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Abstract. The Antarctic ozone hole (AOH) directly influ-
ences the Antarctic region, where its levels can reach values
below 220 DU. The temporary depletion of ozone in Antarc-
tica generally occurs between the beginning and middle of
August, during the austral spring, and extends to November,
when a temporary reduction in ozone content is observed in
a large region over the Antarctic continent. However, masses
of ozone-depleted air can break away from the ozone hole
and reach mid-latitude regions in a phenomenon known as
the secondary effect of the Antarctic ozone hole. The objec-
tive of this paper is to show how atmospheric dynamics be-
have during the occurrence of this type of event, especially
in mid-latitude regions, such as southern Brazil, over a 12-
year observation period. For the analysis and identification
of the events of influence of the AOH on the southern region
of Brazil, data from the total ozone column were used from
ground-based and satellite experiments, the Brewer Spec-
trophotometer (MKIII no. 167), and the Ozone Monitoring
Instrument (OMI) on the Aura satellite. For the analysis of
the stratospheric and tropospheric fields, the ECMWF re-
analysis products were used. Thus, 37 events of influence
of the AOH that reached the southern region of Brazil were
identified for the study period (2006-2017), where the events
showed that in approximately 70 % of the cases they oc-
curred after the passage of frontal systems and/or atmo-
spheric blocks over southern Brazil. In addition, the statis-
tical analysis showed a strong influence of the jet stream on

mid-latitude regions during the events. Among the 37 identi-
fied events, 92 % occurred in the presence of the subtropical
and/or polar jet stream over the region of study, possibly ex-
plaining the exchange of air masses of ozone deficient in the
upper troposphere—lower stratosphere (UT-LS) region.

1 Introduction

Discovered in 1840 by Christian F. Schonbein, ozone is the
most important constituent of stratospheric gas traces which,
together with water vapor (H>0O) and carbon dioxide (CO»),
are responsible for the Earth’s energy balance (Seinfeld and
Pandis, 2016). Due to its ability to absorb ultraviolet radia-
tion (UV) (Salby, 1996; Dobson, 1968), O3 is the most im-
portant component in the stratosphere from the point of view
of skin protection against harmful UVB solar radiation (even
considering that a small portion of this spectrum can pass
through the O3 layer and hit the ground surface). Most of
its atmospheric content (about 90 %) is concentrated in the
stratosphere between 15 and 35 km altitude (London, 1985)
in the region known as the “ozone layer”.

The concentration of ozone in a particular region of the
Earth is mainly determined by the meridional transport of
this element in the stratosphere (Gettelman et al., 2011). The
explanation for the higher concentration of ozone found in
polar rather than equatorial regions (where there is greater
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production) is precisely a special type of poleward trans-
port known as the Brewer—Dobson circulation, in which air
masses are transported quasi-horizontally from the strato-
spheric tropical reservoir to polar regions (Brewer, 1949;
Dobson, 1968; Bencherif et al., 2007). The poleward trans-
port of stratospheric ozone is one of the essential factors for
the concentration of this atmospheric constituent in a certain
region of the planet (Ploeger et al., 2012), being much stud-
ied from the use of potential vorticity, which correlates with
the transport of chemical constituent tracers such as ozone
(03), nitrous oxide (N>O), and water vapor (H,0O) on isen-
tropic surfaces in the lower stratosphere. The potential vor-
ticity (PV) acts as a dynamical tracer for large-scale air mass
transport, behaving as a material surface where the potential
temperature is conserved (Hoskins et al., 1985). In the lower
reaches of the stratosphere the lifetime of O3 molecules is
longer, and therefore they can be used as a tracer in the study
of air mass flow in the stratosphere—troposphere exchange
events (Bukin et al., 2011).

The first studies discussing the ozone concentration in po-
lar regions showed that during the spring of the Southern
Hemisphere there was a massive reduction of the O3 con-
tent known as the Antarctic ozone hole (AOH) (Chubachi,
1984; Farman et al., 1985; Solomon, 1999). The ozone hole
area is defined when there is a region with values below
220 DU, less than two-thirds of the historical level (Hofmann
et al., 1997). Nevertheless, temporary destruction directly in-
fluences ozone content around the polar regions due to the
crossing of the polar vortex boundary over these regions,
causing drastic reductions in the ozone content and an in-
crease in the levels of surface ultraviolet radiation (Casiccia
et al., 2008). Studies by Guarnieri et al. (2004) have shown
that reductions of up to 1 % in total ozone content in south-
ern Brazil cause an average 1.2 % increase in surface ultra-
violet radiation. In addition, increased ozone-related ultravi-
olet radiation may also affect aquatic and terrestrial systems,
helping to explain the decline in amphibian species associ-
ated with genetic malformations caused by increased radia-
tion levels received (Schuch et al., 2015). However, their ef-
fects can affect regions of middle and low latitudes, causing
temporary decreases in the total columns of ozone.

