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ABSTRACT

3D datasets production capacity in bioimaging has widely
evolved in recent years. This trend also results in a growing de-
mand of more suitable display procedures. In this paper, we propose
a new virtual microscopy approach aiming at recovering the third
dimension, in order to get closer to analogue microscopes. For
this purpose, we rely on multi-view autosteroscopic display with
off-centered parallel virtual cameras to ensure 3D perception for a
more realistic user experience. Also, this approach handles very
large volume data size thanks to an out-of-core data management
structure which offers interactive navigation by using complete GPU
algorithms.

Index Terms— Virtual microscopy, 3D display, GPU rendering.

1. INTRODUCTION

Nowadays, the volume of 3D datasets tends to increase in nearly
all application fields. Such an observation is especially true with
the current image acquisition technologies used in biology [1]. De-
spite the large amount of generated data, efficient visualization tools
are needed to improve three-dimensional structures understanding.
Among the possible methods available to overcome this problem,
virtual microscope is a tool of choice in the biological field.

A virtual microscope could be defined as a system simulating the
observation of microscopic samples on a computer. It aims to mimic
a conventional microscope, enabling observation, navigation [2, 3],
and annotation of virtual slides [4]. The latest virtual microscopy
developments [5, 6, 7] have addressed the issue of huge data size.
However, as of today, another crucial issue has not been considered:
users were frustrated by the availability of only one single plain fo-
cus, and the induced loss of three dimensional perception [8]. To
improve the user experience quality and to recover the depth per-
ception, we propose to use autostereoscopic display [9] for the 3D
visualization [10, 11]. To complete the system, we allow the users to
freely navigate and zoom in or zoom out in the whole volume rather
than in a single slide.

To address this problem, we rely on an out-of-core data manage-
ment architecture to handle the large volume of data. In most cases,
a resolution level pyramid is created where each level is subdivided
into data blocks (bricks). Conversely to tree based structures (like
Gigavoxels [12]) that can lead to deep tree traversal to access data,
we focus our work on the method proposed by Hadwiger et al. [13].
They provide a virtual memory approach with a multi-level, multi-
resolution page table mechanism. Validated with a concrete applica-
tion with interactive exploration of petascale volumes by Beyer et al.
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[14], this structure offers constant access time between all resolution
levels.

Inspired by this out-of-core method, we propose a visualization-
driven approach which generates stereoscopic multi-view frames on
GPU in interactive time. The aim is to recover the depth perception
in a most realistic way with the use of off-centered parallel virtual
cameras focused on a shared point of interest.

A brief overview of the system and data access is provided in
section 2. After a detailed description of our virtual microscope
approach in section 3), experimental results are presented and dis-
cussed in section 4. Finally, section 5 provides concluding remarks
and perspective works.

2. SYSTEM OVERVIEW

The proposed system fully runs on GPUs [15] and is composed of
the virtual microscope and the out-of-core data management. The
whole pipeline is called visualization-driven. According to the cam-
era position given by the virtual microscope, data is accessed us-
ing the out-of-core data manager. We base our approach on the one
proposed by Hadwiger et al. [13]. The data is represented with a
multi-resolution bricked pyramid and addressed using a virtualized
page table hierarchy. When a chunck of data is missing in the hi-
erarchy, a brick request is raised and handled by the CPU. Bricks
are then loaded from its own cache or a mass storage to the GPU.
This method allows to get the data on-demand and to address very
large volume of data. The whole process is triggered by the virtual
microscope depending on the required data.

Data addressing. The voxel access is performed using a virtual
volume representation. A pair [l, p] is composed to get through the
virtualization hierarchy. The level of detail is determined by l while
p ∈ [0, 1)3 is the 3D normalized coordinate vector of the requested
voxel position. Using normalized coordinate vector allows the use
of the hardware trilinear interpolation. Finally, the pair [l, p] is sent
to the GPU out-of-core memory manager which sends back three
possible answers: the requested voxel itself, an empty status if the
brick contains no values, or unmapped, warning the system that the
brick is not in cache and needs to be fetched.

