L. Dubertret, B. Bertaux, M. Fosse, and R. Touraine, Cellular events leading to blister formation in bullous pemphigoid, Br J Dermatol, vol.103, pp.615-639, 1980.

S. K. Jorch and P. Kubes, An emerging role for neutrophil extracellular traps in noninfectious disease, Nat Med, vol.23, pp.279-87, 2017.

S. Ueki, T. Tokunaga, S. Fujieda, K. Honda, M. Hirokawa et al., Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation, Curr Allergy Asthma Rep, vol.16, p.54, 2016.

S. Yousefi, D. Simon, and H. Simon, Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease, Curr Opin Immunol, vol.24, pp.736-745, 2012.

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1537, 2004.

K. H. Lee, A. Kronbichler, D. Park, Y. Park, H. Moon et al., Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review, Autoimmun Rev, vol.16, pp.1160-73, 2017.

D. Simon, S. Hoesli, N. Roth, S. Staedler, S. Yousefi et al., Eosinophil extracellular DNA traps in skin diseases, J Allergy Clin Immunol, vol.127, pp.194-203, 2011.

E. De-graauw, C. Sitaru, M. Horn, L. Borradori, S. Yousefi et al., Evidence for a role of eosinophils in blister formation in bullous pemphigoid, Allergy, vol.72, pp.1105-1118, 2017.

K. T. Amber, M. Valdebran, K. Kridin, and S. A. Grando, The role of eosinophils in bullous pemphigoid: a developing model of eosinophil pathogenicity in mucocutaneous disease, Front Med, vol.5, p.201, 2018.

Z. Liu, G. J. Giudice, X. Zhou, S. J. Swartz, J. L. Troy et al., A major role for neutrophils in experimental bullous pemphigoid, J Clin Invest, vol.100, pp.1256-63, 1997.

D. Simon, L. Borradori, and H. Simon, Eosinophils as putative therapeutic targets in bullous pemphigoid, Exp Dermatol, vol.26, pp.1187-92, 2017.

L. Hellberg, U. Samavedam, K. Holdorf, M. Hänsel, A. Recke et al., Methylprednisolone blocks autoantibody-induced tissue damage in experimental models of bullous pemphigoid and epidermolysis bullosa acquisita through inhibition of neutrophil activation, J Invest Dermatol, vol.133, pp.2390-2399, 2013.

H. Fang, Y. Zhang, N. Li, G. Wang, and Z. Liu, The autoimmune skin disease bullous pemphigoid: the role of mast cells in autoantibody-induced tissue injury, Front Immunol, vol.9, p.407, 2018.

K. Bieber, H. Koga, and W. Nishie, In vitro and in vivo models to investigate the pathomechanisms and novel treatments for pemphigoid diseases, Exp Dermatol, vol.26, pp.1163-70, 2017.

L. Leighty, N. Li, L. A. Diaz, and Z. Liu, Experimental models for the autoimmune and inflammatory blistering disease, Bullous pemphigoid, Arch Dermatol Res, vol.299, pp.417-439, 2007.

R. Chen, J. A. Fairley, M. Zhao, G. J. Giudice, D. Zillikens et al., but not T and B lymphocytes, are critical for subepidermal blister formation in experimental bullous pemphigoid: macrophage-mediated neutrophil infiltration depends on mast cell activation, J Immunol, vol.169, pp.3987-92, 2002.

L. Jan, S. Plée, J. Vallerand, D. Dupont, A. Delanez et al., Innate immune cell-produced IL-17 sustains inflammation in bullous pemphigoid, J Invest Dermatol, vol.134, pp.2908-2925, 2014.

J. Plée, L. Jan, S. Giustiniani, J. Barbe, C. Joly et al., Integrating longitudinal serum IL-17 and IL-23 follow-up, along with autoantibodies variation, contributes to predict bullous pemphigoid outcome, Sci Rep, vol.5, p.18001, 2015.

M. Riani, L. Jan, S. Plée, J. Durlach, A. et al., Bullous pemphigoid outcome is associated with CXCL10-induced matrix metalloproteinase 9 secretion from monocytes and neutrophils but not lymphocytes, J Allergy Clin Immunol, vol.139, pp.863-72, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01754072

E. De-graauw, C. Sitaru, M. P. Horn, L. Borradori, S. Yousefi et al., Monocytes enhance neutrophil-induced blister formation in an ex vivo model of bullous pemphigoid, Allergy, vol.73, 2018.

L. Lin, T. Betsuyaku, L. Heimbach, N. Li, D. Rubenstein et al., Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid, Matrix Biol, vol.31, pp.38-44, 2012.