Poor ozone air masses are released from the interior of the
Antarctic polar vortex, the edge of the ozone hole, being car-
ried by the polar filaments in these regions (Marchand et al.,
2005) in a phenomenon called the secondary effect of the
Antarctic ozone hole that causes a temporary fall in ozone
content first observed by Kirchhoff et al. (1996) over the
south of Brazil. Peres et al. (2014) and Peres (2016) showed
the effects of this secondary event on mid-latitude regions
such as the southern region of Brazil, where ozone content
falls over the region from August to November. Recently,
Bittencourt et al. (2018) reported on the second most intense
event ever recorded in the southern region of Brazil. Accord-
ing to the latest World Meteorological Organization (WMO)
reports (WMO, 2014, 2018), there is a growth trend be-
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tween the 1980s and 1990s, stabilizing at high rates since the
year 2000 despite indications of declining trends in Antarctic
ozone in recent years (Solomon et al., 2016).

Unlike other regions of Brazil, the weather conditions in
southern Brazil are strongly influenced by transient meteo-
rological systems (Reboita et al., 2010). Examples of such
systems are cold and hot fronts, which carry strong west-
erly winds at high tropospheric levels called jet streams.
Moreover, the upper troposphere—lower stratosphere (UT-
LS) region in southern Brazil seems to be the home of many
dynamical processes, such as stratosphere—troposphere ex-
changes and isentropic transport between the tropical strato-
sphere reservoir, polar vortex, and middle latitude. Indeed,
understanding the patterns of the UT-LS is important in un-
derstanding transport and exchange processes and the links
with tropospheric meteorology (Ohring et al., 2010).

Because of this, the main objective of this paper is to show
how atmospheric dynamics behave during the occurrence of
events of influence of the Antarctic ozone hole over mid-
latitude regions such as southern Brazil, during a 12-year
observation period. In addition, recent works (Peres et al.,
2014; Bittencourt et al., 2018) show that there is a secondary
influence of the ozone hole with these regions where the tro-
pospheric dynamics behavior can influence most cases in the
occurrence of these events.

2 Data and methodology
2.1 Region of study and instruments

The region of study was the central portion of Rio Grande
do Sul, comprising the city of Santa Maria — RS (29.72° S,
53.72° W). In this work two instruments were used for the
analysis of the total ozone content over the southern re-
gion of Brazil for a period of 12 years of data (2006-2017).
The ground-based instrument named the Brewer Spectropho-
tometer (Brewer Model MarK — Brewer MKIII, no. 167),
from now on referred to only as Brewer (Brewer Models,
2019), was operated in the municipality of Sdo Martinho da
Serra — RS (about 30 km from the city of Santa Maria — RS),
and data from the OMI were used for the days when there
were no Brewer measurements, completing the database for
the region of study.

Total ozone column (TOC) measurements were obtained
by using data from Brewer model MBIV no. 081 spectropho-
tometers during the period 1992-2000, from model MKII no.
056 from 2000 to 2002, and finally by model MKIII no.
167 from 2002 until today (Brewer Website, 2019). All the
above-listed instruments were operated at the Southern Space
Observatory (SSO), located about 14 km from downtown
Sdo Martinho da Serra — RS (29.44° S, 53.82° W; elevation
476 m). The Brewer instrument operating at SSO/INPE is
part of Brewer’s Brazilian network that is calibrated against
the standard travel reference Brewer no. 017, managed by In-
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ternational Ozone Services (I0S), and Brewer no. 158 from
manufacturer Kipp & Zonen (SCI TEC, 1988).

Brewer is a fully automated instrument designed for ter-
restrial measurements of spectral irradiations in the UV-B
range of the solar spectrum at five wavelengths, 306.3, 310.1,
313.5, 316.8, and 320.1 nm (Kerr, 2002), with an approx-
imated resolution of 0.5nm allowing the total column of
ozone (O3) and sulfur dioxide (SO,) (Fioletov et al., 2005) to
be obtained. The MKIV instrument also measures intensity
of radiation in the visible part of the spectrum (430-450 nm)
and uses differential absorption in this region to infer total
column nitrogen dioxide (Brewer Manual, 2019). This in-
strument also permits the optical thickness of atmospheric
aerosols and the vertical O3 profile to be obtained by the
Umkehr technique (Kerr, 2002; Brewer Manual, 2019).

