Rebecca Beauvais-Flück, Vera Slaveykova, Claudia Cosio

To cite this version:
Rebecca Beauvais-Flück, Vera Slaveykova, Claudia Cosio. Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. Environmental Pollution, Elsevier, 2019, 250, pp.331-337. 10.1016/j.envpol.2019.04.032. hal-02149940

HAL Id: hal-02149940
https://hal.univ-reims.fr/hal-02149940
Submitted on 6 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comparative study of Cu uptake and early transcriptome responses in the green microalga

Chlamydomonas reinhardtii and the macrophyte *Elodea nuttallii*

Rebecca Beauvais-Flück, Vera I. Slaveykova, Claudia Cosio*

Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland.

†present address: Unité Stress Environnementaux et BIOSurveillance des Milieux Aquatiques UMR-I 02 (SEBIO), Université de Reims Champagne Ardenne, F-51687 Reims, France.

Corresponding authors: claudia.cosio@unige.ch, claudia.cosio@univ-reims.fr
Abstract

Microalgae are widely used as representative primary producers in ecotoxicology, while macrophytes are much less studied. Here we compared the bioavailability and cellular toxicity pathways of 2 h-exposure to 10^{-6} mol·L$^{-1}$ Cu in the macrophyte *Elodea nuttallii* and the green microalga *Chlamydomonas reinhardtii*.

Uptake rate was similar but faster in the algae than in the macrophyte, while RNA-Sequencing revealed a similar number of regulated genes. Early-regulated genes were congruent with expected adverse outcome pathways for Cu with Gene Ontology terms including gene regulation, energy metabolism, transport, cell processes, stress, antioxidant metabolism and development. However, the gene regulation level was higher in *E. nuttallii* than in *C. reinhardtii* and several categories were more represented in the macrophyte than in the microalga. Moreover, several categories including oxidative pentose phosphate pathway (OPP), nitrate metabolism and metal handling were only found for *E. nuttallii*, whereas categories such as cell motility, polyamine metabolism, mitochondrial electron transport and tricarboxylic acid cycle (TCA) were unique to *C. reinhardtii*. These differences were attributed to morphological and metabolic differences and highlighted dissimilarities between a sessile and a mobile species. Our results highlight the efficiency of transcriptomics to assess early molecular responses in biota, and the importance of studying more aquatic plants for a better understanding on the impact and fate of environmental contaminants.

Keywords: copper; primary producers; speciation modelling; toxicokinetics; transcriptomics.
Capsule: Cu accumulation is faster in the algae, but greater transcriptome response occurred in the macrophyte.
Introduction

Primary producers are key organisms of aquatic ecosystems: phytoplankton sustains the largest ecosystem on the Earth, contributing to about half of the primary production on our planet although accounting for less than 1% of photosynthetic biomass (Bañuelos et al., 1998). Macrophytes, including plants dominate primary production in shallow waters including littorals, rivers, marshes, ponds and lakes (Noges et al., 2010). In addition they are key elements of the aquatic ecosystems by providing support, shelter, food and oxygen to many organisms including epiphytes (Thomaz and Cunha, 2010). Studying primary producers’ response to a variation of the concentrations of vital and toxic trace metals is thus an important step to understand and estimate their impact in aquatic ecosystems. Indeed, if primary producers are affected they will also indirectly influence higher trophic levels in an ecosystem through food webs (Daam et al., 2009; Fleeger et al., 2003). Often microalgae are hypothesized as representative primary producers based on the assumption that all organisms respond to stresses similarly (Clemens, 2006). Nevertheless, seldom comparisons, for example of plants with algae (Beauvais-Fluck et al., 2018a; Paz et al., 2007) or mosses (Rother et al., 2006), revealed the existence of different stress and tolerance mechanisms. In such a context, the precise mechanisms of cellular handling (and toxicity) are to further elucidate to better understand the similarities and differences in various primary producers and anticipate trace metals effect in the environment.

Copper (Cu) is an essential metal to all plants and animals. It participates in fundamental physiological processes (e.g. photosynthetic electron transport, mitochondrial respiration) and is a cofactor for many enzymes (e.g. superoxide dismutases, cytochrome c oxidases) (Castruita et al., 2011). Due to its high reactivity, Cu concentration is tightly regulated inside cells by a complex homeostasis network (Andres-Colas et al., 2006). This homeostasis network has been
studied in several model species and there are evidences of a high conservation throughout the
evolution (Burkhead et al., 2009; Page et al., 2009). However, when in excessive concentrations
Cu causes oxidative stress and photosynthesis inhibition due to adverse effects on the same
cellular processes where it is needed, such as enzyme activity and photosynthetic electron
transport (Monferran et al., 2009; Razinge et al., 2010; Upadhyay et al., 2011). Thus, Cu
concentrations, and its biological availability are important parameter for environmental quality
in natural environments. Elevated Cu concentrations in aquatic ecosystems are directly related to
human activities involving the production of industrial (e.g. pesticide use and agricultural run-
off, mine tailings) and domestic wastes (e.g. urbanization, automobile exhausts). Naturally
occurring concentrations of Cu range between 10^{-9} mol·L$^{-1}$ to 10^{-8} mol·L$^{-1}$ in freshwater systems,
but Cu can easily reach 10^{-6} M in locations receiving anthropogenic inputs such as freshwater
ecosystems close to vineyards or mining areas (Kupper and Andresen, 2016).