3. VIRTUAL MICROSCOPY

The notion of depth perception is usually lost in conventional 2D
virtual microscopy. In this work, we provide an approach to recover
this perception somehow available with genuine microscopy of thick
slices. To achieve this goal, we use multi-view autostereoscopic dis-
plays. Such displays rely on N multi-view images shot according
to a specific geometry implying off-centered parallel cameras. The
number of views N is directly dependent on the display. In our ap-
plication, the multi-view image generation follows three steps: i)



(a) (b)

Fig. 1. Representation of the top and side views of the virtual scene and camera geometry. (a) top view, (b) left side view (with the
top view as reference). For both views, the volume is represented on the top and the camera focal points Fi and sensors are at the bottom.
Off-centered parallel cameras are used with a common point of interest I . I ′i is the projection of I on the view i given the focal point Fi. The
line Fi, I is the line of view i implying I ′i ∈ (I ′iI).

projecting the volume slices on theN views according to the specific
multi-camera geometry, ii) applying an alpha blending algorithm in
the associated view for each slice projection, and iii) compositing
the N views, i.e. creation of the final multi-view image.

The specific geometry implies that N aligned cameras with par-
allel optical axes and camera line of view converge in a single 3D
point (I in Fig. 1). We chose to align the N cameras along the
volume x-axis for two reasons: to get volume slices parallel to the
sensors and the views, and to get the view lines parallel to the camera
baseline, therefore parallel to the volume x-axis. The convergence
point I must be displayed at the center of the display. The views
are captured in a rectangular region of interest (ROI) of the sensor
which is centered on the line of view intersecting each point I ′i (Fig.
1). This implies that slices are projected on views according to a ROI
which is also centered on the camera line of view. Thus, projecting a
given volume slice on a view relies on identifying the involved slice
ROI projection on the view ROI.

3.1. Views generation

The first step of the pipeline begins with the determination of all the
parameters required to project the volume slices on the views. In or-
der to meet autostereoscopic multi-view requirements, each virtual
camera must aim at a shared point of interest I whose projections are
centered in each of the N view (Fig. 1), numbered i ∈ [0, N − 1].
I ′i is I projection (Fig. 2). As shown on figure 2, a view i has a
W × H size, implying that the screen space coordinates of I ′i are
always [H

2
, W

2
]. Considering that a slice s is projected on a view

i, each pixel coordinates of this view are [Usi, Vsi]. Identification
of the slice s ROI projected on the view i relies on the geometric

Fig. 2. Screen space representation. A view is considered as a
rectangular ROI in the camera sensor. On this figure, the view has a
W ×H size (display size), and is centered at I ′i around the camera
line of view. M ′

si is the projection of the point Ms on the view at
coordinates [Usi, Vsi] where i refers to the i-th view and s the slice
in which Ms lies.

relation between the space coordinates of voxels Ms and the pixel
coordinates [Usi, Vsi] of their projection M ′

si in the view i. Let con-
sider the shooting geometry is set: I , Fi are chosen as well as the
focal length f (Fig. 1). The calculation of the relation between Ms

spacial coordinates and M ′
si then rely on f and the coordinates of

I = [Ix, Iy, Iz] and Fi = [Fix, Fiy, Fiz]. Because the point I is
not necessarily aligned on the camera i optical axis, its projection I ′i
is shifted from Pi the orthographic projection of Fi. These shifts,



called βi for x-axis and δi for y-axis. In a first step, they allow to
calculate the I ′i = [Iix + βi, Iiy + δi,−d− f ] coordinates knowing
that I ′iFi‖FiI:

[βi, δi] =

{
(Fix − Ix)× f

d+Iz

(Fiy − Iy)× f
d+Iz

(1)

where d stands for the camera – volume distance on z-axis and f
for the focal length. Because [βi, δi] are related to the view i and its
focal point, they need to be calculated only once for a view.

Once this step is done, the projection M ′
si of Ms = [x, y, zs]

on the view i can be computed. This new step consists of finding
M ′

si pixel coordinates. Starting with M ′
si = [Fix + αi(x), Fiy +

γi(y),−d − f ] space coordinates and knowing that M ′
siFi‖FiMs,

[αi(x), γi(y)] are calculated as follow:

[αi(x), γi(y)] =

{
(Fix − x)× f

d+zs

(Fiy − y)× f
d+zs

(2)

Finally, the pixel coordinates [Usi, Vsi] of M ′
si are recovered.