Peres et al. (2019) analyzed a long-term (35-year) to-
tal ozone column (TOC) series for southern Brazil using
Brewer data and satellites, where they showed good agree-
ment between ground-based and satellite instruments. Van-
icek (2003) presented a history of calibrations of the Dobson
and Brewer instruments in Prague, Czech Republic, where
the correct function of the Brewer Spectrophotometer was
shown and, consequently, its accurate observation process,
which depends only on the precise adjustments of the op-
tics as components of Brewer’s electronics and mechanics.
In South America, the accuracy and quality of TOC data are
ensured by cross-calibration using the Brewer no. 017 cali-
brator, allowing a deviation of only about 0.58 % from daily
averages (Fioletov et al., 2005).

The Ozone Monitoring Instrument (OMI) launched in
July 2004 onboard NASA’s Earth Observing System Aura
satellite (Levelt et al., 2006) is a continuation of the records
made by the Total Ozone Mapping Spectrometer (TOMS)
NASA program that began in 1978 and was officially closed
in 2007 (NASA website, 2019). This state-of-the-art in-
strument, the OMI, measures the TOC besides other atmo-
spheric parameters related to ozone chemistry and climate
(e.g., NO,, SO,). OMI also can distinguish distinct types of
aerosols (such as smoke, dust, and sulfates) and measures the
atmospheric pressure and cloud coverage. The Earth’s atmo-
sphere is observed in 740 spectral bands of wavelength along
the satellite path, with a band large enough to provide global
coverage in 14 orbits (1 d). The 13 x 24 km spatial resolution
can be expanded to 13 x 12km to detect and track sources
of pollution on an urban scale and observes the atmosphere
in two ultraviolet bands, named UV-1 (270 to 314 nm) and
UV-2 (306 to 380 nm), with spectral resolutions of 0.45 and
1 nm, respectively (Levelt et al., 2006). In terms of the TOC
(in Dobson units, DU), the OMI presents an absolute accu-
racy (the root sum of square of all (1) errors) of 3 % and a
relative accuracy of 1 %, respectively, for the full vertical col-
umn and for the 13 x 24 km in horizontal resolution (Levelt
et al., 2000).

We also wused reanalysis data available at Fra-
Interim/ECMWEF, and described by Dee et al. (2011),
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where meteorological fields were prepared for the analysis
of the stratospheric and tropospheric dynamics. Due to
radiosonde limitations in the region of study, the spatial res-
olution used was 2.5° x 2.5° latitude-longitude, responding
well to the objectives of this work, where a higher resolution
is not necessary for further details. For the stratospheric
dynamics analysis, data of potential vorticity and ozone
mixing ratio were used at the potential temperature levels of
265 and 850 K. For the analysis of tropospheric dynamics,
wind data (components u, v, and w), geopotential height,
and layer temperature available from 1000 to 1hPa, at the
pressure level, in addition to pressure data at mean sea level
were used. With these data, potential vorticity fields were
made for the potential temperature levels of 600 and 700 K.
For tropospheric fields, there were sea-level pressure and
layer thickness between 1000 and 500hPa, a horizontal
layer cut showing the jet at 250 hPa and Omega at 500 hPa,
and a vertical cut of the layer between 1000 and 50 hPa of
potential temperature and wind (ms~!) for the longitude of
54°W.

The HYSPLIT/NOAA model was used to help identify the
events of influence of the Antarctic ozone hole over the re-
gion of study (Rolph et al., 2017). The Lagrangian HY SPLIT
model is a complete system for calculating simple trajecto-
ries of air parcels as well as complex transport simulations,
chemical transformation, and deposition (HYSPLIT, 2019).
The model assumes that a particle follows the wind flow pas-
sively; its trajectory is the integration of the particle position
vector in space and time. In this study, which aims to show
the air mass behavior for 4 d before the events, the HYSPLIT
model, an isentropic vertical velocity model, was used to as-
sist in the observation of possible event days over the region,
available in HYSPLIT (2019).

2.2 Identification of AOH influence events

The identification of the events of influence of the AOH is
done first by the analysis of the average daily data of the TOC
through instruments onboard satellites and on the ground. In
this work, 12 years of satellite data were analyzed with the
aim of identifying days where the mean daily value of TOC
is less than the climatological average for the month of anal-
ysis, i.e., the climatological average minus 1.5 of its standard
deviation value (i — 1.50), where u is a climatological av-
erage for the month of interest, o is the standard deviation,
and the value of —1.5 is the criterion chosen from the nor-
mal frequency distribution tests (Wilks, 2006). This criterion
was also used by Peres (2016), where it was observed that
the variations around the mean value can represent well the
influences of the ozone content in the region of investigation.

