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(a) initial triangular mesh (b) global parameterization (c) smooth parametric surface 

Figure 1: The two major stages of our method: from an initial triangular mesh (a), we compute a global parameterization (b) to retrieve a 
smooth parametric surface (c). 

 

Abstract 
Quality of physically-based simulation mostly relies upon 
qualities of the geometrical model of the entities involved. 
Particularly, Lagrangian formalism (which we focus on since 
several years) claims for continuous and smooth descriptors. Our 
current project aims a precise Lagrangian knee kinematics model. 
The studied knee model has been chosen as built up from actual 
bones geometries and ligament attachments. In this scheme, 
contact between femur and tibia must be seen as a constraint 
between two smooth surfaces. But, most of the time, actual 
geometric data coming from acquisition devices are modeled as 
discrete quantities. In this paper, we present a method to retrieve a 
smooth parametric surface from a triangular mesh. The first step 
calculates a global parameterization of a disk-like mesh. The 
second step builds a smooth parametric surface that interpolates 
the actual data using Radial Basis Functions (RBFs). This scheme 
allows for smoothly expressing any geometric quantity like 
tangent vectors or curvature at any point on the smooth surface. 
Out of the biomechanics area, we mention other possible 
applications of our framework for mesh refinement and non 
photorealistic rendering. 
Keywords: Geometric modeling, smooth parametric surfaces, 
global parameterization, surface interpolation. 

1. INTRODUCTION 

The content of this paper takes place into a research project 
aiming to propose a realistic model of the knee joint. Although the 
structure of this articulation is very complex, it has been widely 
studied, mainly due to the number and variety of its pathologies. 
Those works fall into two main categories. The first one is based 
upon rigid body dynamics in order to determine the bones 

evolution. Collisions are managed according to a discrete 
representation of the surface [1][2]. The other category relies on 
the Finite Elements Method (FEM) [3][4]. Even if the FEM 
allows dealing with soft bodies such as ligaments, it shares the 
same drawback as the previous one: it relies on a discrete 
description of bones shapes. The quality of the simulation is then 
dependent on the refinement of geometrical data. Moreover, 
polygonal surfaces may produce numerical instability when 
contacts are taken into account. 
By now, our study is limited to the identification of the effective 
complex degrees of freedom of the knee joint during the 
flexion/extension movement. Since we focus on physically-based 
simulation rather than plausible motion simulation [5], it appears 
to us that bones surfaces are of great interest. To avoid the 
drawbacks of the previously mentioned works and in accordance 
to our own experience in simulation, we are willing to deal with 
the continuous aspect of the phenomenon [6][7]. To remain as 
close as possible to the actual motion, we reject all 
methodological simplifications that would reduce the bone contact 
as a sphere-plane contact for example [8]. It is now well known in 
the biomechanics area that knee joint can not be depicted by 
classical joints like ball joints, hinges or sliders. For all these 
reasons, we propose to manage the bone contact as a contact 
between two smooth surfaces. Implicit isopotential surfaces have 
been successfully used for the animation of deformable models 
[9]. Field functions of each surface are used to detect 
interpenetration and to generate an appropriate response based on 
a deformation field function. This method, based on a continuous 
description of surfaces, is unfortunately restricted to deformable 
bodies and does not rely on the physical properties of the surfaces 
involved. For our concern, we neglect deformations and express 
the contact as a sliding contact constraint between two rigid 
bodies. The continuous tracking of the contact point, though still 