Based on figure 2, [Usi, Vsi] are expressed as follow:

[Usi, Vsi] =

{
W
2

+ βi − αi(x)
H
2

+ δi − γi(y)
(3)

Equations (3) express the M ′
si pixel coordinates from Ms space

coordinates. Reverting those equations will result in expressing the
space coordinates [x, y, zs] in slice s of any pixel of the view i:

[x, y] =

{
Fix − (W

2
+ βi − Usi)× d+zs

f

Fiy − (H
2

+ δi − Vsi)× d+zs
f

(4)

The focal point Fi and [βi, δi] are known and have been cal-
culated previously. The sizes W and H are related to the display
definition. Note that zs is the z-axis coordinate of the slice s pro-
jected on the view i. Once [x, y] are calculated, their values must
be normalized to be used in the addressing structure (see Sec. 2).
Thanks to GPU threading, and texture handling, equations (4) are
used to compute each pixel [Usi, Vsi] ∈ [0,W ) × [0, H) in a ded-
icated thread by alpha blending (see Sec. 3.2) of its previous value
and the 3D interpolation of slice s at [x, y].

Multi-camera geometry. A shooting geometry is required to
fit the display geometry and to ensure non-distorted 3D perception.
This is the reason why off-centered parallel geometry is needed.
Moreover, non-distorted 3D perception implies homothetic connec-
tion display and camera geometry. The display geometry implies
N off-centered (or favorite) user eyes positions Oi lying in front
of the screen. They are aligned with the display lines at a distance
D from the screen. Those eyes positions are spread by the average
human binocular distance (b = 65 mm). The display and camera ge-
ometries are compared according to the eyes Oi – centre of display
C, and the focal points Fi – convergence point I relative positions.
Non-distorted 3D perception requires OiC‖FiI with i ∈ [0, N).
Knowing the display geometry (Fig. 3):

Oi =

(i− N
2

)b
0
0

 and C =

 0
Cy

D


Assuming the convergence point I and the focal length f are

chosen by the user, this leads to:

[Fix, Fiy] =

{
Ix + (i− 2

N
)b× d+Iz

D

Iy − Cy × d+Iz
D

Fig. 3. User favorite position in front of the display. The Oi are
the focal points of the user favorite eyes positions. These points are
aligned on the x-axis, shifted by the average binocular distance b
(65 mm). The display is positioned at a distance D from the user.

x x x+ + =
filter 0 filter 1 filter 2image 0 image 1 image 2

Fig. 4. Multiplexing filters application. [16]

Slice selection. The most important slice is the one containing
the point of interest. Consequently, the slice Iz is always projected
on the first view. However, the slices projected on the other views
need to be determined. In order to recover the depth perception, we
use the slice behind Iz . Determining which slice to consider can be
done using a parameter ∆z . For a view i, the associated slice will
be s = Iz + i×∆z . The choice of ∆z value is at user’s discretion.
Nevertheless, the data characteristics need to be studied to select the
best value for ∆z (see Sec. 4).

3.2. Alpha generation

The alpha generation is performed using a two-step process. First,
the pixels of each view are assigned an alpha value. This step can
be compared to a standard classification where, for instance, four
classes could be used: background, interest tissues, non-interest tis-
sues, and artefacts. The user defines an alpha value for each class,
and each pixel will be assigned the apha value corresponding to its
closest class alpha value. What is noteworthy is that the choice of
the classification algorithm to use will have an impact on the result
quality, as well as on the computational time needed to classify all
pixels

Once the alpha values are set, an alpha blending process is per-
formed, consisting in applying a back-to-front alpha blending fol-
lowing the painter’s algorithm. This process determines the contri-
bution of the back views, according to a certain amount, in the front
views. The depth perception is therefore recreated.

3.3. Compositing

The compositing is the final step of the pipeline, providing a final
multi-view frame F. This frame is generated using the N pre-build
views Vi, and is composed by using filtering masks M on the views
(Fig. 4). These masks are binary filters (Mi = {0, 1}3 [Z2]), and
determine, for all views, which color components will contribute to
the final frame composition. This step can be expressed as Fc =∑

i V
i
c Mi

c where c ∈ {R,G,B}. The filtering masks mechanism
is dependent of the display. This process may differ, and take more
or less computing time, depending on the used hardware.



Fig. 5. Multi-view frame generated. Example resulting from the
histological volume.

4. RESULTS AND DISCUSSION

The experiments were made using three different datasets:

• (a) A 114 histological slices stack of a mouse brain with a
resolution of 64000× 50000 RGBA pixels (1.459 TB);

• (b) A 2160 × 2560 × 1072 volume with grayscale 16 bits
voxels (11 GB) of a primate hippocampus from a light sheet
microscope;

• (c) A 645 blockface slices stack of the mouse brain (a) with a
resolution of 823× 202 RGBA pixels (428 MB).