S. Verraes, W. Hornebeck, M. Polette, L. Borradori, and P. Bernard, Respective contribution of neutrophil elastase and matrix metalloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid, J Invest Dermatol, vol.117, pp.1091-1097, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00153458

D. Giusti, G. Gatouillat, L. Jan, S. Plée, J. Bernard et al., Eosinophil Cationic Protein (ECP), a predictive marker of bullous pemphigoid severity and outcome. Sci Rep, vol.7, p.4833, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01825916

Z. Liu, N. Li, L. A. Diaz, M. Shipley, R. M. Senior et al., Synergy between a plasminogen cascade and MMP-9 in autoimmune disease, J Clin Invest, vol.115, pp.879-87, 2005.

R. Khandpur, C. Carmona-rivera, A. Vivekanandan-giri, A. Gizinski, S. Yalavarthi et al., NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis, Sci Transl Med, vol.5, 2013.

W. R. Gammon, C. C. Merritt, D. M. Lewis, W. M. Sams, J. R. Carlo et al., An in vitro model of immune complex-mediated basement membrane zone separation caused by pemphigoid antibodies, leukocytes, and complement, J Invest Dermatol, vol.78, pp.285-90, 1982.

Z. Liu, L. A. Diaz, J. L. Troy, A. F. Taylor, D. J. Emery et al., A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180, J Clin Invest, vol.92, pp.2480-2488, 1993.

C. Sitaru, C. Dähnrich, C. Probst, L. Komorowski, I. Blöcker et al., Enzyme-linked immunosorbent assay using multimers of the 16th non-collagenous domain of the BP180 antigen for sensitive and specific detection of pemphigoid autoantibodies, Exp Dermatol, vol.16, pp.770-777, 2007.

J. Charneux, J. Lorin, F. Vitry, F. Antonicelli, Z. Reguiai et al., Usefulness of BP230 and BP180-NC16a enzyme-linked immunosorbent assays in the initial diagnosis of bullous pemphigoid: a retrospective study of 138 patients, Arch Dermatol, vol.147, pp.286-91, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00584055

P. Bernard and F. Antonicelli, Bullous pemphigoid: a review of its diagnosis, associations and treatment, Am J Clin Dermatol, vol.18, pp.513-541, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01825913

D. Giusti, L. Jan, S. Gatouillat, G. Bernard, P. Pham et al., Biomarkers related to bullous pemphigoid activity and outcome, Exp Dermatol, vol.26, pp.1240-1247, 2017.

L. Chakievska, M. M. Holtsche, A. Künstner, S. Goletz, B. Petersen et al., IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid, J Autoimmun, vol.96, pp.104-116, 2018.

D. , A. L. , C. Fei, P. Ameglio, and F. , Cytokines and bullous pemphigoid, Eur Cytokine Netw, vol.10, pp.123-157, 1999.

F. Ameglio, L. Bonifati, C. Ferraro, C. Mastroianni, A. Giacalone et al., Cytokine pattern in blister fluid and serum of patients with bullous pemphigoid: relationships with disease intensity, Br J Dermatol, vol.138, pp.611-615, 1998.

V. Brinkmann, B. Laube, U. A. Abed, C. Goosmann, and A. Zychlinsky, Neutrophil extracellular traps: how to generate and visualize them, J Vis Exp, vol.24, p.1724, 2010.

R. Rebernick, L. Fahmy, C. Glover, M. Bawadekar, D. Shim et al., DNA area and NETosis Analysis (DANA): a high-throughput method to quantify neutrophil extracellular traps in fluorescent microscope images, Biol Proced Online, vol.20, p.7, 2018.

E. Lesovaya, A. Yemelyanov, A. C. Swart, P. Swart, G. Haegeman et al., Discovery of Compound A -a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity, Oncotarget, vol.6, pp.30730-30774, 2015.

O. R. Alemán, N. Mora, R. Cortes-vieyra, E. Uribe-querol, and C. Rosales, Differential use of human neutrophil Fc? receptors for inducing neutrophil extracellular trap formation, J Immunol Res, p.2908034, 2016.

M. Behnen, C. Leschczyk, S. Möller, T. Batel, M. Klinger et al., Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via Fc?RIIIB and Mac-1, J Immunol Baltim Md, vol.193, pp.1954-65, 2014.

O. R. Alemán, N. Mora, R. Cortes-vieyra, E. Uribe-querol, and C. Rosales, Transforming growth factor-?-activated kinase 1 is required for human Fc?RIIIb-induced neutrophil extracellular trap formation, Front Immunol, vol.7, p.277, 2016.

C. Rosales, Fc? receptor heterogeneity in leukocyte functional responses. Front Immunol, vol.8, p.280, 2017.

K. Bieber, S. Sun, M. Witte, A. Kasprick, F. Beltsiou et al., Regulatory T cells suppress inflammation and blistering in pemphigoid diseases, Front Immunol, vol.8, p.1628, 2017.

L. J. Palmer, C. Damgaard, P. Holmstrup, and C. H. Nielsen, Influence of complement on neutrophil extracellular trap release induced by bacteria, J Periodontal Res, vol.51, pp.70-76, 2016.

