S. S. Magill, J. R. Edwards, W. Bamberg, Z. G. Beldavs, G. Dumyati et al., Multistate point-prevalence survey of health care-associated infections, N. Engl. J. Med, vol.370, pp.1198-1208, 2014.

, European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals, ECDC, 2013.

A. D. Harris, E. N. Perencevich, J. K. Johnson, D. L. Paterson, J. G. Morris et al., Patient-to-patient transmission is important in extended-spectrum ?-lactamase-producing Klebsiella pneumoniae acquisition, Clin. Infect. Dis, vol.45, pp.1347-1350, 2007.

D. J. Weber, D. Anderson, and W. A. Rutala, The role of the surface environment in healthcare-associated infections, Curr. Opin. Infect. Dis, vol.26, pp.338-344, 2013.

M. K. Hayden, D. W. Blom, E. A. Lyle, C. G. Moore, and R. A. Weinstein, Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients' environment, Infect. Control Hosp. Epidemiol, vol.29, pp.149-154, 2008.

E. S. Mcbryde, L. C. Bradley, M. Whitby, and D. L. Mcelwain, An investigation of contact transmission of methicillin-resistant Staphylococcus aureus, J. Hosp. Infect, vol.58, pp.104-108, 2004.

D. De-la-rosa-zamboni, S. A. Ochoa, A. Laris-gonzález, A. Cruz-córdova, G. Escalona-venegas et al., Everybody hands-on to avoid ESKAPE: Effect of sustained hand hygiene compliance on healthcare-associated infections and multidrug resistance in a paediatric hospital, J. Med. Microbiol, vol.67, pp.1761-1771, 2018.

J. A. Otter, S. Yezli, J. A. Salkeld, and G. L. French, Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings, Am. J. Infect. Control, vol.41, pp.6-11, 2013.

T. Sexton, P. Clarke, E. O'neill, T. Dillane, and H. Humphreys, Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: Correlation with patient isolates and implications for hospital hygiene, J. Hosp. Infect, vol.62, pp.187-194, 2006.

B. G. Mitchell, S. J. Dancer, M. Anderson, and E. Dehn, Risk of organism acquisition from prior room occupants: A systematic review and meta-analysis, J. Hosp. Infect, vol.91, pp.211-217, 2015.

H. H. Attaway, S. Fairey, L. L. Steed, C. S. Salgado, H. T. Michels et al., Intrinsic bacterial burden associated with intensive care unit hospital beds: Effects of disinfection on population recovery and mitigation of potential infection risk, Am. J. Infect. Control, vol.40, pp.907-912, 2012.

A. Kramer, I. Schwebke, and G. Kampf, How long do nosocomial pathogens persist on inanimate surfaces? A systematic review, BMC Infect. Dis, vol.6, 2006.

K. J. Hardy, S. Gossain, N. Henderson, C. Drugan, B. A. Oppenheim et al., Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour, J. Hosp. Infect, vol.66, pp.360-368, 2007.

J. L. Clement, P. S. Jarrett, and . Silver, Met. Based Drugs, vol.1, pp.467-482, 1994.

M. Cho, H. Chung, W. Choi, and J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO 2 photocatalytic disinfection, Water Res, vol.38, pp.1069-1077, 2004.

M. Cho, H. Chung, W. Choi, and J. Yoon, Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO 2 photocatalytic disinfection, Appl. Environ. Microb, vol.71, pp.270-275, 2005.

Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima, Photocatalytic bactericidal effect of TiO 2 thin films: Dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. Chem, vol.106, pp.51-56, 1997.

Y. J. Oh, M. Hubauer-brenner, and P. Hinetrdorfer, Influence of surface morphology on the antimicrobial effect of transistion metal oxides in polymer surface, J. Nanosci. Nanotechnol, vol.15, pp.7853-7859, 2015.

K. Sunada, M. Minoshima, and K. Hashimoto, Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds, J. Hazard. Mater, vol.235, pp.265-270, 2012.

S. Mehtar, I. Wiid, and S. D. Todorov, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study, J. Hosp. Infect, vol.68, pp.45-51, 2008.

D. Quaranta, T. Krans, C. E. Santo, C. G. Elowsky, D. W. Domaille et al., Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces, Appl. Environ. Microb, vol.77, pp.416-426, 2011.

C. E. Santo, E. W. Lam, C. G. Elowsky, D. Quaranta, D. W. Domaille et al., Bacterial killing by dry metallic copper surfaces, Appl. Environ. Microb, vol.77, pp.794-802, 2011.

S. L. Warnes, E. N. Summersgill, and C. W. Keevil, Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity, Appl. Environ. Microb, vol.81, pp.1085-1091, 2015.

