J. R. Riordan, J. M. Rommens, and B. Kerem, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, vol.245, issue.4925, pp.1066-73, 1437.

D. A. Stoltz, D. K. Meyerholz, and M. J. Welsh, Origins of cystic fibrosis lung disease, N Engl J Med, vol.372, pp.351-62, 2015.

J. Jacquot, M. Delion, and S. Gangloff, Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies, Osteoporos Int, vol.27, pp.1401-1413, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01221835

B. J. Plant, C. H. Goss, and W. D. Plant, Management of comorbidities in older patients with cystic fibrosis, Lancet Respir Med, vol.1, pp.164-74, 2013.

M. S. Putman, C. E. Milliren, and N. Derrico, Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis, J Clin Endocrinol Metab, vol.99, pp.3399-407, 2014.

R. M. Aris, P. A. Merkel, and L. K. Bachrach, Guide to bone health and disease in cystic fibrosis, J Clin Endocrinol Metab, vol.90, pp.1888-96, 2005.

I. Sermet-gaudelus, M. Delion, and I. Durieu, Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation, J Cyst Fibros, vol.15, pp.67-76, 2016.

A. Kelly, J. Schall, and V. A. Stallings, Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis, Bone, vol.90, pp.7-14, 2016.

H. M. Buntain, R. M. Greer, and P. J. Schluter, Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study, Thorax, vol.59, pp.149-55, 2004.

J. Paccou, N. Zeboulon, and C. Combescure, The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis, Calcif Tissue Int, vol.86, pp.1-7, 2010.

I. Sermet-gaudelus, M. Castanet, and G. Retsch-bogart, Update on cystic fibrosis-related bone disease: a special focus on children, Paediatr Respir Rev, vol.10, pp.134-176, 2009.

R. M. Aris, J. B. Renner, and A. D. Winders, Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis, Ann Intern Med, vol.128, pp.186-93, 1998.

H. M. Buntain, P. J. Schluter, and S. C. Bell, Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis, Thorax, vol.61, pp.146-54, 2006.

A. A. Sparks, S. J. Mcgee, and C. E. Boone, Old' bones in young bodies: the tale of cystic fibrosis, Curr Opin Endocrinol Diabetes Obes, vol.16, pp.407-421, 2009.

M. Stahl, C. Holfelder, and C. Kneppo, Multiple prevalent fractures in relation to macroscopic bone architecture in patients with cystic fibrosis, J Cyst Fibros, 2016.

M. Bournez, G. Bellis, and F. Huet, Growth during puberty in cystic fibrosis: a retrospective evaluation of a French cohort, Arch Dis Child, vol.97, pp.714-734, 2012.

I. Sermet-gaudelus, J. C. Souberbielle, and J. C. Ruiz, Low bone mineral density in young children with cystic fibrosis, Am J Respir Crit Care Med, vol.175, pp.951-958, 2007.

R. M. Zebaze, A. Ghasem-zadeh, and A. Bohte, Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study, Lancet, vol.375, pp.1729-1765, 2010.

R. Baron and M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments, Nat Med, vol.19, pp.179-92, 2013.

M. Delion, J. Braux, and M. L. Jourdain, Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis, J Pathol, vol.240, pp.50-60, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01399007

F. Velard, M. L. Jourdain, and D. Abdallah, Overexpression of RANK and M-CSFR in Monocytes of G551D-Bearing patients with cystic fibrosis, Am J Respir Crit Care Med, vol.198, pp.968-70, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02163907

D. K. Meyerholz, Lessons learned from the cystic fibrosis pig, Theriogenology, vol.86, pp.427-459, 2016.

D. K. Meyerholz, D. A. Stoltz, and E. Namati, Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children, Am J Respir Crit Care Med, vol.182, pp.1251-61, 2010.

A. Guillon, C. Chevaleyre, and C. Barc, Computed tomography (CT) scanning facilitates early identification of neonatal cystic fibrosis piglets, PLoS ONE, vol.10, p.143459, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594228

N. Klymiuk, L. Mundhenk, and K. Kraehe, Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis, J Mol Med, vol.90, pp.597-608, 2012.

C. S. Rogers, D. A. Stoltz, and D. K. Meyerholz, Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs, Science, vol.321, pp.1837-1878, 2008.

G. M. Campbell and A. Sophocleous, Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies, Bonekey Rep, vol.3, p.564, 2014.

G. S. Mandair and M. D. Morris, Contributions of Raman spectroscopy to the understanding of bone strength, Bonekey Rep, vol.4, p.620, 2015.

