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ABSTRACT

Many stages of the industry workflow have been benefiting from
CAD software applications and real-time computer graphics for
decades allowing manufacturers to perform team project reviews
and assessments while decreasing the need for expensive physical
mockups. However, when it comes to the perceived quality of the
final product, more sophisticated physically based engines are often
preferred though involving huge computation times. In this context,
our work aims at reducing this gap by providing a predictive render-
ing solution leveraging the computing resources offered by modern
multi-GPU supercomputers. To that end, we propose a simple static
load balancing approach leveraging the stochastic nature of Monte
Carlo rendering. Our solution efficiently exploits the available com-
puting resources and addresses the industry collaboration needs by
providing a real-time multi-user web access to the virtual mockup.

Index Terms: Human-centered computing—Collaborative interac-
tion; Computer Graphics—Distributed/Network graphics; Computer
Graphics—Raytracing, Predictive Rendering

1 INTRODUCTION

During the last two decades, virtual reality has become a promising
technology widely embraced by the industry. In the automotive
industry workflow, many stages including the vehicle design process,
virtual prototyping and manufacturing are already benefiting from
virtual reality thus resulting in a shorter time-to-market and a higher
product quality [1, 15]. At the same time, the increasing need of
mobility and synergy all along the industry pipeline has led to
research efforts targeting delocalized collaboration [5] thus opening
the way to new perspectives such as networked virtual reality.
However, real-time visualization tools including CAD software
applications and virtual reality are still facing many challenges
when the key concerns are focused on the aesthetic of the final
product. Despite recent technological advances, real-time rendering
can only be obtained at the price of numerous approximations
on i) the underlying lighting and material models and ii) on the
algorithms used to compute light-matter interactions. In practice,
such visualization tools can only be used for illustrative purposes
and thus, more sophisticated physically based solutions belonging
to the predictive rendering field must be used when it comes to the
perceived quality of the product. In contrast to the usual rendering
methods, predictive rendering attempts to accurately resolve the
light transport, allowing one to predict how a virtual scene would
look like under the conditions defined by the virtual model [14].
To achieve this expected level of accuracy, predictive-oriented
approaches make an exclusive use of spectrally defined materials
and light inputs to prevent well-known surface metamerism
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exhibited by traditional RGB/XYZ-based renderers. However,
physically accurate results can only be guaranteed if the spectral
and polarized natures of light are both carefully accounted for
through unbiased rendering algorithms such as Monte Carlo path
tracing. As one can expect, such a simulation requires tremendous
computational resources preventing any real-time use even with
cutting-edge hardware, especially when targeting high definition
resolutions. As a consequence, expensive physical mockups are still
preferred by decision makers when assessing the perceived quality
of the vehicle.

Contribution We propose to fill the gap between the illus-
trative real-time environments enabling user collaboration such as
virtual reality and the computationally expensive simulations such
as predictive rendering, with a predictive rendering environment
taking full advantage of modern clusters to drastically reduce the
rendering time. Our work mainly targets multi-GPU supercomputers
frequently found in high-end industries. Additionally, the system
enforces remote collaboration all along the industry pipeline by
providing a remote web access enabling real-time multi-user
interactions with the virtual mockup in a synchronized fashion.

This paper is structured as follows: First, a review of previ-
ous work related to remote collaborative high performance graphics
is given in section 2, along with the previous work related to
distributed rendering. Then, section 3 describes each logical
component involved in our solution as well as their relationship. The
experimental settings, the results as well as the system limitations
are detailed in section 4. We conclude our paper and highlight the
future research directions in section 5.

2 RELATED WORK

Remote collaborative high-performance graphics Many research
efforts addressing delocalized collaboration have been carried out.
Among the previous work addressing both remote collaboration
and remote high-performance graphics, Renambot et al. proposed
SAGE [10] as a scalable framework enabling collaborative
visualization, mainly focused on local collaboration through tiled
display systems. The framework supports distributed rendering
on remote clusters and high resolution streaming to a variable
number of displays. Although remote shared visualization has been
partially addressed through the Visualcasting extension [8] by Jeong,
important issues such as multi-user interactions at the application
level were not addressed. Repplinger et al. proposed DRONE [11]
as a flexible framework enabling distributed physically based
rendering and supporting various deployment scenarios including
remote multi-user visualization and interactions. However, as the
project has become outdated, the implementation does not benefit
from recent advances including modern cluster interconnections
such as InfiniBand and new internet standards such as HTML5 and
WebRTC opening the way to ubiquitous cross-platform solutions.
Commercial and free systems addressing remote visualization such
as NICE DCV and VNC are also available. While these solutions



can take advantage of high-performance environments, their support
for collaborative scenarios remains poorly limited in terms of mutual
feeling of presence and multi-user management as all users share an
unique mouse cursor and any user can preempt the remote control
anytime irrespectively of the ongoing interaction flow. Other remote
visualization solutions such as OTOY, OnLive and PolyStream
achieve low latency streaming but do not target collaboration.