After identifying the possible days of influence of the
AOH over the region of study, the analysis of isentropic
surfaces was conducted, where absolute potential vorticity
(APV) fields were made. For the analysis of the stratospheric
dynamics, we used reanalysis data available on the Era-
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Interim/ECMWF platform, and the APV fields were ana-
lyzed on isentropic surfaces for the potential temperature lev-
els of 600 and 700 K. PV was used in previous studies that
correlated PV with chemical constituents such as ozone, wa-
ter vapor, and nitrous oxide on isentropic surfaces (adiabatic
surfaces where the potential temperature remains constant)
in the lower troposphere (Schoeberl, 1989).

In these case studies, the PV acts as a dynamic large-
scale air mass tracer and can be used as a horizontal coor-
dinate (Hoskins et al., 1985). In this way, this type of anal-
ysis aims to verify the origin of the air masses in which an
APV increase is observed when the air mass originates from
the highest latitudes (e.g., Antarctica). For this analysis, one
needs to consider the previous days of the event or equatorial
origin when a decrease in absolute potential vorticity occurs
(Semane et al., 2006). Bittencourt et al. (2018) and Bresciani
et al. (2018) showed the analysis of an extreme event of in-
fluence of the AOH on regions of middle latitudes through
the analysis of the stratospheric dynamics with the fields of
PV.

In the analysis of potential vorticity fields, the air mass tra-
jectory was observed. When there is an increase in the APV
it can be stated that the mass of air had a polar origin, and
otherwise (decrease in the APV) the air mass has an equato-
rial origin. As described above, the APV acts as a dynamic
marker for large-scale air masses and, thus, observations are
made to identify the secondary effect of AOH, where reduc-
tions in O3 content are observed from intense to moderate
(Bittencourt et al., 2018; Peres, 2016).

2.3 Tropospheric analysis

After identifying all the events for the study period (2006—
2017), meteorological fields were prepared for the analysis
of tropospheric dynamics, which aims to show how the tro-
posphere behaved before, during, and after the occurrence
of every event of the secondary effect of the AOH identified
in southern Brazil. Peres et al. (2014) showed a case study
of 2012, presenting two events of the influence of the AOH
on the southern region of Brazil in which the synoptic anal-
ysis was done for the region on the day of the event. The
results showed that one of the events occurred just after the
passage of a frontal stationary system, where then the arrival
of a high-pressure system helped to stabilize the region and
in the advance of the air masses poor in O3, configuring the
occurrence of the AOH influence event.

The meteorological data for the construction of the pres-
sure fields at sea level and the layer thickness between 1000
and 500 hPa were obtained by the ECMWEF, and the purpose
here is to check which synoptic systems predominated dur-
ing the events. A presence of the subtropical jet is intended to
be displayed in the field of horizontal winds at 250 hPa and
Omega at 500 hPa. In addition, ascending and descending
surface movements were identified. Another field analyzed
was the vertical cut of the atmosphere at different levels of
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potential temperature (in Kelvin) and wind components (in
m sfl) for the longitude of 54° W. In this case, the jet stream
was present at higher levels of the troposphere, which may
aid in air exchanges from the stratosphere to the troposphere
(Santos, 2016).

2.4 Statistical analyses

The average daily data of the ECMWF for the horizontal
wind components (zonal — # — and meridional — v) and
also the vertical movement velocity (Omega — w) were used
for this analysis. In addition, temperature and geopotential
height or the available pressure levels between 1000 and
1 hPa and the component of PV and O3 for the level of 700 K
potential temperature were used. These data were correctly
read and organized into matrices with the daily averaged val-
ues for each of these variables (temperature, u, v, and w,
geopotential, PV, and O3) in a grid of 2.5° latitude by 2.5°
longitude at the levels previously used.

As the set of data used in the preparation of the strato-
spheric and tropospheric analysis fields was only for the
months of interest in this analysis, from August to November
in 12 years, the reduction of this dataset allowed the separa-
tion of the days of interest (days of occurrence of events of
influence of the AOH on the southern region of Brazil) and
the subsequent calculation of the monthly averages.

For stratospheric analysis, mean fields of all identified
events were made for a period of 3d before and after each
event. For the anomaly analysis of the potential vorticity
fields, the following expression was used:

APV) = Pvanomaly
= Pvclimatological - PVaverage(2006—2017). (D

Equation 1 is used in the following way: the average of all
events for each month is used and then this value is de-
creased from the month’s climatological average. For the tro-
pospheric statistical analyses, the average fields of the identi-
fied events of the horizontal cut of the atmosphere were made
with the objective of analyzing the behavior of the jet stream
at 250 hPa and Omega at 500 hPa.