M. Goldberg and A. L. Boskey, Lipids and biomineralizations, Prog Histochem Cytochem, vol.31, pp.1-187, 1996.

O. Akkus, A. Polyakova-akkus, and F. Adar, Aging of microstructural compartments in human compact bone, J Bone Miner Res, vol.18, pp.1012-1031, 2003.

C. S. Haworth, A. J. Freemont, and A. K. Webb, Hip fracture and bone histomorphometry in a young adult with cystic fibrosis, Eur Respir J, vol.14, pp.478-487, 1999.

M. Stahl, C. Holfelder, and C. Kneppo, Multiple prevalent fractures in relation to macroscopic bone architecture in patients with cystic fibrosis, J Cyst Fibros, vol.17, pp.114-134, 2018.

C. E. O'brien, G. Com, and J. Fowlkes, Peripheral quantitative computed tomography detects differences at the radius in prepubertal children with cystic fibrosis compared to healthy controls, PLoS ONE, vol.13, p.191013, 2018.

A. Kelly, J. I. Schall, and V. A. Stallings, Deficits in bone mineral content in children and adolescents with cystic fibrosis are related to height deficits, J Clin Densitom, vol.11, pp.581-590, 2008.

K. K. Nishiyama, S. Agarwal, and A. Kepley, Adults with cystic fibrosis have deficits in bone structure and strength at the distal tibia despite similar size and measuring standard and relative sites, Bone, vol.107, pp.181-188, 2018.

D. A. Stoltz, D. K. Meyerholz, and A. A. Pezzulo, Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth, Sci Transl Med, vol.2, pp.29-31, 2010.

M. P. Rogan, L. R. Reznikov, and A. A. Pezzulo, Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth, Proc Natl Acad Sci U S A, vol.107, pp.20571-20576, 2010.

A. Carriero, M. Doube, and M. Vogt, Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility, Bone, vol.61, pp.116-140, 2014.

A. Carriero, E. A. Zimmermann, and A. Paluszny, How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone, J Bone Miner Res, vol.29, pp.1392-401, 2014.

R. Shigdel, M. Osima, and L. A. Ahmed, Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures, Bone, vol.81, pp.1-6, 2015.

F. Dif, C. Marty, and C. Baudoin, Severe osteopenia in CFTR-null mice, Bone, vol.35, pp.595-603, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00181103

L. Henaff, C. Gimenez, A. Hay, and E. , The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation, Am J Pathol, vol.180, pp.2068-75, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00846637

J. Paradis, M. Wilke, and C. K. Haston, Osteopenia in Cftr-deltaF508 mice, J Cyst Fibros, vol.9, pp.239-284, 2011.

L. A. Rosenberg, M. D. Schluchter, and A. F. Parlow, Mouse as a model of growth retardation in cystic fibrosis, Pediatr Res, vol.59, pp.191-196, 2006.

F. Velard, M. Delion, and F. Lemaire, Cystic fibrosis bone disease: is the CFTR corrector C18 an option for therapy?, Eur Respir J, vol.45, pp.845-853, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02014021

M. S. Stalvey, K. L. Clines, and V. Havasi, Osteoblast cftr inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease, PLoS ONE, vol.8, p.80098, 2013.

M. S. Stalvey, V. Havasi, and K. L. Tuggle, Reduced bone length, growth plate thickness, bone content, and IGF-I as a model for poor growth in the CFTR-deficient rat, PLoS ONE, vol.12, p.188497, 2017.

L. Henaff, C. Hay, E. Velard, and F. , Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis, Am J Pathol, vol.184, pp.1132-1173, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00994801

K. A. Maupin, C. J. Droscha, and B. O. Williams, A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/beta-catenin signaling in humans and mice, Bone Res, vol.1, pp.27-71, 2013.

S. L. Croker, W. Reed, and D. Donlon, Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa, Forensic Sci Int, vol.260, pp.1-104, 2016.

S. Pankow, C. Bamberger, and D. Calzolari, F508 CFTR interactome remodelling promotes rescue of cystic fibrosis, Nature, vol.528, pp.510-526, 2015.

H. Sun, Y. Wang, and J. Zhang, CFTR mutation enhances dishevelled degradation and results in impairment of Wnt-dependent hematopoiesis, Cell Death Dis, vol.9, p.275, 2018.

L. Henaff, C. Mansouri, R. Modrowski, and D. , Increased NF-kappaB activity and decreased Wnt/beta-Catenin signaling mediate reduced osteoblast differentiation and function in Deltaf508 cystic fibrosis transmembrane conductance regulator (CFTR) mice, J Biol Chem, vol.290, pp.18009-18026, 2015.

S. Moverare-skrtic, P. Henning, and X. Liu, Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures, Nat Med, vol.20, pp.1279-88, 2014.