S. Yousefi, C. Mihalache, E. Kozlowski, I. Schmid, and H. U. Simon, Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ, vol.16, pp.1438-1482, 2009.

B. G. Yipp, B. Petri, D. Salina, C. N. Jenne, B. Scott et al., Infectioninduced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat Med, vol.18, pp.1386-93, 2012.

E. Pietrowski, B. Bender, J. Huppert, R. White, H. J. Luhmann et al., Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H-oxidase derived reactive oxygen species, J Vasc Res, vol.48, pp.52-60, 2011.

H. Tokuda, Y. Kanno, A. Ishisaki, M. Takenaka, A. Harada et al., Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts, J Cell Biochem, vol.91, pp.1053-61, 2004.

M. Laan, J. Lötvall, K. F. Chung, and A. Lindén, IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases, Br J Pharmacol, vol.133, pp.200-206, 2001.

S. L. Gaffen, Structure and signalling in the IL-17 receptor superfamily, Nat Rev Immunol, vol.9, p.556, 2009.

O. Tatsiy and P. P. Mcdonald, Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways, Front Immunol, vol.9, p.2036, 2018.

M. J. Lapponi, A. Carestia, V. I. Landoni, L. Rivadeneyra, J. Etulain et al., Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs, J Pharmacol Exp Ther, vol.345, pp.430-437, 2013.

J. G. Nel, A. J. Theron, R. Pool, C. Durandt, G. R. Tintinger et al., Neutrophil extracellular traps and their role in health and disease, South Afr J Sci, vol.112, p.14352, 2016.

F. Chen, A. Cao, S. Yao, H. L. Evans-marin, H. Liu et al., mTOR Mediates IL-23 induction of neutrophil IL-17 and IL-22 production, J Immunol, vol.196, pp.4390-4399, 2016.

A. Itakura and O. Mccarty, Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy, Am J PhysiolCell Physiol, vol.305, pp.348-54, 2013.

J. R. Maxwell, Y. Zhang, W. A. Brown, C. L. Smith, F. R. Byrne et al., Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation, Immunity, vol.43, pp.739-50, 2015.

X. Song, D. Dai, X. He, S. Zhu, Y. Yao et al., Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage, Immunity, vol.43, pp.488-501, 2015.

J. J. Babon, N. J. Kershaw, J. M. Murphy, L. N. Varghese, A. Laktyushin et al., Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity, Immunity, vol.36, pp.239-50, 2012.

Z. Chen, A. Laurence, Y. Kanno, M. Pacher-zavisin, B. M. Zhu et al., Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells, Proc Natl Acad Sci, vol.103, pp.8137-8179, 2006.

B. Carow and M. E. Rottenberg, SOCS3, a major regulator of infection and inflammation, Front Immunol, vol.5, p.58, 2014.

J. A. Chaves-de-souza, A. Nogueira, P. P. Chaves-de-souza, Y. J. Kim, S. Lobo et al., SOCS3 expression correlates with severity of inflammation, expression of proinflammatory cytokines, and activation of STAT3 and p38 MAPK in LPS-induced inflammation in vivo, Mediators Inflamm, p.650812, 2013.

R. Caruso, C. Stolfi, M. Sarra, A. Rizzo, M. C. Fantini et al., Inhibition of monocyte-derived inflammatory cytokines by IL-25 occurs via p38 Map kinase-dependent induction of Socs-3, Blood, vol.113, pp.3512-3521, 2009.

M. Niwa, T. Fujisawa, K. Mori, K. Yamanaka, H. Yasui et al., IL-17A Attenuates IFN-? expression by inducing suppressor of cytokine signaling expression in airway epithelium, J Immunol, vol.201, pp.2392-402, 2018.

M. Bruschi, A. Petretto, R. Bertelli, M. Galetti, A. Bonanni et al., Posttranslational modified proteins are biomarkers of autoimmune-processes: NETosis and the inflammatory-autoimmunity connection, Clin Chim Acta, vol.464, pp.12-16, 2017.

M. Bruschi, A. Petretto, A. Vaglio, L. Santucci, G. Candiano et al., Annexin A1 and autoimmunity: from basic science to clinical applications, Int J Mol Sci, vol.19, 2018.

N. Thieblemont, H. L. Wright, S. W. Edwards, and V. Witko-sarsat, Human neutrophils in auto-immunity, Semin Immunol, vol.28, pp.159-73, 2016.

E. Kolaczkowska, C. N. Jenne, B. Surewaard, A. Thanabalasuriar, W. Lee et al., Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature, Nat Commun, vol.6, p.6673, 2015.

M. Saffarzadeh, C. Juenemann, M. A. Queisser, G. Lochnit, G. Barreto et al., Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones, PLoS ONE, vol.7, 2012.

M. Furue and T. Kadono, Bullous pemphigoid: what's ahead?, J Dermatol, vol.43, pp.237-277, 2016.