The present study aimed thus to compare Cu toxicokinetic and transcriptomic responses in two
aquatic primary producers: a macrophyte *Elodea nuttallii* (Planch.) St. John and a green
microalga *Chlamydomonas reinhardtii* P.A. Dangeard, respectively representing aquatic plants
and phytoplankton typically found in the benthic environment and the water column. In the
present study, we hypothesized that bioavailability and responses to toxic metals were similar in
a microalga and a macrophyte exposed in similar experimental conditions. More in detail, we
compared cellular toxicity pathways of Cu in both organisms using transcriptomics
(RNAsequencing; RNAseq) and determining the uptake. This research will thus increase our
level of understanding of the functioning of key organisms, and eventually, the data produced
will provide a scientific base to conduct sound risk assessment of our freshwater ecosystems to
preserve their high socio-economic and environmental value.
Material and methods

Labware

All material was washed in 10% HNO$_3$ baths, thoroughly rinsed with ultrapure water (MilliQ Direct system, Merck Millipore) and dried under a laminar flow hood. Material for culture and experiments, including media, were additionally autoclaved (1 bar, 121 °C, 20 min) to avoid microbial contamination.

Exposure of algae and macrophytes

Typical growth and exposure conditions were used for each species. Chlamydomonas reinhardtii P.A. Dangeard (wild type strain CPCC11, Canadian Phycological Culture Centre) were grown under axenic conditions in an incubator (Multitron Infors HT) at 20.2 ± 0.5 °C with a continuous light cycle (3600 lux) and a rotary shaking (115 rpm). Cells were cultured in a 4× diluted Tris-Acetate-Phosphate medium (TAP) (Rensing et al., 2008). At the mid-exponential growth phase (62 h after inoculation), cells were harvested by centrifugation (10 min, 1300 g), rinsed and re-suspended in the exposure medium at a final density of $(8.1 ± 1.1) \times 10^5$ cells·mL$^{-1}$.

Shoots of Elodea nuttallii (Planch.) St. John were collected in Lake Geneva, and a culture established and maintained in microcosms at 20 ± 1 °C with a 16/8 h light/dark cycle (1000 lux (Regier et al., 2013b). Exposures were initiated 5 h after the start of light on three 10 cm-long shoots without roots.

Exposures were conducted in the laboratory under the same controlled conditions than during culture. Both organisms were exposed in triplicates to nominal concentration of 1×10^{-6} mol·L$^{-1}$ and 2×10^{-6} mol·L$^{-1}$ Cu added as CuSO$_4$ (Sigma Aldrich) for E. nuttallii and C. reinhardtii.
respectively, in an artificial medium (8.2·10^{-4} \text{mol} \cdot \text{L}^{-1} \text{CaCl}_2, 3.6·10^{-4} \text{mol} \cdot \text{L}^{-1} \text{MgSO}_4, 2.8·10^{-4} \text{mol} \cdot \text{L}^{-1} \text{NaHCO}_3, 1.0·10^{-4} \text{mol} \cdot \text{L}^{-1} \text{KH}_2\text{PO}_4 \text{ and } 5.0·10^{-6} \text{mol} \cdot \text{L}^{-1} \text{NH}_4\text{NO}_3, \text{pH} 6.9 \pm 0.1) \text{ during } 10, 30 \text{ min, 1, 4 and 8 h. Organisms exposed in the absence of metal in the medium were used as control. The choice of Cu exposure concentration corresponds to a sublethal concentration in similar experimental conditions, e.g. resulting in the EC20 growth inhibition in } \text{C. reinhardtii for } 24 \text{ h-long exposure (Cheloni et al., 2014) and is } 4\times \text{ lower than the concentration resulting in a 15\% decrease of chlorophyll content in } \text{E. nuttallii after 2 h-long exposure (Regier et al., 2015).}

\text{Cu uptake and modelling}

\text{Cu uptake by microalgae and macrophyte was characterized by total and intracellular Cu (Cu}_{\text{int}}) contents. Half of exposed organisms was rinsed with } 10^{-3} \text{ mol} \cdot \text{L}^{-1} \text{ ethylene-diamine-tetraacetic-acid (EDTA; Sigma-Aldrich, Buchs, Switzerland) prepared in the exposure medium, to rinse metal surface-adsorbed or loosely bound to the cell wall and determine } \text{Cu}_{\text{int}}. \text{ The other half of exposed organisms was rinsed with medium without Cu (media-rinsed) and therefore represents the sum of adsorbed Cu (Cu}_{\text{ads}} \text{ and } \text{Cu}_{\text{int}}. \text{ EDTA-rinsed and media-rinsed samples were freeze-dried (Beta 1-8 K), digested with 65\% HNO}_3 \text{ (Suprapur Merck KGaA) at 90 °C for 1 h and analyzed by inductively coupled plasma mass spectrometry (ICP-MS; 7700x, Agilent Technologies). Concentration in media was measured in acidified samples (0.5\% v/v HNO}_3 \text{ Suprapur) by ICP-MS. Cu concentration in unspiked artificial medium was } 2.3 \pm 0.3·10^{-9} \text{ mol} \cdot \text{L}^{-1} \text{ Cu. Measured initial concentration in spiked media were } 1.09 \pm 0.20·10^{-6} \text{ mol} \cdot \text{L}^{-1} \text{ Cu (1.85 \pm 0.47·10^{-7} \text{ mol} \cdot \text{L}^{-1} \text{ Cu}^{2+}) \text{ and } 2.26 \pm 0.2·10^{-6} \text{ mol} \cdot \text{L}^{-1} \text{ Cu (3.84 \pm 0.51·10^{-7} \text{ mol} \cdot \text{L}^{-1} \text{ Cu}^{2+}), for } \text{E. nuttallii and C. reinhardtii, respectively.}
The Cu uptake was modelled using a first-order mass transfer model following two-compartment system and equations below (eq 1 and 2):