3 Results and discussion

In this work, the daily average data of the total ozone col-
umn were analyzed from the two instruments described
above (Brewer and OMI), comprising a 12-year analysis pe-
riod from 2006 to 2017, mainly from August to November
(southern spring). Comparing the two instruments (figure not
shown here, but very similar to Fig. 2 of Peres et al., 2019),
the correlation index found here was considered very high,
i.e., R? = 0.96, showing high proportionality between the in-
struments used in this study. The results are also similar to the
observations reported by Antén et al. (2009) for the Iberian
Peninsula, where the Brewer and OMI total ozone datasets
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Table 1. Monthly climatological values, their standard deviations,
and limit —1.5¢ for August, September, October, and November
for the South Space Observatory (SSO).

Month Climatology Standard Limit
O3 in deviation in —1.50 in

DU (u) DU (e¢) DU (u—1.50)

August 283.7 12.9 264.3
September 290.7 10.1 275.5
October 284.4 7.2 273.6
November 281.3 9.7 266.7

were compared, and also with other results from separate
ozone monitoring stations around the world (Hendrick et al.,
2011; Keckhut et al., 2010).

After the identification of the mean daily data of the TOC
and analysis of the monthly climatology of the data observed
at the SSO, the first step for the identification of AOH side-
effect events over the study region is the analysis of the cli-
matological average for the reference months and the oc-
currence of AOH during the extended austral spring period
(August to November). For this, days are chosen in which a
strong decrease in the ozone content is observed, i.e., when
the average daily value of the total ozone column is less than
the average climatological value (for the respective month)
minus 1.5 of its standard deviation (« — 1.5¢0). Table 1 shows
the TOC monthly climatological values with monthly stan-
dard deviation, together with the lower TOC limit, for the
extended spring season.

After the confinement of the drop limits presented in Ta-
ble 1, we analyzed 90 d where the TOC value of the respec-
tive day was lower than this limit minus 1.5¢. From these
days, using a methodology described above, a total of 37
events were identified as important events that reached the
southern region of Brazil from August to November in the
years from 2006 to 2017. As expected, based on previous
works and climatology, the identified events occurred mostly
during October, and it is in good agreement with the results
found by Peres (2016). To exemplify the analysis developed
in this paper, we present in the next section a case study that
took place on 18 September 2017, as this is the most recent
event identified throughout the observed period, showing a
side-effect event of AOH in the region of southern Brazil.
Other interesting, and even more prominent, events have al-
ready been reported by Bresciani et al. (2018) and Bitten-
court et al. (2018).

3.1 Case study: event observed on 18 September 2017

The event that occurred on 18 September 2017 presented a
TOC value, measured by the Brewer Spectrophotometer, of
271.5 DU, representing a decrease of approximately 8.5 % in
comparison with the climatological average for the month of
September, as reported in Table 1. The observed decrease in
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TOC could be attributed to isentropic transport in the strato-
sphere.

Figure 1 shows the PV fields obtained from ECMWEF data
at 600 and 700K isentropic levels in the stratosphere. One
can see from Fig. 1 that Chile, Argentina, Uruguay, the south
of Brazil, and Paraguay are under the influence of the pas-
sage of stratospheric air masses characterized by APV values
greater than 100. We obtained almost the same PV pattern at
the 600 K isentropic level. As explained above, PV is a con-
servative dynamical parameter and indicates the transport of
air masses which takes place on isentropic surfaces (Hoskins
et al., 1985). Therefore, PV distributions could be used to
determine the origin of air masses. Since PV values are posi-
tive in the Northern Hemisphere and negative in the Southern
Hemisphere, for convenience, we refer hereafter to the APV,
which is positive regardless of the latitude. From Fig. 1 we
can observe that PV values are higher than 100 and can be as-
sociated with air masses of polar origin, which suggests that
the observed decrease in the total ozone column at the SSO,
in the south of Brazil, is a result of the transport of air masses
with low ozone concentration from high southern latitudes.
In order to corroborate this hypothesis, the Lagrangian HY S-
PLIT model was initialized on 18 September 2018 at the
SSO location and run for back-trajectory retrievals in the
lower stratosphere (see Fig. 2a). All the stratospheric back-
trajectories show that air masses observed over the SSO in
the south of Brazil traveled northward and eastward over the
polar region. This confirms the polar origin of the observed
air masses. Moreover, Fig. 2b illustrates the global distribu-
tion of TOC recorded by the OMI experiment on 18 Septem-
ber 2018. It shows that transport of polar air is characterized
by a reduction in TOC distribution extending from the polar
region up to the mid-latitude region. This well illustrates the
side effect of AOH, resulting in a decrease in stratospheric
ozone concentrations during the analyzed event.

