F. Finotello, D. Camillo, and B. , Measuring differential gene expression with RNAseq: challenges and strategies for data analysis, Briefings Functional Genomics, vol.14, issue.2, pp.130-172, 2015.

J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays, Genome res, vol.18, issue.9, pp.1509-1526, 2008.

A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-cabrero, A. Cervera et al., A survey of best practices for RNA-seq data analysis, Genome Biol, vol.17, p.13, 2016.

K. E. Hayer, A. Pizarro, N. F. Lahens, J. B. Hogenesch, and G. R. Grant, Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data, Bioinformatics, vol.31, issue.24, pp.3938-3983, 2015.

N. F. Lahens, I. H. Kavakli, R. Zhang, K. Hayer, M. B. Black et al., IVT-seq reveals extreme bias in RNA sequencing, Genome Biol, vol.15, issue.6, p.86, 2014.

W. R. Swindell, X. Xing, J. J. Voorhees, J. T. Elder, A. Johnston et al., Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome, Physiol Genomics, vol.46, issue.15, pp.533-579, 2014.

Y. Liu, J. F. Ferguson, C. Xue, I. M. Silverman, B. Gregory et al., Evaluating the impact of sequencing depth on transcriptome profiling in human adipose, PLoS One, vol.8, issue.6, p.66883, 2013.

P. Cui, Q. Lin, F. Ding, C. Xin, W. Gong et al., A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing, Genomics, vol.96, issue.5, pp.259-65, 2010.

F. Finotello, E. Lavezzo, L. Bianco, L. Barzon, P. Mazzon et al., Reducing bias in RNA sequencing data: a novel approach to compute counts, BMC Bioinformatics, vol.15, issue.1, p.7, 2014.

M. D. Young, M. J. Wakefield, G. K. Smyth, and A. Oshlack, Gene ontology analysis for RNA-seq: accounting for selection bias, Genome Biol, vol.11, issue.2, p.14, 2010.

J. A. Timmons, K. J. Szkop, and I. J. Gallagher, Multiple sources of bias confound functional enrichment analysis of global -omics data, Genome Biol, vol.16, p.186, 2015.

A. Git, H. Dvinge, M. Salmon-divon, M. Osborne, C. Kutter et al., Systematic comparison of microarray profiling, real-time PCR, and nextgeneration sequencing technologies for measuring differential microRNA expression, RNA, vol.16, issue.5, pp.991-1006, 2010.

D. Sims, I. Sudbery, N. E. Ilott, A. Heger, and C. P. Ponting, Sequencing depth and coverage: key considerations in genomic analyses, Nat rev Genet, vol.15, issue.2, pp.121-153, 2014.

A. A. Dillman, D. N. Hauser, J. R. Gibbs, M. A. Nalls, M. K. Mccoy et al., mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex, Nat Neurosci, vol.16, issue.4, pp.499-506, 2013.

J. R. Perkins, A. Antunes-martins, M. Calvo, J. Grist, W. Rust et al., A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat, Mol Pain, vol.10, p.7, 2014.

X. Xu, Y. Zhang, J. Williams, E. Antoniou, W. R. Mccombie et al., Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets, BMC Bioinformatics, vol.14, issue.9, p.1, 2013.

S. Zhao, W. P. Fung-leung, A. Bittner, K. Ngo, and X. Liu, Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells, PLoS One, vol.9, issue.1, p.78644, 2014.

M. Suarez-farinas, B. Ungar, D. A. Correa, J. Rosa, D. A. Ewald et al., RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications, J Allergy Clin Immunol, vol.135, issue.5, pp.1218-1245, 2015.

C. Wang, B. Gong, P. R. Bushel, J. Thierry-mieg, D. Thierry-mieg et al., The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance, Nat Biotechnol, vol.32, issue.9, pp.926-958, 2014.

I. Nookaew, M. Papini, N. Pornputtapong, G. Scalcinati, L. Fagerberg et al., A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae, Nucleic Acids res, vol.40, issue.20, pp.10084-97, 2012.

Y. Guo, Q. Sheng, J. Li, F. Ye, D. C. Samuels et al., Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data, PLoS One, vol.8, issue.8, p.71462, 2013.

W. Xu, J. Seok, M. N. Mindrinos, A. C. Schweitzer, H. Jiang et al., Human transcriptome array for high-throughput clinical studies, Proc Natl Acad Sci U S a, vol.108, issue.9, pp.3707-3719, 2011.

J. Seok, W. Xu, R. W. Davis, and X. W. , RASA: robust alternative splicing analysis for human Transcriptome arrays, Scientific Reports, vol.5, p.11917, 2015.

J. Yu, P. F. Cliften, T. I. Juehne, T. M. Sinnwell, C. S. Sawyer et al., Multiplatform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology, BMC Genomics, vol.16, p.710, 2015.

R. A. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. D. Antonellis, K. J. Scherf et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-64, 2003.

R. Team, R: language and environmnent for statistical computing. R Foundation for Statistical Computung, 2005.

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, issue.9, pp.1105-1116, 2009.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, issue.3, p.25, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., Genome Project Data Processing S.The sequence alignment/ map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a python framework to work with highthroughput sequencing data, Bioinformatics, vol.31, issue.2, pp.166-175, 2015.