\[Ct = Co + \frac{a}{k(1 - e^{-kt})} \quad (eq \ 1) \]

\[a = k_1 \times Ce \quad (eq \ 2) \]

where \(C_t \) is the metal concentration in cells (\(\mu \text{mol}_\text{Cu} \cdot \text{g}^{-1} \cdot \text{dw} \)) at time \(t \) (hours), \(k \) is the elimination rate constant (h\(^{-1}\)) and \(a \) is the uptake flux (\(\mu \text{mol}_\text{Cu} \cdot \text{g}^{-1} \cdot \text{dw} \cdot \text{h}^{-1} \)), \(k_1 \) is the uptake rate constant (\(\mu \text{mol}_\text{Cu} \cdot \text{g}^{-1} \cdot \text{dw} \cdot \text{h}^{-1} \)), \(C_e \) is the bioavailable concentration in the medium (\(\mu \text{mol}_\text{Cu} \cdot \text{g}^{-1} \cdot \text{dw} \)), and \(C_0 \) is the constitutive metal concentration measured in cells at the beginning of the exposure (Gimbert et al., 2008; Martins and Boaventura, 2002). Statistics (t tests) and plots were done in SigmaPlot.

RNA-seq and quantification of differential gene expression

Transcriptome response of \(C. \ Reinhardtii \) and \(E. \ Nuttallii \) exposed 2 h to Cu was assessed though RNASeq (Illumina HiSeq 2500 System). Total RNA was extracted as previously described using TRI Reagent (Sigma-Aldrich, Buchs, Switzerland), and libraries were prepared following manufacturer’s protocols (Beauvais-Fluck et al., 2016, 2017; Regier et al., 2016). For \(C. \ Reinhardtii \), reads were aligned with TopHat2 (Kim et al., 2013) to the genome Creinhardtii 236 V.9.0 (Conesa et al., 2005). For \(E. \ Nuttallii \), reads were mapped using the Burrows-Wheeler Alignment (BWA v.0.7.10) tool (Li and Durbin, 2010) on the \textit{de novo} transcriptome available for this organism entailing 181’663 contigs with an average length of 880 bp (Regier et al., 2016). We selected contigs showing a minimum coverage of 20 raw counts in all samples,
resulting in 99’030 sequences analyzed for differential gene expression in CLC Main Workbench (Version 7, CLC bio, QIAGEN, Denmark). 50% of contigs are covered by the reads of at least in one sample.

For both organisms reads were counted using the Python package HTSeq (Anders et al., 2015). Differential gene expression analysis was performed in the software CLC Main Workbench (Version 7, CLC bio, QIAGEN, Denmark) based on normalized counts and EdgeR package (Robinson et al., 2010). Significant differently expressed transcripts vs Control were defined with a threshold of false discovery rate (FDR) <0.1%. Ontology term assignments were done using MapMan (Table S1) (Thimm et al., 2004; Usadel et al., 2009). Data are available in the Gene Expression Omnibus database (GSE65109).