S. L. Warnes, Z. R. Little, and C. W. Keevil, Human coronavirus 229E remains infectious on common touch surface materials, MBio, vol.6, pp.1697-1712, 2015.

S. L. Warnes and C. W. Keevil, Inactivation of norovirus on dry copper alloy surfaces, PLoS ONE, vol.8, 2013.

L. Weaver, J. O. Noyce, H. T. Michels, and C. W. Keevil, Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus, J. Appl. Microbiol, vol.109, pp.2200-2205, 2010.

L. Weaver, H. T. Michels, and C. W. Keevil, Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene, J. Hosp. Infect, vol.68, pp.145-151, 2008.

L. J. Wheeldon, T. Worthington, P. A. Lambert, A. C. Hilton, C. J. Lowden et al., Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: The germination theory, J. Antimicrob. Chemother, vol.62, pp.522-525, 2008.

G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microb, vol.77, pp.1541-1547, 2011.

S. Liu and X. X. Zhang, Small colony variants are more susceptible to copper-mediated contact killing for Pseudomonas aeruginosa and Staphylococcus aureus, J. Med. Microbiol, vol.65, pp.1143-1151, 2016.

S. Mathews, M. Hans, F. Mücklich, and M. Solioz, Contact killing of bacteria on copper is suppressed if bacteria-metal contact is prevented and is induced on iron by copper ions, Appl. Environ. Microb, 2013.

, Société Française de Microbiologie. Staphylococcus spp.; CASFM/EUCAST

. Société-française-de-microbiologie, , pp.52-60, 2017.

A. N. Neely, A survey of gram-negative bacteria survival on hospital fabrics and plastics, J. Burn Care Rehabil, vol.21, pp.523-527, 2000.

A. L. Casey, D. Adams, T. J. Karpanen, P. A. Lambert, B. D. Cookson et al., Role of copper in reducing hospital environment contamination, J. Hosp. Infect, vol.74, pp.72-77, 2010.

S. M. Hinsa-leasure, Q. Nartey, J. Vaverka, and M. G. Schmidt, Copper alloy surfaces sustain terminal cleaning levels in a rural hospital, Am. J. Infect. Control, vol.44, pp.195-203, 2016.

Z. Ibrahim, A. J. Petrusan, P. Hooke, and S. M. Hinsa-leasure, Reduction of bacterial burden by copper alloys on high-touch athletic center surfaces, Am. J. Infect. Control, vol.46, pp.197-201, 2018.

J. Inkinen, R. Mäkinen, M. M. Keinänen-toivola, K. Nordström, and M. Ahonen, Copper as an antibacterial material in different facilities, Lett. Appl. Microbiol, vol.64, pp.19-26, 2017.

T. J. Karpanen, A. L. Casey, P. A. Lambert, B. D. Cookson, P. Nightingale et al., The antimicrobial efficacy of copper alloy furnishing in the clinical environment: A crossover study, Infect. Control Hosp. Epidemiol, vol.33, pp.3-9, 2012.

A. Mikolay, S. Huggett, L. Tikana, G. Grass, J. Braun et al., Survival of bacteria on metallic copper surfaces in a hospital trial, Appl. Microbiol. Biotechnol, vol.87, pp.1875-1879, 2010.

S. Rai, B. E. Hirsch, H. H. Attaway, R. Nadan, S. Fairey et al., Evaluation of the antimicrobial properties of copper surfaces in an outpatient infectious disease practice, Infect. Control Hosp. Epidemiol, vol.33, pp.200-201, 2012.

M. G. Schmidt, B. Von-dessauer, C. Benavente, C. Benavente, D. Benadof et al., Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit, Am. J. Infect. Control, vol.44, pp.203-209, 2016.

M. G. Schmidt, H. H. Attaway, P. A. Sharpe, J. John, . Jr et al., Sustained reduction of microbial burden on common hospital surfaces through introduction of copper, J. Clin. Microbiol, vol.50, pp.2217-2223, 2012.

M. Souli, A. Antoniadou, I. Katsarolis, I. Mavrou, E. Paramythiotou et al., Reduction of environmental contamination with multidrug-resistant bacteria by copper-alloy coating of surfaces in a highly endemic setting, Infect. Control Hosp. Epidemiol, vol.38, pp.765-771, 2017.

P. Airey and J. Verran, Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning, J. Hosp. Infect, vol.67, pp.271-277, 2007.

A. Savey, A. Machut, and C. Barreto, Enquête Nationale de Prévalence des infections associées aux soins et des traitements antibiotiques en Établissements d'hébergement pour personnes âgées dépendantes (Ehpad); Résultats nationaux 2016, p.67, 2017.

A. Rampling, S. Wiseman, L. Davis, A. P. Hyett, A. N. Walbridge et al., Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus aureus, J. Hosp. Infect, vol.49, pp.109-116, 2001.