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, issue.7, pp.923-953, 2014.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-179, 2010.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol, vol.11, issue.3, p.25, 2010.

C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn et al., Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat Biotechnol, vol.31, issue.1, pp.46-53, 2013.

M. A. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis, Brief Bioinform, vol.14, issue.6, pp.671-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782486

S. Anders, A. Reyes, and W. Huber, Detecting differential usage of exons from RNA-seq data, Genome res, vol.22, issue.10, pp.2008-2025, 2012.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, issue.10, p.106, 2010.

C. W. Law, Y. Chen, W. Shi, and G. K. Smyth, voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biol, vol.15, issue.2, p.29, 2014.

J. Li, P. R. Bushel, T. Chu, and R. Wolfinger, Principal Variance Components Analysis: Estimating Batch Effects in Microarray Gene Expression Data, in Batch Effects and Noise in Microarray Experiments: Sources and Solutions, 2009.

G. K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology, vol.3, pp.1-25, 2004.

N. J. Schurch, P. Schofield, M. Gierlinski, C. Cole, A. Sherstnev et al., How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?, RNA, vol.22, issue.6, pp.839-51, 2016.

A. Favorov, L. Mularoni, L. M. Cope, Y. Medvedeva, A. A. Mironov et al., Exploring massive, genome scale datasets with the GenometriCorr package, PLoS Comput Biol, vol.8, issue.5, p.1002529, 2012.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the unification of biology. The Gene ontology consortium, Nat Genet, vol.25, issue.1, pp.25-34, 2000.

F. Supek, M. Bosnjak, N. Skunca, and T. Smuc, REVIGO summarizes and visualizes long lists of gene ontology terms, PLoS One, vol.6, issue.7, p.21800, 2011.

G. Yu and Q. Y. He, ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization, Mol BioSyst, vol.12, issue.2, pp.477-486, 2016.

, Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers, Nature, vol.489, issue.7417, pp.519-544, 2012.

N. Raghavachari, J. Barb, Y. Yang, P. Liu, K. Woodhouse et al., A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease, BMC med Genet, vol.5, p.28, 2012.

S. Li, P. P. Labaj, P. Zumbo, P. Sykacek, W. Shi et al., Detecting and correcting systematic variation in large-scale RNA sequencing data, Nat Biotechnol, vol.32, issue.9, pp.888-95, 2014.

Y. Zhang, O. S. Akintola, K. J. Liu, and B. Sun, Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis, Gene, vol.575, issue.2, pp.559-66, 2016.

N. R. Hackett, M. W. Butler, R. Shaykhiev, J. Salit, L. Omberg et al., RNA-Seq quantification of the human small airway epithelium transcriptome, BMC Genomics, vol.13, p.82, 2012.

D. Ramskold, E. T. Wang, C. B. Burge, and R. Sandberg, An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data, PLoS Comput Biol, vol.5, issue.12, p.1000598, 2009.

L. M. Mcintyre, K. K. Lopiano, A. M. Morse, V. Amin, A. L. Oberg et al., RNA-seq: technical variability and sampling, BMC Genomics, vol.12, p.293, 2011.

S. Consortium, A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium, Nat Biotechnol, vol.32, issue.9, pp.903-917, 2014.

D. Leshkowitz, E. Feldmesser, G. Friedlander, J. G. Ainbinder, E. Parmet et al., Using synthetic mouse spike-in transcripts to evaluate RNA-Seq analysis tools, PLoS One, vol.11, issue.4, p.153782, 2016.

S. Zhao, L. Xi, and B. Zhang, Union Exon based approach for RNA-Seq Gene quantification: to be or not to be?, PLoS One, vol.10, issue.11, p.141910, 2015.

S. W. Hartley and J. C. Mullikin, Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq, Nucleic Acids res, vol.44, issue.15, p.127, 2016.

M. Lo-iacono, M. V. Saviozzi, S. Ceppi, P. Bracco, E. Papotti et al., p63 and p73 isoform expression in non-small cell lung cancer and corresponding morphological normal lung tissue, J Thorac Oncol, vol.6, issue.3, pp.473-81, 2011.

S. J. Wang, G. Wong, A. M. De-heer, W. Xia, and L. Y. Bourguignon, CD44 variant isoforms in head and neck squamous cell carcinoma progression, Laryngoscope, vol.119, issue.8, pp.1518-1548, 2009.

W. H. Yan, D. Liu, H. Y. Lu, Y. Y. Li, X. Zhang et al., Significance of tumour cell HLA-G5/ ?G6 isoform expression in discrimination for adenocarcinoma from squamous cell carcinoma in lung cancer patients, J Cell Mol med, vol.19, issue.4, pp.778-85, 2015.

L. Morra, M. Rechsteiner, S. Casagrande, V. Teichman, A. Schraml et al., Characterization of periostin isoform pattern in non-small cell lung cancer, Lung Cancer, vol.76, issue.2, pp.183-90, 2012.

Y. Ito, S. C. Bae, and L. S. Chuang, The RUNX family: developmental regulators in cancer, Nat rev Cancer, vol.15, issue.2, pp.81-95, 2015.

M. Dapas, M. Kandpal, Y. Bi, and R. V. Davuluri, Comparative evaluation of isoformlevel gene expression estimation algorithms for RNA-seq and exon-array platforms, Brief Bioinform, vol.18, issue.2, pp.260-269, 2017.