Results and discussion

Cu uptake by primary producers

Accumulation of Cu was measured in media-rinsed and EDTA-rinsed *E. nuttallii* and *C. reinhardtii* over time (Figure 1). The one-compartment model well fitted Cu accumulation in *E. nuttallii* and *C. reinhardtii*. In both organisms significant and similar (a) and (k) were estimated by the model normalized by the effective concentration in media (Table 1). Modelling further allowed estimating that the steady state was approached in less than 2 h for *C. reinhardtii*. Concentrations measured in media-rinsed *C. reinhardtii* (up to 40 µmol·g⁻¹ dw) reached a plateau in 2 h. Similar, fast uptake and plateau has been observed in *C. reinhardtii* exposed to increasing concentrations of ⁶⁵Cu (Jamers et al., 2013). The cellular concentrations of *C. reinhardtii* were in the same order of magnitude as in previous studies with *C. reinhardtii* and other green freshwater algae (Stoiber et al., 2012). For comparison, media-rinsed *E. nuttallii* (8 µmol·g⁻¹ dw at 8h)
showed no obvious evidence of a plateau. Moreover, after 2 h exposure *E. nuttallii* internalized (EDTA-washed) 1.33 ± 0.31 µmol·g⁻¹ dw (1.04 ± 0.24 µmol·g⁻¹ dw in control), while *C. reinhardtii* internalized 4.69 ± 0.18 µmol·g⁻¹ dw (1.44 ± 0.06 µmol·g⁻¹ dw in control). Data showed that internalization is similar when normalized by the effective concentration in media, differences reflecting exposure condition, but faster in the algae than in the macrophyte. This difference can be attributed to the fact that the full surface of the unicellular algae is in contact with the media, whereas in the macrophyte only the external layer of cells is directly exposed, most certainly resulting in a gradient of metal concentrations between cells. Besides, the surface-to-volume ratio is much higher in an unicellular organism and thus is expected to result in higher uptake, that is not observed in our experimental conditions, but could also result in a faster uptake (Lindemann et al., 2016). However, proportion of Cu accumulated in cell walls was higher in *C. reinhardtii* than in *E. nuttallii*, suggesting that adsorption of Cu was predominant in *C. reinhardtii* and/or EDTA-washing procedure was more efficient. Cell walls are known to play a central role in plant and microalgal tolerance to metals: for example, 50% of Cu was accumulated in the cell walls in *Cystoseira tamariscifolia* (Celis-Pla et al., 2018), 20% was adsorbed (or EDTA-extractable) for *Chlorella kessleri* (Lamelas et al., 2009). In the charophyte, *Nitellopsis obtusa* exposed 3 h to both Cu-nanoparticles or CuSO₄, the major part of Cu accumulated in cell walls (Manusadzianas et al., 2017). Similarly, a previous study in *E. nuttallii* measured an increased proportion over time of cadmium and mercury in cell walls, concomitantly with an increased lignification of cell walls after 7 d exposure (Larras et al., 2013).

Circadian clock and light are also known to be central for nutrient acquisition in plants because nutrient demands of a plant change according to the time of day, e.g. to drive photosynthesis in
chloroplasts and daily rhythms in transpiration rates (Haydon et al., 2015). Light intensity and spectral composition also affected Cu uptake to *C. reinhardtii* (Cheloni et al., 2014). Here the differences in light cycle applied to the microalgae (continuous) and the macrophyte (16 h light) might also affect uptake because here plants have a synchronized circadian rhythm, while microalgae show an average of all circadian stages. In *Arabidopsis thaliana*, cytosolic Cu was shown to increase during light period and decrease during dark period (Penarrubia et al., 2009). It is unclear if this is also the case here, but if this is the case, the different light regimes used for both species could also explain in part the higher Cu concentrations reached in the microalgae than the macrophyte. However, in similar experimental conditions including light regime, *E. nuttallii* exposed to Hg and Cd showed a plateau around 48 h-long exposure (Larras et al., 2013), supporting that metal uptake in this species takes longer to reach equilibrium than in *C. reinhardtii*. Nonetheless, because experimental settings can affect uptake and typical experimental conditions are in general different for microalgae and plants, future research should test organisms in completely identical conditions to allow a detailed comparison of bioaccumulation data.

Transcriptomic response

In total 1397 and 1258 genes were regulated by 2 h exposure to 10^{-6} mol·L$^{-1}$ Cu in *C. reinhardtii* and *E. nuttallii* respectively. The similar number of regulated genes, used as a proxy of stress, suggested that both *E. nuttallii* and *C. reinhardtii* faced a similar level of stress (Dranguet et al., 2017). However, among those, 841 (67%) and 624 (44%) genes were upregulated, while 417 and 773 were down-regulated in *E. nuttallii* and *C. reinhardtii*, respectively (Table S2 and S3). Besides, the level of gene regulation was higher in *E. nuttallii* (log2FCrange= 17.9) than in *C. reinhardtii* (log2FCrange= 8.8), suggesting a higher impact of Cu in the macrophyte than the
microalgae (Figure 2), in line with similar observations made for Hg in controlled and in the
field exposure comparing the same species in identical conditions (Beauvais-Fluck et al., 2018a;
Dranguet et al., 2017).