marginal, is an increasing centre of interest in the computer 
graphics community [10]. 
Data used to set up the simulation is obtained from acquisition 
devices such as 3D and MRI scanners. As a consequence, this 
kind of data is usually represented by a 3D point cloud or a 3D 
triangular mesh. In this article, we suggest a method to generate 
automatically an interpolating parametric surface from a 3D 
triangular mesh. This method is composed of two stages (e.g. 
Figure 1). The first stage calculates a global parameterization of 
the 3D triangular mesh. This parameterization must be global to 
guarantee the continuous tracking of the contact point during the 
flexion/extension movement. The second stage then builds up a 
smooth parametric surface using Radial Basis Functions (RBFs) 
that interpolates the 3D mesh. As the surface is explicitly defined, 
the contact point is naturally identified by its 2D parametric 
coordinates in global parametric domain. This method settles our 
problem as it gives us a smooth parametric representation of our 
data. 
In the following section, we describe in details these two steps. 
We pursue by presenting the application of this framework to our 
initial problem: the continuous tracking of the contact point 
between two surfaces. Then, convinced of the usefulness of 
continuous representation of a 3D mesh, we mention other 
meaningful applications, like mesh refinement and non-
photorealistic rendering, both based on parametric lines and 
continuous curvature fields. 

2. PARAMETERIZATION 

During the flexion/extension movement, the contact points are 
localized at bones ends. So, to continuously track these contact 
points, we just need a global parameterization of these interest 
regions of bones. That is why we have limited our investigation to 
techniques that compute a global parameterization of disk-like 
triangulated surfaces. Of course, it would be interesting to extend 
our method in order to handle sphere-like surfaces, by using 
spherical parameterization [11] or even arbitrary meshes by 
cutting and flattening [12]. But the last technique introduces 
discontinuities on the borders of the parametric domain that could 
perturb the continuous tracking of the contact point. 

The parameterization stage consists in associating each vertex of a 
3D mesh with 2D coordinates  belonging to the parametric 
domain , in order to obtain a one-to-one mapping 
between a parametric domain and the 3D surface. Although 
convex surfaces could easily be parameterized using a projection 
on plane, concave surfaces could overlap during the projection. So 
it is not so easy to find an automatic way to parameterize a 3D 
triangular mesh. 
Planar graph theory gives an interesting formalism to study this 
kind of problems. Indeed, it is possible under some conditions to 
express a planar graph from a 3D mesh. It remains to map this 
graph to the wished parametric domain. Tutte [13] introduces the 
notion of barycentric mapping to set a planar graph to 2D space. 
Floater [14] re-uses this concept by introducing convex 
combinations. The convex combination of vertices is computed in 
order to minimize ad hoc mesh deformation energy [15]. To 
describe this last method, we have to remind some elements of 
graph theory: 

A graph  is composed of a finite set of vertices 
 and a set of edges . 

The vertex  is a neighbor of  if . By convention, 
neighbors of  are notated  for . The degree  
(or valency) of the vertex  is the total number of its neighbors. 
A graph  is said to be planar if all its vertices can be 
projected on distinct points of the plane with no secant edges. 
A planar graph subdivides the parametric domain in regions. 
Parameterization is about determining a graph from a 3D mesh 
and setting it on the parametric domain. As the parameterization is 
a one-to-one mapping, it does not allow for overlapping as each 
point of the parametric domain must define a unique 3D point. 
At first, to obtain this result, Floater sets the boundaries vertices 
of the graph on the border of the parametric domain. The mapping 
of the 3D border to the parametric one could be done by uniform 
or chord length distribution in order to take into account edges 
lengths of the 3D mesh (e.g. Figure 2). 

 

   
 (a) uniform (b) chord length 

Figure 2: Boundary parameterization. 
 
Afterward, Floater expresses the parametric coordinates  of 
inner vertices  of the graph as convex combinations of the 
parametric coordinates of their neighbors  (Eq. 2.1). 
This way, he can initialize a linear system which insures that the 
solution does not allow any overlapping. 

  (2.1) 

The coefficients  of the convex combination contribute to the 
deformation of the graph during its mapping to the parametric 
domain. One solution is to set the same weight to all neighbors 
which give the barycentric parameterization as illustrated by (Eq. 
2.2).  
  (2.2) 

Other solutions are used to choose weights of neighbors of a 
vertex, such as to take into account the area or shape of the faces. 
The method that we chose was proposed by Floater. It consists in 
preserving the shape of the faces of the 3D mesh [14]. This 
method projects the vertex we are interested in and its neighbors 
on a local parametric plane, and then determine the best 
coefficient for each neighbor. 