After the identification of the secondary effect of the AOH
on the southern region of Brazil on 18 September 2018, the
tropospheric dynamics were analyzed to observe how the tro-
posphere was behaving during the occurrence of this event.
Figure 3 presents the atmospheric fields used in this work for
the study of tropospheric dynamics. This type of analysis was
used by Bittencourt et al. (2018), where the study was done
only for an extreme event of influence of AOH. In the days
leading up to the confirmation of the side-effect event, the
region remained unstable from 11 September 2018 until 1d
before the event, which can be explained by the isentropic
tapering corresponding to a more compressed layer thick-
ness, besides the presence of an intense temperature gradi-
ent. For the day of the event, 18 September 2018, the forma-
tion of a system of high pressure was observed in the region,
which moved to the ocean in the following days. Under these
circumstances, on the surface, we have a post-frontal high-
pressure system near the region of interest, which may have
helped to carry this O3 air mass to reach mid-latitude regions
such as central southern Brazil.
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Figure 1. Potential vorticity fields at the 600 and 700 K isentropic levels as derived from ECMWF data successively on (a and b) 17 Septem-
ber, (c and d) 18 September, and (e and f) 19 September 2017. The black symbol indicates the location of the SSO.

The horizontal wind and temperature fields (Fig. 3c and
d) show the jet at 250 hPa and the Omega at 500 hPa, where
the objective here is to identify the regions of upward and
downward movement of air masses. The presence of the po-
lar jet in southern Brazil, Argentina, and Uruguay is observed
in Fig. 3c and d. Negative Omega values at 500 hPa persist
throughout the period, indicating upward movement at lower
levels of the atmosphere. Thus, the horizontal section of the
atmosphere showed that the presence of the polar jet domi-
nates the region until the day of the event confirmation. For
this reason, the arrival of Osz-poor air masses in the region
may be associated with the performance of a frontal system
that passed through the region days before the event was con-
firmed as well as the presence of the jet at higher atmospheric
levels, helping in the exchanges of air from the stratosphere
to the troposphere contributing to a temporary reduction in
O3 content on 18 September 2018. The vertical section of
the atmosphere between 1000 and 10 hPa of potential tem-
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perature and wind at 54° longitude (Fig. 3e and f) shows the
presence of a polar jet current at higher levels of the atmo-
sphere as well as the isentropic funnel near longitude from
30° S on 17 September 2018, indicating a frontal ramp which
helps in the air exchange from the highest to lowest levels on
the day of the event.

3.2 Statistical analyses: atmospheric dynamics

Figure 4 shows the mean field of the 37 AOH influence
events identified in this work, where potential vorticity fields
were used for the 700 K isentropic level, for 3 d before and
up to 3d after the event. Analyzing Fig. 4a and b, it can be
observed that for —3 d the variation of potential vorticity over
the region remains stable, without variation in the content of
APV in the south of Brazil, with APV values between 40 and
60PVU.

www.ann-geophys.net/37/1049/2019/
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Figure 2. (a) Retroactive trajectories as retrieved by the Lagrangian HYSPLIT model, initialized on 19 September 2017 00:00 UTC at the
SSO location. The back-trajectories were run at 20 km (in red), 24 km (in blue), and 28 km (in green) above ground level; (b) global TOC
distribution as recorded by the OMI experiment on 18 September 2017. The red box focuses on the low-ozone event and the star symbol

indicates the location of the SSO site.

Already from 2d before (—2d) the event, Fig. 4c, we
can observe a slight increase in APV values over the study
region, mainly between Argentina, Uruguay, and southern
Brazil with APV values from 60 to 80 PVU. From 1 d before
(—1d) the event, the increase in APV over the study region
becomes more important, with APV values between 100 and
140 PVU. For the days after the event, +1d (Fig. 4e) and
+2d (Fig. 4f), air masses with APV higher than 100 PVU
bound the mid-latitude region in Chile, Argentina, Uruguay,
and southern Brazil, with values up to 160 PVU. From the
third day after the event, we found a decrease in APV values
similar to the —2 d situation (not shown). These results indi-
cate that during the 37 identified secondary effect events due
to the AOH development, low-ozone air masses are trans-
ported from the polar region to mid-latitudes and cover a
wide region over the north of Chile, Argentina, Uruguay, and
southern Brazil. On average, such a low-ozone event may
last and affect that sub-region during at least 4 d. This is in
agreement with previous works published by Peres (2016).