The dataset (a) is the proof of concept of our system (Fig. 5).
The dataset (b) demonstrates that our system can be applied to dif-
ferent modalities. Finally, the dataset (c) is used to compare the
result with the dataset (a), acknowledging the former has a strongest
anisotropy than the latter. The display used was a HD (16:10) au-
tosteroscopic 8-views display with a 1920 × 1200 viewport and re-
quiring a distance – display of 2 m. The same test scenario was
applied on the three datasets, and consists of a zoom-in, a pan nav-
igation, then a navigation in the stacks. Table 1 shows the average
time recorded to generate a complete multi-view frame.

(a) (b) (c)
Generate frame 11 12 7

Set alpha 8 5 8
Alpha blending 5 5 6

Compositing 5 5 5
Sum 29 27 26

Table 1. Average rendering time in milliseconds of a frame for three
different datasets.

Multi-view frame generation. The first noticeable fact is the
independence between the frame rendering time and the volume data
size or the acquisition modality. Considering the time allowed to
other required processes (out-of-core data management) the method
offers a real-time navigation with an average of 30 fps. In the pre-
sented test, the rendering pipeline was performed at each frame to
simulate the worst case scenario in which this needs to be done every
time. Nevertheless, in concrete situation, the whole pipeline should
be triggered only when a change is detected in the camera position.
The first step recorded is the volume projection on the views only.
The average time to generate the views was around 11-12 ms. The
dataset (c) took less time to project because of its size, as the vol-
ume did not fill entirely the views. In fact, on pixels in the outside

borders of the views, we try to project information that is outside the
volume. In that case, we are outside the bound of normalized vol-
ume sizes and there is no need to continue to process the projection;
therefore the frame are generated faster.

The set alpha step consists in computing the Euclidean distance
between the voxels and different clusters. In the tests, we used
five clusters computed beforehand using a k-means algorithm. The
choice in the classification algorithm is of importance: the computa-
tion runtime can affect the time to render a view, therefore the navi-
gation fluidity. The difference noticed in the results is related to the
data type differences between the volumes. While the dataset (b)
uses grayscale pixels, the others use RGBA pixels. Therefore, the
pixels assignment is performed faster on (b) than (a) and (c).

Depth perception. As stated in section 3.1, the value ∆z is
of importance in the proposed method, as a non optimal value may
induce an uncomfortable visualization. During the tests, we noticed
that the differences between two slices were small in the dataset (b).
The depth perception was recovered by using ∆z = 3. However, this
also underlines that visualizing a grayscale works better with high-
contrast or color data. An extra step may be required to colorize the
data via LUTs. The extreme case happened with the dataset (a). As
expected, the volume anisotropy was significant and required to use
a ∆z < 1. Depending on ∆z value, the number of slices the user
can see in a multi-view frame may be drastically reduced, however
the final result is softened. Having ∆ < 1 is possible because we
are addressing the data using normalized coordinates. The used out-
of-core data structure relies on the GPU texture memory and allows
trilinear interpolations. However, misusing this value may reduce
the depth effect and in turn make the approach irrelevant. Yet, the
data anisotropy is an important factor to consider when using this
approach.

Camera positioning. In the given approach, the views are posi-
tioned on the same plane as the slices. This could be improved using
an orbital camera. One could be able to analyse the volumes in a
different view angle. However, the data anisotropy would be a major
concern and would require a better alternative than simply using a
∆z parameter.

To test our method, an autostereoscopic display was used, where
the user has to move in front of the display to move inside the multi-
view frame. With current technologies, it could be interesting to use
the same approach on tablet devices, as it may be more convenient
for the user to move the device left and right than to move in front
of a screen. Finally, all tests were performed and assessed by the
authors. The method is ready for statistical studies with the end-
users, using lightsheet or histological datasets and using different
parameters.

5. CONCLUSION

We introduced a proof of concept to virtualize a microscope using
off-centered parallel cameras and an autostereoscopic display. With
the help of current GPUs, this approach allows the user to interac-
tively navigate through multi-resolution images. This allows data
visualization similar to an analogue microscope visualization by re-
covering the depth perception. Taking advantage of the out-of-core
data management, the proposed approach works independently of
the data size, from MB to several TB. In addition, the concept of-
fers a similar user experience accross different volume modalities,
without significant differences in rendering time. In the future, the
development of an approach offering the ability to use an orbital
cameras would be of great benefits to this method.



6. REFERENCES

[1] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg,
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