To conclude, this method gives the opportunity to obtain distinct 
parametric coordinates  for each vertex  of the 3D mesh 
without any overlapping. Furthermore, this method gives some 
control on the way the 3D mesh is mapped to the parametric 
domain. In fact, one can choose the shape of the parametric 
domain border and the way the 3D border is mapped on. 
Moreover, on can choose the way the  are computed to control 
the mesh deformation. 
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3. INTERPOLATION 

After the first step, we have 2D parameters  for each vertex 
 of the initial 3D mesh. Then, the second step consists in the 

construction of a smooth parametric surface  that interpolates 
our discrete data set  where  is the 3D position of 
the vertex  (Eq.3.1). 

  (3.1) 

Our application requires an interpolating surface defined from a 
unique global parameterization to continuously track the sliding 
contact points all over the bones surfaces. So we have excluded all 
local interpolation techniques based on patches, such as local 
parametric surfaces and subdivision surfaces. Moreover, in order 
to define the contact constraint, we have to obtain a smooth 
enough expression of the interpolating surface. To insure this 
continuity, patches based surfaces should impose constraints on 
patches boundaries, restricting the method to particular mesh 
topologies. We remind that we do not control the spatial 
repartition of vertices since they come from acquisition devices. 
Radial Basis Functions (RBFs) are widely used to construct 
implicit surfaces from 3D point sets [16]. This method consists in 
defining a continuous signed potential field  in 3D 
space that must be null for each vertex . To 
obtain other solution than the trivial , we need 
to complete the initial point set with inner ( ) and outer 
( ) points. 

This method increases considerably the dimension of the linear 
system to resolve in order to obtain the weight associated with 
each vertex. Moreover, an implicit surface is not really suitable to 
identify easily the contact point, so it is not easy to continuously 
track it during the animation.  
Nevertheless, RBFs have interesting properties such as 
independence according to the geometrical repartition of the 
vertices. The use of RBFs to construct parametric surfaces was 
studied for image warping [17][18]. We propose an improvement 
of the method by using it in the 3D space. Our interpolating 
surface is defined as follow: 

  (3.2) 

 is the square of the Euclidian distance between two 
points of coordinates  and  belonging to  
(Eq.3.3). 

  (3.3) 

The basis function  is in our case a multiquadric function that is 
for x being the square of the Euclidian distance: 

  (3.4) 

The expression of the interpolating surface depends mainly on the 
3D weights  of the vertices 

. From (Eq. 3.2) it is obvious that these 
weights are solutions of the following linear system: 

  (3.5) 

We must highlight that, because of the characteristics of the 
chosen  functions, the matrix A would be neither symmetric 

nor sparse, and usually badly conditioned. We use LU 
decomposition scheme of the GNU Scientific Library (GSL) to 
solve the linear system of (Eq. 3.5). 

 
 

 
 

(a) Head. 689 vertices. 

 
 

 
 

(b) Venus statue. 711 vertices. 

 
 

 
 

(c) Beethoven chest. 2000 vertices. 

 
 

 
 

(d) Femur end. 2173 vertices. 
Figure 3: Sample meshes and their associated smooth parametric 

surface. 
 