Plots in Fig. 5 show the average monthly distributions of
potential vorticity anomalies on the 700 K isentropic level,
averaged for August, September, October, and November
over the study period, 2006-2017. The PV anomaly fields
show the predominance of positive potential vorticity anoma-
lies in southern Brazil (values around 35 to 55PVU). Fig-
ure 5a shows that in August there is a predominance of pos-
itive anomalies in southern Brazil, according to the num-
ber of events identified this month (seven events; see Ta-
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ble 2) in southern Brazil. November has the lowest number of
low-ozone AOH events identified in the region (five events;
see Table 2) and also shows the predominance of a positive
anomaly in southern Brazil, with possible vorticity anoma-
lies between 10 and 30 PVU. For the months of September
and October, positive PV anomalies were very evident in the
12 years of data.

Significant increases in positive anomalies (between 10
and 50PVU for September and from 30 to 60PVU) are
concomitant and consistent with the large number of low-
ozone AOH events recorded during these months (12 events
in September and 13 events in October). Physically, it is pos-
sible to confirm the importance of these months for the anal-
ysis, due to the greater number of AOH-influencing events
that affect southern Brazil, as observed by Bittencourt et
al. (2018), which is explained by polar filaments that are re-
leased from the ozone hole region and then bring O3 to mid-
latitude regions.

For a better understanding of the tropospheric dynamics
during the 37 events identified, medium fields were made for
the horizontal and vertical cuts of the atmosphere. Figure 6
shows the average field for the horizontal cut (jet at 250 hPa
and Omega at 500 hPa). In the mean of the 37 AOH influ-
ence events identified in this study (Table 2), the presence of
the jet stream (subtropical or polar) is observed in practically
all identified events. Fig. 6 confirms this where the presence
of the jet stream is observed mainly in the southern region
of Brazil. However, there is a predominance of a center with

Ann. Geophys., 37, 1049-1061, 2019
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Figure 3. Pressure fields at medium sea level, horizontal cut of the atmosphere, and vertical cut between 1000 and 50hPa for (a, c,
e) 17 September 2017 and (b, d, f) 18 September 2017. The red symbol indicates the location of the SSO site.

negative values of Omega at 500 hPa, indicating surface con-
vergence, which explains the majority of events identified af-
ter the passage of frontal systems over the southern region of
Brazil. Therefore, the jet stream is important for the vertical
distribution of O3 in the atmosphere and also in air exchanges
from the stratosphere to the troposphere (Bukin et al., 2011;
Santos, 2016) in the southern region of Brazil.

Finally, Fig. 7 presents the average for the 37 AOH influ-
ence events identified in southern Brazil of the vertical cut of
the atmosphere between 1000 and 30 hPa. Similar to Fig. 6,
the presence of the jet stream with an intense nucleus (~ 45
to 50ms~!) near the latitude and longitude of the study re-
gion, besides the presence of a jet near 30 hPa, indicates the

Ann. Geophys., 37, 1049-1061, 2019

probable presence of the polar jet current in the average of
the events. However, it is confirmed that the jet stream (sub-
tropical and/or polar, depending on the case) was also present
at higher levels of the atmosphere. Therefore, analyzing the
average tropospheric dynamics of the 37 events of influence
of the AOH on the southern region of Brazil, the presence
of the polar jet stream, at higher levels of the atmosphere,
as well as the presence of the subtropical jet stream, proba-
bly explains the transport of O3-poor air masses from polar
regions to mid-latitude regions like southern Brazil.
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Figure 4. Average PV maps at the 700 K isentropic level from 37 PV distributions detected as secondary effect events of AOH: (a) —3d,
(b) —2d, (¢) —14d, (d) day of the event, (e) +1d, (f) +2d.

Table 2. Events of the secondary effect of the Antarctic ozone hole over southern Brazil from 2006 to 2017. Average daily TOC value and
percentage of O3 reduction with respect to the climatological average of the month.