Distributed rendering As the computational load may sig-
nificantly vary between different image areas, one must pay a
special attention to the load balancing strategy when designing a
distributed rendering system. Otherwise, load imbalances can easily
occur and hence penalize the system scalability. The load balancing
strategies can globally be classified into three categories [12]. Static
load balancers evenly divide the image space and assign each image
area to a distinct compute unit. With static balancing, the assignment
layout remains the same during the entire simulation. Common
approaches consist in dividing the image space into homogeneous
tiles or non-contiguous pixel sets spread over the image. Such
strategies can be easily implemented but usually result in load
imbalances in case of homogeneous tiles [6] and in poor local
performances in case of non-contiguous pixel sets [13]. Semi-static
load balancers split the image space into nonuniform tiles in order to
balance their rendering costs [2, 12]. The layout is updated between
each frame based on a high-definition timing map reporting the
rendering time of tiny contiguous pixel sets. Unfortunately, the
required high-definition timing is not suitable for GPU rendering as
the operations are simultaneously performed on wide pixel batches.
Dynamic load balancers follow a producer-consumers pattern [7,13].
The image space is divided into a set of equal size tiles much larger
than the compute unit count. When rendering a new frame, each
compute unit is assigned one or several tiles from the pool and
request new tiles to render as it becomes idle. This process repeats
until the whole frame is rendered. While these approaches result
in evenly balanced workloads, the central task pool can become a
bottleneck as all nodes request new tasks simultaneously hence
penalizing the system scalability. As an alternative, we propose an
efficient static balancing scheme taking advantage of the stochastic
nature of Monte Carlo rendering.

3 SYSTEM DESCRIPTION

As depicted in Figure 1, the whole rendering solution is hosted on
the remote cluster and each cluster node is assigned a unique role
among the three component classes described below. At the core
of the system, the rendering process is carried out by the compute
nodes. In this purpose, each compute node runs an instance of the
predictive rendering engine. The renderer consists of a spectral path
tracer running on the GPU. The server acts as a facade in charge
of the compute nodes coordination. This component hides the un-
derlying distributed rendering logic by exposing only a few set of
functionalities to the client application which therefore remains en-
tirely agnostic of the actual deployment setup. The server acts as a
gateway between the client and the compute nodes. Scene update
commands issued by the client such as camera moves are broad-
casted to all the compute nodes which in turn update the concerned
scene entities on the GPU. The server is also responsible for the
image assemblies and post-processing before their delivery to the
client application. It is important to note that in a predictive context,
the rendering of a single frame may require many seconds to minutes
to obtain noise-free images, even within a high-performance environ-
ment. Thus, our system follows a progressive rendering approach to
provide the user with the current simulation progress. The client is
a traditional GUI application built around a central event loop. In
contrast to standalone applications, the displayed image is here re-
quested to the server at each display refresh and any interaction with
the virtual scene such as camera motions and material picking trig-

Figure 1: Overview of the solution

gers a server object update. Finally, users interact remotely with the
client GUI application through the USE Together infrastructure [9].
With this middleware technology, several users can simultaneously
share a native desktop environment or a specific application window
from any device running a web browser and supporting the WebRTC
standard. In contrast to the server and compute nodes which run on
Linux OS, the client application is currently deployed on a distinct
node running a Windows OS as USE Together only supports those
systems at the moment. However, as USE Together is expected to
support Linux OS in the near future, it will remove the unnecessary
client-server communication and will allow having both streaming
and multi-user management processes directly on the server.