Among the 20 most highly regulated genes, 13 and 14 had an unknown function in in C.
reinhardtii and E. nuttallii, respectively (Table 2). The 7 most highly regulated genes with
known function were homologous to genes involved in reduction-oxidation (RedOx)
metabolism, in gene regulation and nutrient transport, as well as multigenic families with
numerous biochemical functions which precise function is therefore difficult to establish based
on sequence homologies. More globally, in term of abundance of GO terms for genes
significantly regulated in both species, a predominant part of regulated genes had unknown
function (62% for C. reinhardtii and 33% for E. nuttallii; Figure 3) indicating considerable
potential for new discovery in the biology of Cu. In C. reinhardtii, the most abundant GO
categories regulated by Cu exposure were involved in “gene regulation” (44%, i.e. RNA, protein,
signaling) and “cell processes” (10%; i.e. cell organization and cell motility) suggesting an
adaptation of the cell metabolism and structure (Figure 3). Transport and photosynthesis both
represented 8% of regulated genes. In E. nuttallii, the most abundant GO categories regulated by
Cu exposure were involved in “gene regulation” (34%, i.e. RNA, protein, signaling) and
“transport” (10%). The GO category “stress” represented 8% of regulated genes, while “cell
processes” represented 6% of regulated genes. Other GO categories including hormone
metabolism, stress, RedOx metabolism and development were less than 5% of regulated genes.
Enriched pathway analysis revealed a response of both species to avoid stress (e.g. oxidative
stress) and effects on development/growth and nutrition with a significant modification of the
energy metabolism. Regulated genes were thus in line with expected adverse outcome pathways
for Cu, i.e. impact on photosynthesis, RedOx, growth and nutrition, although only 2 h exposure was performed. This confirms the potential of transcriptomics to reveal early-responses at environmental concentrations (Beauvais-Fluck et al., 2018b; Dranguet et al., 2017; Regier et al., 2013a). Not surprisingly this short exposure resulted in few physiological endpoints significantly different vs control (Table S4 and S5) (Jamers et al., 2013; Jiang et al., 2016). More in detail, here photosynthesis efficiency is reduced in *C. reinhardtii* by 7% (Table S5) and class III peroxidase activity (POD) is reduced 50× in *E. nuttallii* (Table S2). In the same line, another study with *C. reinhardtii* revealed that exposure to a similar free ion concentration 10^{-7} mol·L$^{-1}$ Cu$^{2+}$, induced Glutathione Peroxidase genes after 2 h and reduced growth after 24 h, although no cellular impact was measured including membrane permeability, reactive oxygen species production and lipid peroxidation (Cheloni et al., 2014).

A previous study showed that exposure of *E. nuttallii* to 10^{-6} mol·L$^{-1}$ Cu reduced superoxide dismutases activity after 1 h and reduced root growth after 24 h, but had no significant effect on chlorophyll content, photosynthesis efficiency and class III peroxidase activity (Regier et al., 2015). Similar observation has been obtained with Cu toxicity in *C. reinhardtii*: exposure to excess Cu induced ROS production and antioxidative response in *C. reinhardtii* (Cheloni et al., 2019; Jamers et al., 2006; Jiang et al., 2016; Stoiber et al., 2013). In the same line, a study on the rootless submerged shoots of *Ceratophyllum demersum* exposed 6 weeks to a range of concentrations between 10^{-9}-10^{-7} mol·L$^{-1}$ Cu, showed that nutrient uptake/distribution, photosynthesis efficiency and chlorophyll content were affected by Cu (Thomas et al., 2013).

Nutrition is impacted because an excess Cu competes with the various essential metals according to the Irving–William series and induces deficiency of essential ions (Mg$^{2+}$, Zn$^{2+}$, etc.) (Mosulen et al., 2003) and impairment of metalloprotein functioning. However, although all toxic metals
might induce the same core stress related changes on genes, transcriptome analysis has resulted in the identification of genes specific to each metal (Kovalchuk et al., 2005; Simon et al., 2008; Weber et al., 2006). Nonetheless, data have rarely been compared between species exposed in similar experimental settings (Beauvais-Fluck et al., 2018a; Dranguet et al., 2017).

Here, several categories were more represented in the macrophyte than in the microalga (Figure 2), including stress (abiotic), development, cell vesicle transport, hormone metabolism (abscisic acid, ethylene, jasmonate), cell wall (cellulose, hemicellulose and pectin synthesis), secondary metabolism (phenylpropanoid, wax, flavonoids), and transport (transport P- and V-ATPases, Major Intrinsic Proteins, nitrate). The present data for *E. nuttallii* were in agreement with a microarray analysis in roots of rice exposed 3 h to 5·10^-6 mol·L^-1 Cu, notably concerning dysregulation of genes involved in vesicle transport, flavonoids metabolism and jasmonate (Lin et al., 2013). Authors further showed by knockout of genes necessary for this vesicle transport and exposure of roots to vesicle trafficking inhibitors, that Cu interacts with vesicle transport and that this vesicle transport is essential for signaling via ROS for activating defenses (Lin et al., 2013). Results of the present study allowed to propose a possible model of cellular mechanisms involved in Cu detoxification and protection in *E. nuttallii*: Cu increases intracellular transport, e.g. vesicle trafficking and ABC transport, and induces a flavonoid-mediated detoxification pathway. In addition, the toxicity mechanisms such as JA biosynthesis and cellular component biogenesis were regulated in response to Cu exposure. In comparison, the categories of OPP, nitrate metabolism and metal handling were absent in Cu regulated genes in *C. reinhardii*. Conversely, cell motility, DNA, polyamine metabolism, mitochondrial electron transport, and TCA categories were found in *C. reinhardii*, while absent in *E. nuttallii*. Moreover, the level of regulation of the categories found in common in both species was higher in *E. nuttallii* than in *C.*
reinhardtii. These differences certainly highlight the dissimilarities between basal and background metabolism in two different species, as well as between a sessile and a mobile organism (Dranguet et al., 2017). Besides, genome sequencing has revealed that C. reinhardtii possesses numerous genes derived from the last plant-animal common ancestor that have been lost in angiosperms, including transporters and the possibility of extensive metabolic flexibility (Merchant et al., 2007). Taken together, our divergent observations on how an unicellular and a multicellular organism take up and are impacted by Cu may imply that homeostasis networks are more species-specific than generally thought.