 Parameterization RBF construction 

Mean 
Time 

Standard 
Error 

Mean 
Time 

Standard 
Error 

(a) Head 2 630 61 4 645 116 

(b) Venus 2 767 73 4 807 123 

(c) Beethoven 66 699 1 631 106 470 2 693 

(d) Femur end 80 615 2 017 130 221 3 254 

Table 1: Numerical results (in msecs) extracted from 20 
computations (Athlon XP2200+, 512 Mo RAM). 
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We are aware of the computation cost of this method as well as of 
the fact that the algorithm we used to solve the linear system 
restrains the number of vertices. Nevertheless, we plan to use 
local support surfaces such as unity partition based on RBFs [19] 
[20]. This method consists in decomposing the main set of 
vertices in many smaller subsets. The local surfaces are then 
blended using polynomial weights. By this way, there is not 
anymore limitation concerning the mesh resolution, and we will 
be able to reduce significantly the computation time. Moreover, 
the introduction of polynomials to sum local surfaces would 
reduce the oscillation phenomena that could appear with global 
support RBFs. 
After pre-computations of the coefficients , we have an 
interpolating parametric surface that is defined all over the 
parametric domain . Furthermore, this surface is 
smooth enough thanks to the radial functions  chosen. 
The advantage of this explicit approach of the RBFs, is that we 
didn’t have to use an algorithm such as marching cube [16] to 
obtain a new triangulation of the surface. We just have to choose 
regular or adaptive subdivisions of the parametric domain to 
generate a new triangulation if it is necessary. 

4. CONTINUOUS CONTACT SIMULATION FOR 
SMOOTH SURFACES 

In order to achieve a realistic mechanical simulation of the knee 
joint, we need to model the contact between femur and tibia in an 
efficient and robust way. According to physically-based modeling 
principles, each bone is considered as a free rigid body whose 
evolution is governed by six degrees of freedom (DOF) 
representing both position and orientation. Without any contact, 
our complete mechanical system is composed of twelve DOF. The 
contact between two smooth surfaces can be managed in two 
different ways. 

The first approach consists in manually reducing the total number 
of DOF to decrease the dimension of possible configuration space 
(position and orientation in this case). Kry et al. [10] present a 
scheme to express the relative configuration of the first rigid body 
according to the current configuration of the second one. This 
process, that deletes redundant parameters, guarantees that the 
surfaces will stay in contact in spite of the round-off errors due to 
numerical calculations. But this approach has a main drawback: 
because the contact is implicitly integrated in the reduced set of 
DOF, it can't be released. Unfortunately, during a complete 
flexion of the knee joint, there is no more contact between femur 
and tibia. 
The second approach consists in expressing the contact as a 
dynamic constraint. The main advantage of this approach, 
especially in the context of knee joint simulation, is that a 
constraint can be easily released at any time during the simulation 
process. This constraint is then integrated in our system as an 
equation relying on the twelve initial DOF and new unknowns 
identifying the position of the sliding contact point. In a technical 
report, Remion [21] proposed a new formalism in order to manage 
such new unknowns called free variables as new virtual DOF. 
This method allows for expressing new dynamic constraints like 
curve-curve, curve-surface and surface-surface contact 
constraints. This technique has been successfully used by Lenoir 
et al. [22] for surgical simulations. 

From the parametric expression of the surface s, we can easily 
compute two tangent vectors at any point on this surface (Eq. 4.1). 

  (4.1) 

The normal vector n at this point (e.g. Figure 4) is obtained by 
calculating the cross product of these two tangent vectors (Eq. 
4.2). 
  (4.2) 

 

  
(a) 2 perpendicular vectors (b) 3D local coordinate frame 

Figure 4: Normal computation based on tangent vectors. 
 
If s1 and s2 are two parametric surfaces respectively associated 
with tibia and femur. The position of the contact point according 
to s1 is equal to its position according to s2. Moreover, the tangent 
spaces of s1 and s2 are aligned at this point (e.g. Figure 5). If 

 are the 2D coordinates of the contact point according to si 
for i=1,2, the contact constraint is expressed as follows: 

  (4.3) 

 

 
Figure 5: Contact point between two smooth surfaces s1 and s2. 