Event day O3 reduction  Event day O3 reduction  Event day O3 reduction  Event day O3 reduction
08/07/2006 11.9%  10/26/2008 6.3% 09/14/2012 8% 08/25/2016 11%
08/23/2006 92% 11/01/2008 104 % 09/22/2012 4.5% 09/05/2016 8.6%
09/19/2006 8.7%  09/03/2009 129% 10/14/2012 11% 09/12/2016 7.5%
10/07/2006 83%  09/29/2009 7% 10/23/2013 123%  10/20/2016 22 %
10/15/2006 7.6% 08/08/2010 5% 08/10/2014 54% 08/26/2017 13%
11/17/2006 11.7%  09/08/2010 44% 08/22/2014 10.1% 09/18/2017 8.6 %
09/13/2007 54% 10/13/2010 4.6% 10/13/2014 42% 11/16/2017 9.5%
10/07/2007 8.5% 10/22/2010 8.6% 11/03/2014 4%

09/28/2008 53% 10/01/2011 42% 09/22/2015 6 %

10/12/2008 7% 10/21/2011 4% 11/03/2015 8.5%

Date format: mm/dd/yyyy.
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(b) September anomaly 2006 — 2017 (700 K)
10S = =
15S
20S

258
308
35S

40S
458
508
558
60S
655
10

A4

OW90W 80W 70W 60W 50W 40W 30W 20W

(d) November anomaly 2006 — 2017 (700 K)
10S
158
20S
25S
30S
35S
40S
458
508
558
60S

65S
100W90W BOW 70W 60W 50W 40W 30W 20W

Figure 5. Monthly PV anomaly fields for the period from 2006 to 2017, at the isentropic level of 700 K potential temperature.
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Figure 6. Mean field for the 37 AOH side-effect events in the anal-
ysis period with the jet at 250 hPa (shaded) and Omega at 500 hPa
(Omega positive solid lines, Omega negative dotted lines).

4 Conclusions

In this work, we analyzed daily TOC measured by the
Brewer Spectrophotometer operational at the SSO site in
the south of Brazil and by the OMI from 2006 to 2017.
Analysis of TOC datasets revealed 37 low-ozone events that
have occurred and extended during the austral spring pe-
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Average 37 events (2006 - 2017)
Vertical field (m s-1)
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Figure 7. Average for the 37 events of the vertical field between

1000 and 30 hPa, showing the jet current (shaded gray) in m s—L

riod (August—September—October—November) over the SSO
site. Moreover, examination of potential vorticity fields in
the stratosphere (on the 700 K isentropic level) and of back-
trajectories obtained by the Lagrangian HYSPLIT model
showed that the 37 low-ozone events resulted from the trans-
port of air masses from polar regions to mid-latitudes and
correspond therefore to the secondary effect of the AOH.
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In addition, it has been shown from PV anomaly fields that
the detected events have spread over a large region, cover-
ing northern Chile, Argentina, Uruguay, and southern Brazil,
and they can last and affect this subregion for at least 4 d. In
accordance with the period of development of the AOH and
with previous published works, we found that most of the
events took place in September (35 %) and October (39 %),
while 17.6 % of them were identified in August and 12.7 %
in November.

The analysis of tropospheric dynamics confirmed the im-
portance of the jet as the main synoptic system that assists
in the exchange of air masses between the stratosphere and
the troposphere. Of the 37 events, about 92 % of the cases
identified the presence of the jet stream (subtropical and/or
polar); in the remaining 8 % no action of the jet stream was
identified or it was weak, not assisting in the exchange of
air masses. In addition, on the surface, events were identi-
fied in 70 % of cases after the passage of frontal systems in
southern Brazil, which together with the performance of a
high-pressure system characterized by downward stabiliza-
tion of the atmosphere explains the arrival of ozone-depleting
air masses from the Antarctic region that can reach the mid-
latitude regions. Regarding the statistical analyses of the tro-
pospheric fields, confirmation of the importance of the jet
stream was obtained. The vertical cut of the atmosphere
showed the presence of the two jet streams (polar and sub-
tropical jet) at higher levels of the atmosphere; besides, the
current lines converge to regions close to 30° S in the south-
ern region of Brazil. The average fields of the 37 events iden-
tified in the region show the presence of the jet stream in
relation to the horizontal cut (250 hPa) and vertical cut (1000
and 30 hPa).

The results found here highlight the importance of the jet
stream actuation as the main synoptic system that supports
the exchange of masses of ozone-deficient air from the strato-
sphere to the troposphere. It is evident that the two jet streams
(subtropical and polar) act together in this exchange mecha-
nism, possibly becoming a “connection” between the two at-
mospheric layers during the occurrence of events of the side
effect of the AOH on the southern region of Brazil.

Data availability. The ozone ground-based data obtained by the
Brewer spectrophotometer at the SSO are not yet available on-
line or at any international collaborative platform, but these
data, or information about it, can be obtained by contacting
the corresponding author or alternatively José Valentin Bageston
(jose.bageston@inpe.br). The OMI-ERS2 satellite data are avail-
able at https://aura.gsfc.nasa.gov/omi.html (OMI, 2018).
ECMWEF/ERA-Interim weather data are available on-
line (after registration) at http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/ (ECMWF/Era-Interim, 2017).
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