We further found several differences at the level of subcategories. For example, in the ‘Photosynthesis’ category, genes of C. reinhardtii were mainly involved in the light reaction, in particular photosystem I (PSI), while in E. nuttallii genes were involved both in PS I and PS II, as well as photorespiration, suggesting that the photosynthesis was impacted more widely by Cu toxicity in the macrophyte. Generally, Cu has been reported to impact more PS II than PS I in plants. In PS II, the reaction center and LHC II by substitution of Mg^{2+} in its chlorophyll have been shown to be targets of Cu toxicity (Kupper and Andresen, 2016; Kupper et al., 1996). In the macrophyte C. demersum nanomolar concentrations of Cu affected the PS II reaction center (Thomas et al., 2013). In this regard, our finding of Cu impact on PSI in C. reinhardtii is striking and might point to structural differences between photosystems as well as background defense pools such as metallothioneins, phytochelatins and redox enzymes in the studied species (Castruita et al., 2011).

Conclusion
Overall, the exposure to 10^{-6} mol·L$^{-1}$ Cu resulted in different cellular toxicity pathways in a microalga and a macrophyte. This fact together with the distinct exposure routes of the benthic macrophyte and lentic microalgae suggest that similar Cu concentrations might affect differently both species in the ecosystem. Nonetheless, because experimental settings are known to affect responses and experimental conditions are in general different for microalgae and plants, special attention has to be put in future research in testing organisms in completely identical conditions. Defining ecological thresholds of adverse outcomes for environmental contaminants represents a critical component of chemical assessment and management programs. Our data also call for including more species of aquatic plants for determining ecological thresholds for environmental contaminants, e.g. more tests using representative species of plants in the laboratory and in situ will be necessary in future studies (Beauvais-Fluck et al., 2018a; Dranguet et al., 2017). However, transcriptomics is confirmed as a useful tool to assess early responses at environmental concentrations and is promising for contaminated sites.

ACKNOWLEDGMENTS

The authors acknowledge the Swiss National Science Foundation for financial support (contracts n° 205321_138254 and 200020_157173), Dr. Baerlocher (Fasteris SA, Plan-les-Ouates, Switzerland), Dr M. Docquier and Dr C. Barraclough (Genomics Platform, University of Geneva) for RNA-sequencing and bioinformatics, Ms. Moisset and Ms. Blanco Ameijeiras for helping with FRRf and Turner measurements, and Drs Le Faucheur and Ms. Dranguet for speciation calculations.

REFERENCES

Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23, 1273-1292.

Gimbert, F., Mench, M., Coeurdassier, M., Badot, P.M., de Vaufleury, A., 2008. Kinetic and
dynamic aspects of soil-plant-snail transfer of cadmium in the field. Environ Poll 152, 736-745.
Haydon, M.J., Roman, A., Arshad, W., 2015. Nutrient homeostasis within the plant circadian
network. Front plant sci 6, 299-299.
Jamers, A., Blust, R., De Coen, W., Griffin, J.L., Jones, O.A.H., 2013. Copper toxicity in the
Jamers, A., Van der Ven, K., Moens, L., Robbens, J., Potters, G., Guisez, Y., Blust, R., De Coen,
W., 2006. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii
based on microarray analysis. Aq Toxicol 80, 249-260.
mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotox 25, 1417-
1425.
accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Genome Biol 14.
similarities and differences in plant responses to cadmium and lead. Mutat Res 570, 149-161.
Kupper, H., Andresen, E., 2016. Mechanisms of metal toxicity in plants. Metallomics 8, 269-
285.
Kupper, H., Kupper, F.C., Spiller, M., 1996. Environmental relevance of heavy metal-substituted
chlorophylls using the example of water plants. J Exp Bot 47, 259-266.

Larras, F., Regier, N., Planchon, S., Poté, J., Renaut, J., Cosio, C., 2013. Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii. J Haz Mat 263, 575-583.

Chen, C.-L., Cognat, V., Croft, M.T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H.,
Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M.,
Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P.A., Lemaire, S.D., Lobanov, A.V.,
Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J.V., Moseley, J., Napoli, C., Nedelcu, A.M., Niyogi, K., Novoselov, S.V., Paulsen, I.T., Pazour, G., Purton, S.,
Ral, J.-P., Riano-Pachon, D.M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umén, J.,
Willows, R., Wilson, N., Zimmer, S.L., Allmer, J., Balk, J., Bisova, K., Chen, C.-J., Elias, M.,
Gendler, K., Hauser, C., Lamb, M.R., Ledford, H., Long, J.C., Minagawa, J., Page, M.D., Pan, J.,
Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A.M., Yang, P., Ball, S., Bowler, C.,
Dieckmann, C.L., Gladyshev, V.N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B.,
Rajamani, S., Sayre, R.T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y.W.,
Jhaeveri, J., Luo, Y., Martinez, D., Ngau, W.C.A., Otillar, B., Poliakov, A., Porter, A.,
The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. Science
(New York, N.Y.) 318, 245-250.
response of physiological parameters and antioxidant enzymes in the aquatic macrophyte
toxicity in *Chlamydomonas reinhardtii*. Effect on sulfate and nitrate assimilation. Biomol Eng
20, 199-203.

Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T.,
Perroud, P.F., Lindquist, E.A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K.,
Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S., Yamaguchi, K., Sugano, S.,
Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W.B., Barker, E.,
Bennetzen, J.L., Blankenship, R., Cho, S.H., Dutcher, S.K., Estelle, M., Fawcett, J.A., Gundlach,
H., Hanada, K., Heyl, A., Hicks, K.A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A.,
Murata, T., Nelson, D.R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P.J.,
Sanderfoot, A., Schween, G., Shiue, S.H., Stueber, K., Theodoulou, F.L., Tu, H., Van de Peer, Y.,
Verrier, P.J., Waters, E., Wood, A., Yang, L.X., Cove, D., Cuming, A.C., Hasebe, M., Lucas, S.,
Mishler, B.D., Reski, R., Grigoriev, I.V., Quatrano, R.S., Boore, J.L., 2008. The Physcomitrella
genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69.
Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
Rother, M., Krauss, G.J., Grass, G., Wesenberg, D., 2006. Sulphate assimilation under Cd²⁺
stress in Physcomitrella patens - combined transcript, enzyme and metabolite profiling. Plant
Cell Environ 29, 1801-1811.
Chlamydomonas reinhardtii exposed to trace levels of free cadmium. Environ Toxicol Chem 27,
1668-1675.
internalized copper and cadmium and toxicity in Chlamydomonas reinhardtii. Environ Toxicol
Chem 31, 324-335.
Chlamydomonas reinhardtii in response to contrasting trace metal exposures. Environ Toxicol
28, 516-523.

Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A.,
Rhee, S.Y., Stitt, M., 2004. MAPMAN: a user-driven tool to display genomics data sets onto
diagrams of metabolic pathways and other biological processes. Plant J 37, 914-939.

nanomolar copper on water plants-Comparison of biochemical and biophysical mechanisms of
deficiency and sublethal toxicity under environmentally relevant conditions. Aquat Toxicol 140,
27-36.

Thomaz, S.M., Cunha, E.R.d., 2010. The role of macrophytes in habitat structuring in aquatic
ecosystems: methods of measurement, causes and consequences on animal assemblages'

defense mechanism of aquatic macrophyte, Pistia stratiotes L. to zinc treatment under copper

using MapMan to visualize and compare Omics data in plants: a case study in the crop species,

metal responses in Arabidopsis thaliana and the Cd^{2+}-hypertolerant facultative metallophyte
Table 1: Modelled parameters of Cu uptake in ethylenediaminetetraacetic acid (EDTA)-rinsed *E. nuttalii* or *C. reinhardtii* exposed to 10^{-6} mol·L$^{-1}$ Cu. Uptake flux (a) and elimination rate constant (k) of Cu were divided by the effective concentration of metal at beginning of the test to allow inter species comparison and are thus presented as a' and k'.

<table>
<thead>
<tr>
<th></th>
<th>C. reinhardtii</th>
<th>E. nuttalii</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' (L·g$^{-1}$·h$^{-1}$)</td>
<td>0.32 ± 0.05</td>
<td>0.74 ± 0.87</td>
</tr>
<tr>
<td>k' (µmol·L$^{-1}$·h$^{-1}$)</td>
<td>0.07 ± 0.04</td>
<td>0.06 ± 0.08</td>
</tr>
<tr>
<td>R^2</td>
<td>0.85</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Table 2: List of the 10 most up-regulated and 10 most down-regulated genes in *C. reinhardtii* and *E. nuttallii* exposed 2 h to Cu. Identification, differential expression analysis (log2FC, FDR) and GO annotation are shown (NA = not assigned; Table S2 and S3 show complete analysis).