3.1 Distributed rendering
Monte Carlo stochastic rendering is able to capture a scene image
as seen from an observer by sampling light paths connecting the
observer and the light sources of the scene. The final color of each
pixel is then obtained by weighting the color estimates of all the rays
passing through the pixel. In a predictive context though, hundreds
to thousands of light paths per pixel are required to produce high-
quality noise-free images. Our load balancing approach exploits this
specificity by distributing the light path sampling tasks of a pixel
over several compute nodes. We shall now use the term compute
group to refer to a set of nodes computing colorimetric estimates
for the same image pixels. Following this static path-space division
approach yields a naturally well-balanced workload. Moreover, as
no runtime communication for task assignment is needed, work
starvation is avoided, hence maximizing rendering occupancy. The
pixel value is finally obtained at each display request by weighting
the current estimates of all the nodes of the group. As the data
traffic linearly increases with the number of participating nodes,
this compositing step can significantly reduce the system reactivity.
However, by combining this static path-space division approach
with a static image-space division strategy, interactive compositing
rates can be maintained. Thus, our system first divides the image
space following an interleaved pixel scheme and then assigns each
resulting partition to a distinct compute group. This partitioning step
ensures a well-balanced load but can severely affect the performance
of modern ray tracers which take advantages of the spatial coherence
of the rays to intersect [13]. One must therefore pay attention to the
image level-of-division to apply to ensure both local rendering per-
formance and system responsiveness. Figure 2 outlines our hybrid
approach through a typical use case of the system. Each compute
node starts an instance of the renderer at startup time. The client
issues an initialization command to the server (1) supplying the
scene to load and some setting parameters such as the rendering res-
olution. The image space is divided following an interleaved scheme
as illustrated on the right side of Figure 2. The server broadcasts the
initialization parameters to every compute node and each compute
group is assigned a distinct set of pixel partitions to compute. In
the depicted example, each compute node embeds two GPUs and
the image-space division is defined to eight interleaved partitions.
Four compute groups are then constituted, every node of a group
computing estimates for the same pixels. Each node then loads the
scene on the GPUs and starts an infinite rendering loop (2). The
initialization step is completed. The client issues an image request
to the server whenever a display update is needed (3). The server
forwards the request to all the groups (4) which in return send their
respective pixel partitions in their current states of rendering (5).
All the pixel partitions are then put together to yield the full image



Figure 2: The image space is divided into interleaved pixel partitions
(each partition is assigned a distinct color). Each compute group is
assigned a distinct set of partitions to compute.

Figure 3: Collaboration of the nodes of a group during an image
request

which is ultimately delivered and displayed on the client application
(6). Figure 3 highlights the interactions occurring within a compute
group when the server is issued an image request. First, a CPU local
copy of the pixel estimates residing on the GPU is done by each
node of the group (4a). Then, a collective compositing pass involv-
ing all the nodes of the group is performed (4b). This compositing
step results in average estimates for each pixel value of the local
partitions and is implemented with the Direct-Send compositing al-
gorithm proposed by Eilemann et al. [4]. A careful implementation
of this algorithm yields a well-balanced computing load over the
whole group and partially enables communication and computing
parallelization. Each node finally sends its locally weighted pixel
values to the server. All the communications occurring between
the server and the compute nodes are implemented with the MVA-
PICH2 MPI library and therefore efficiently exploit modern network
interconnections such as InfiniBand.

3.2 Collaborative web access
Lucas et al. [9] proposed USE Together as a WebRTC-based mid-
dleware enabling remote users collaboration through the web. With
this infrastructure, delocalized co-worker can remotely share a na-
tive desktop environment or a specific application window, with
all user interactions broadcasted in real-time. The remote video
stream is continuously produced by capturing the target GUI appli-
cation or the entire desktop content through native OS API calls
(see Figure 4). The captured stream is therefore augmented with
the different user cursor locations. In this way, all users can locate
each other in the shared workspace therefore enhancing their mutual
feeling of presence and the way they collaborate. Finally, the video
stream is compressed before being sent to every peer using We-
bRTC MediaStream dedicated channels. To that end, USE Together
takes advantage of H.264 low latency encoding capabilities of mod-
ern graphics hardware by leveraging NVIDIA NVENC encoding
API with its low-latency high-performance preset. User inputs are
streamed through WebRTC Data channels and processed in real-time
within a synchronized multi-user environment. In this environment,
a user can seamlessly take the control anytime he does a specific
action (mouse click and/or keyboard use) as long as the system is not

Figure 4: Overview of the collaborative web infrastructure

already used by a third party (another user) of course. In this case,
user inputs other than those associated with the active user action
are simply ignored. By following this approach and assuming min-
imum client download bandwidths of 3 Mbps (ADSL/3G/4G) for
HD streaming, USE Together provides a collaborative environment
through a user experience very close to a native desktop from any
device running a web browser supporting the WebRTC standard.