 
Starting from a dynamic system composed of 16 DOF (12 initial 
DOF + 4 free variables), the constraints equations cancel 5 DOF 
(Eq. 4.3). So it only remains 5 DOF if we exclude the global 
configuration (6 DOF corresponding to position and orientation) 
of the system. 
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5. PERSPECTIVES 

We came to propose this method to retrieve a smooth parametric 
surface because of our involvement in contact modeling and 
continuous tracking of contact points. But, out of this context, we 
consider that the ability to build a smooth parametric surface from 
a discrete triangular mesh can offer interesting results in other 
computer graphics applications. We mention two possible 
applications of our continuous framework. 

5.1 Mesh refinement 
Another advantage of this continuous framework is the ability to 
express any geometric quantity like the curvature field at any 
point of the surface. Even if we did not exploit this aspect of our 
results yet, a continuous formulation of the curvature field seems 
to be a powerful tool to solve the mesh refinement problem. In 
fact, Gaussian and mean curvature are used as criteria for 
refinement [23][24]. We briefly remind some essential formulas 
to calculate those curvatures. 

  (5.1) 

Using (Eq. 5.1), we deduce the expression of first and second 
fundamental forms [25]: 

  (5.2) 

The Gaussian curvature K and the mean curvature H are expressed 
as follows: 

  (5.3) 

According to these formulas, we are able to retrieve the value of 
both curvatures at any point of the interpolating surface (e.g. 
Figure 6). 

5.2 Non-photorealistic rendering 
Elber proposes a method based on isoparametric lines drawing 
[26]. But this method is restricted to parametric surfaces like 
revolution surfaces. Another advantage of our method is that we 
are able to build a parametric surface and thus obtain 
isoparametric lines from a triangular mesh. 

 

   
(a) Initial triangular mesh (a) Mean curvature (b) Gaussian curvature 

Figure 6: .Continuous curvature fields (b) (c) extracted from a triangular mesh (a). 
 

    
(a) 1000 lines (b) 600 lines (c) 1000 lines (d) 600 lines 

Figure 7: Non-photorealistic rendering using isoparametric lines (a) (c) and principal curvature lines (b) (d). 
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Others techniques in NPR exploit the curvature field to draw lines 
following the principal curvature of the surface [27]. The quality 
of the resulting rendering depends on the geometric definition of 
the triangular mesh. With our method, since we have a continuous 
expression of an interpolating surface, we are able to draw high-
quality lines of curvature from any low-polygon mesh. 
The curvature k of a parametric surface is defined as a function 
dependant of the rate of change  for a displacement 
(du,dv) in the parametric domain (Eq. 5.4). 

  (5.4) 

The principal curvatures k1 and k2, that respectively represent the 
minimal and maximal curvatures, rely on the rates of change  
and , solutions of (Eq. 5.5). 

  (5.5) 

Before the rendering stage, we calculate random seed points in the 
parametric domain. From these seed points, we generate 
isoparametric lines (aligned with the u,v axis) or curvature lines 
oriented in the principle curvatures directions (e.g. Figure 7). 

6. CONCLUSION 

In this paper, we presented a new method to retrieve a smooth 
parametric surface from a discrete triangular mesh. In the 
biomechanics area, this work is another step further towards a 
physically-based model of the knee joint. From discrete data 
coming from acquisition devices, we are now able to build a 
continuous geometric description of the surface of tibia and femur 
which is compatible with our simulation framework. The next 
important stage consists in integrating contact constraints based 
on free variables in our physic engine in order to calculate the 
evolution of our knee joint model during the flexion movement. 
First, we want to compare our future results with experimental 
values to validate our approach. Then, we will try to identify the 
actual degrees of freedom of this constrained system in order to 
manage fewer unknowns. 
We also mentioned other possible applications of our method. In 
order to confirm our conviction that this new scheme is an 
interesting and original tool for mesh refinement, we would like to 
get further by comparing the classical discrete approach and the 
continuous one that we suggest. Our first steps in the non-
photorealistic area are also encouraging. The first results based on 
isoparametric and principal curvature lines invite us to explore 
this field deeper. 
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