<table>
<thead>
<tr>
<th>ID</th>
<th>log2FC</th>
<th>FDR</th>
<th>GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. reinhardtii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g9712</td>
<td>5.64</td>
<td>6.05E-79</td>
<td>alpha/beta-Hydrolases superfamily protein</td>
</tr>
<tr>
<td>Cre07.g321800</td>
<td>4.63</td>
<td>1.68E-69</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre08.g360200</td>
<td>3.73</td>
<td>1.32E-09</td>
<td>solute:sodium symporters;urea transmembrane transporters</td>
</tr>
<tr>
<td>Cre12.g494600</td>
<td>3.55</td>
<td>3.89E-06</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre03.g173100</td>
<td>3.51</td>
<td>7.93E-83</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre02.g143900</td>
<td>3.22</td>
<td>2.01E-10</td>
<td>GDSL-like Lipase/Acylhydrolase superfamily protein</td>
</tr>
<tr>
<td>Cre12.g497550</td>
<td>2.90</td>
<td>1.05E-17</td>
<td>NAD(P)-binding Rossmann-fold superfamily protein</td>
</tr>
<tr>
<td>Cre10.g431050</td>
<td>2.88</td>
<td>4.50E-29</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre17.g737300</td>
<td>2.81</td>
<td>1.18E-69</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre12.g525450</td>
<td>-2.02</td>
<td>8.26E-23</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre13.g587350</td>
<td>-2.20</td>
<td>5.70E-17</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre12.g540100</td>
<td>-2.21</td>
<td>2.11E-12</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre06.g305100</td>
<td>-2.22</td>
<td>3.32E-18</td>
<td>--NA--</td>
</tr>
<tr>
<td>g5945</td>
<td>-2.22</td>
<td>2.34E-04</td>
<td>Histone superfamily protein</td>
</tr>
<tr>
<td>Cre12.g493100</td>
<td>-2.25</td>
<td>6.29E-07</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre16.g681350</td>
<td>-2.44</td>
<td>6.14E-06</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre16.g668850</td>
<td>-2.64</td>
<td>7.29E-44</td>
<td>--NA--</td>
</tr>
<tr>
<td>Cre16.g651050</td>
<td>-2.79</td>
<td>1.89E-10</td>
<td>Cytochrome c</td>
</tr>
<tr>
<td>Cre06.g253000</td>
<td>-3.12</td>
<td>7.92E-49</td>
<td>--NA--</td>
</tr>
<tr>
<td>E. nuttallii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locus_106988_Transcript_1_1_Confidence_1.000_Length_217</td>
<td>9.26</td>
<td>2.63E-12</td>
<td>---NA---</td>
</tr>
<tr>
<td>Locus_74420_Transcript_1_1_Confidence_1.000_Length_486</td>
<td>6.24</td>
<td>8.01E-67</td>
<td>---NA---</td>
</tr>
<tr>
<td>Locus_50101_Transcript_1_1_Confidence_1.000_Length_289</td>
<td>6.13</td>
<td>1.37E-10</td>
<td>probable e3 ubiquitin-protein ligase bah1-like 1</td>
</tr>
<tr>
<td>Locus</td>
<td>Transcript</td>
<td>Confidence</td>
<td>Length</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Locus_46396</td>
<td>Transcript</td>
<td>0.750</td>
<td>415</td>
</tr>
<tr>
<td>Locus_99585</td>
<td>Transcript</td>
<td>1.000</td>
<td>553</td>
</tr>
<tr>
<td>Locus_31732</td>
<td>Transcript</td>
<td>0.667</td>
<td>327</td>
</tr>
<tr>
<td>Locus_56031</td>
<td>Transcript</td>
<td>1.000</td>
<td>615</td>
</tr>
<tr>
<td>Locus_26963</td>
<td>Transcript</td>
<td>1.000</td>
<td>256</td>
</tr>
<tr>
<td>Locus_22115</td>
<td>Transcript</td>
<td>0.375</td>
<td>528</td>
</tr>
<tr>
<td>Locus_25722</td>
<td>Transcript</td>
<td>4.7</td>
<td>809</td>
</tr>
<tr>
<td>Locus_5098</td>
<td>Transcript</td>
<td>0.625</td>
<td>746</td>
</tr>
<tr>
<td>Locus_6174</td>
<td>Transcript</td>
<td>0.524</td>
<td>1224</td>
</tr>
<tr>
<td>Locus_1727</td>
<td>Transcript</td>
<td>0.450</td>
<td>2249</td>
</tr>
<tr>
<td>Locus_97468</td>
<td>Transcript</td>
<td>0.667</td>
<td>399</td>
</tr>
<tr>
<td>Locus_104442</td>
<td>Transcript</td>
<td>1.000</td>
<td>777</td>
</tr>
<tr>
<td>Locus_7125</td>
<td>Transcript</td>
<td>0.600</td>
<td>453</td>
</tr>
</tbody>
</table>
Figure 1: Cu toxicokinetics in *C. reinhardtii* (A) and *E. nuttallii* (B) exposed to 10^{-6} mol·L$^{-1}$ Cu. Organisms were ethylenediaminetetraacetic acid (EDTA)-rinsed (grey) or media-rinsed (black) to differentiate between adsorbed and internalized metal.
Figure 2: Fold-changes (log2FC) of significant regulated genes in *C. reinhardtii* and *E. nuttallii* exposed 2 h to 10^{-6} mol·L$^{-1}$ Cu.
Figure 3: Genes regulated in *C. reinhardtii* and *E. nuttallii* exposed 2 h to 10^{-6} mol·L$^{-1}$ Cu. The total number of significant dysregulated genes (DG) in gene ontology (GO) categories (MapMan) in *C. reinhardtii* (triangles) and *E. nuttallii* (square) exposed 2 h to Cu (A). The proportion (%) of main functional GO categories (MapMan) of dysregulated genes in *C. reinhardtii* (B) and *E. nuttallii* (C) (GO categories legend is 1: Unknown, 2: Gene regulation, 3: Cell process, 4: Other metabolism, 5: Energy metabolism, 6: Transport, 7: Stress, 8: Cell vesicle transport, 9: Development, 10: Cell wall, 11: Metal handling, 12: Hormone metabolism, 13: RedOx, 14: Secondary metabolism, 15: Cell motility).
stress, 13: Cell wall, 14: Metal handling, 15: Cell Motility).