4 RESULTS

The experiments were conducted with three simultaneously con-
nected users located at hundreds of kilometers from each other
with various device types (two laptops respectively equipped with
an NVIDIA Geforce GT 650M and an Intel HD4000 chip and a
tablet embedding a Tegra K1 chip) and through different network
infrastructures (ADSL and 4G). The system used for testing was the
ROMEO supercomputer from the University of Reims Champagne-
Ardenne. The cluster is composed of 128 nodes embedding 2 Intel
Xeon E5-2650 with 8 cores per CPU and 2 NVIDIA Tesla K20Xm
GPUs. The cluster is fully interconnected with InfiniBand ConnectX-
2 QDR offering a 40 Gbps theoretical network bandwidth. The
scenes used for the tests are shown in Figure 5. The car exterior
and interior views respectively consist of >5M and >2M triangles
and around 20 physically measured materials. The car interior view
particularly requires a considerable amount of rendering time as the
lighting is highly indirect. Sponza is made of 260K triangles and
consists of a single Lambertian material. Many indirectly illumi-
nated areas can also be found in this scene. HDR environment maps
have been used to illuminate all the scenes and the rendering resolu-
tion was set to 1920×1080. Table 1 shows the rendering times of
the different scenes for different node counts using the proposed load
balancing approach where the image-space partitioning is used up to
4 nodes. Therefore, the path-space division approach is additionally
combined to the image-space division when rendering with more
than 4 nodes. Note that in our benchmark setting, the rendering
of an image is considered as complete when its root mean square
error (RMSE) computed against a high-quality reference image has
dropped below a user-specified threshold. The RMSE thresholds
were respectively fixed to 0.025, 0.3 and 0.1 for the car exterior view,
the car interior view and Sponza.

Table 1: Rendering times (seconds) of the test scenes for different
node counts

Node count 1 2 4 8 16 32 64

Car exterior view 199.6 97.9 53.6 26.1 13.1 6.6 3.4
Car interior view 334.3 162.9 81.7 40.4 20.3 10.1 4.9

Sponza 461.1 220.9 112.2 55.7 28.3 13.8 7.1

Figure 6 reports the scaling efficiency of the load balancing scheme
where the scaling efficiency is defined as the ratio of the ideal linear
rendering time to the effective rendering time. As can be seen, our
hybrid load-balancing strategy shows a good scalability behaviour
(90% to 110%) and is able to exploit almost all computing resources
we were granted access to. The slightly reduced scaling efficiency
for the car exterior view can be attributed to the impact of the
interleaved image-space partitioning which may vary between
different scene types. Moreover, this setup achieves interactive
compositing rates close to 15 frames per second on the server node,



Figure 5: Scenes used for the tests: A car exterior view (left), a car interior view (middle) and Sponza (right).

Figure 6: Scaling efficiency of the load balancing approach. Image-
space division is used up to 4 compute nodes, then path-space divi-
sion is additionally applied.

up to 64 rendering nodes. Finally, the proposed architecture results
in a globally smooth experience for all the users by providing
streaming rates and latencies compatible with a remote collaborative
experience.

Limitations The system requires the replication of the whole scene
into the GPU memory of each node which can reveal critical when
dealing with large scene models. Therefore, it would be desirable to
investigate on out-of-core scene management techniques to handle
such cases.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a collaborative predictive render-
ing environment taking full advantage of the computational power
offered by modern multi-GPU clusters. To make an efficient use
of the remote computational resources, we have proposed a static
load balancing method leveraging the stochastic nature of Monte
Carlo rendering by distributing the light path sampling process.
By combining this approach to a usual image-space partitioning
scheme, a good scalability can be achieved with a simple static load
balancing scheme which cannot be obtained with traditional static
schemes. The proposed architecture not only efficiently exploits the
computational resources, but also promotes co-worker mobility and
collaboration by providing a remote web access allowing real-time
multi-user interactions with the virtual mockup. In comparison to
the usual remote visualization tools, the system emphasizes col-
laboration with an enhanced feeling of presence and a transparent
multiple user input management. As a result, organization members
can easily access the computational resources of the system and
work on centralized data from any device running a web browser
supporting the WebRTC standard. We are now looking forward to
extend the system to cover other useful collaboration use cases. As
an example, leveraging the computing resources of modern clusters
to allow the remote users to work on different views of the same
shared model seems to be a promising research direction [3].
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