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Luiz Angelo Steffenel

Received: date / Accepted: date

Abstract This paper examines multiple CNN-based (Convolutional Neural Net-
work) models for Covid-19 forecast developed by our research team during the
French lockdown. In an effort to understand and predict both the epidemic evolu-
tion and the impacts of this disease, we conceived models for multiple indicators:
daily or cumulative confirmed cases, hospitalizations, hospitalizations with artifi-
cial ventilation, recoveries and deaths. In spite of the limited data available when
the lockdown was declared, we achieved good short-term performances at the na-
tional level with a classical CNN for hospitalizations, leading to its integration into
a hospitalizations surveillance tool after the lockdown ended. Also, A Temporal
Convolutional Network with quantile regression was found successful at predict-
ing multiple Covid-19 indicators at the national level by using data available at
different scales (worldwide, national, regional). The accuracy of the regional pre-
dictions was improved by using a hierarchical pre-training scheme, and an efficient
parallel implementation allows for quick training of multiple regional models. The
resulting set of models represent a powerful tool for short-term Covid-19 forecast-
ing at different geographical scales, complementing the toolboxes used by health
organizations in France.

Keywords Deep Learning · Convolutional Neural Networks · Temporal
Convolutional Network · Transfer Learning · Quantile Regression · Covid-19

1 Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2, or SARS-CoV-2, was
initially described in Wuhan, China. Its spread is responsible for the Covid-19
disease pandemic, with 188 affected countries, 29,897,412 confirmed cases and
941,363 confirmed deaths (September 17th). This paper focus on the evolution
of the French Covid-19 epidemic, which presented an elevated spreading rate at
its beginning. Indeed, the first French cases were confirmed on January 24th and
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the 100th case was confirmed on February 29th. The transmission of the virus
accelerated in March 2020, following an exponential growth of the number of
confirmed cases. This was followed by an exponential growth of hospitalizations,
and emergency measures had to be taken to avoid saturation of hospital services.
As a result, a national lockdown was adopted from March 17th to May 11th.
Schools, non-essentials businesses and public parks were closed. Most outdoor
activities and long-distant travels were banned, and a signed form was required
for every essential trip (to buy food or medicine, to help a vulnerable family
member, etc.). The reproductive number (i.e., the average number of people that
would get infected by an already infected person) was estimated to be of 2.9
before the lockdown and 0.67 during the lockdown [43]. While the lockdown was
successful in stopping the virus propagation, the death toll was still high with
26,619 confirmed deaths at the end of lockdown (reaching 31,045 confirmed deaths
on September 17th). Today, the risk of a Covid19 second wave is important as
French confirmed cases are raising since the beginning of August. Indeed, the 7-
day moving average since August 28th has been higher than the average of the first
wave. For the moment, hospitalizations are increasing at a slower rate than during
the first wave mostly because the affected population is younger. Also, the situation
has changed with mandatory actions such as the use of face masks in closed areas
(and sometimes even in the streets), physical distancing, telecommuting work and
massive testing campaigns. The monitoring of the epidemic is crucial because a
new strict lockdown would have a highly negative impact on the economy. Indeed,
the Organization for Economic Cooperation and Development (OECD) estimated
a GPD recession of 11.4% for 2020 without a second wave, and a 14.1% recession
in the case of a second wave by Fall 2020 [36].

The scientific community has been very dynamic to provide useful decision
tools for epidemic modeling, and not only for contamination or death cases. Pro-
viding different projections of the epidemic evolution helps making effective deci-
sions, whose goals are to reduce the number of victims all while avoiding a severe
economic recession that would increase poverty, political tension, etc. Multiple
French projects have been initiated to model the Covid-19 epidemic and help re-
duce its harmful effects, often associating French authorities and services at both
national and regional scales, public research laboratories and private companies.
Most of these projects aim to capitalize on French high-performance computing
resources and inter-disciplinary skills related to digital technologies.

Our team at the University of Reims Champagne Ardenne (URCA) is currently
involved in several projects related to Covid19 mitigation. At the pharmacology
level, the ANR HT-Covid project relies on the ROMEO Supercomputing Center to
simulate millions of molecules and protein interactions (molecular docking). The
goal is to identify the molecules that are able to inhibit the SARS CoV-2 virus and
could lead to a treatment. We may also cite a collaboration with researchers from
the French Ministry of Defense, which developed a tool allowing to investigate the
impact of sanitary and economic restrictions during the lockdown [14]. Contrarily
to the models we present in this papers, that work uses multiple epidemic and
economic black-box simulators based on traditional parametric models, with an
optimization algorithm to select the best resulting scenario. We are also involved in
the Grand-Est region project ECOVISION, whose objective is to create a unique
dashboard for Covid-19 monitoring and forecast, by combining multiple prediction
models and indicators. This project is partially based on the work presented in this
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paper, and its goal is to aggregate research projects into an operational decision
tool.

Therefore, this paper aims at presenting our experience using deep neural net-
works (and specially Deep learning) to model and forecast different Covid-19 in-
dicators and at different geographical scales. Machine learning and deep learning
models are powerful modeling tools that revolutionize several domains. Contrar-
ily to classical parametric models, modern neural networks do not depend on the
knowledge of a given phenomenon, but can use a data-centric approach that can be
applied to raw data and still be able to model complex tasks. In several occasions
Deep learning proved to be competitive against well known traditional modeling
algorithms, as presented in our previous works [1,8].

In this study, we demonstrate how data-driven models can produce excellent
predictions. Because Deep learning usually depends on massive input data, it was
thought that it could not efficiently model the Covid19 epidemic as the existing
data during the epidemic breakout was reduced and fragmented. Nonetheless, our
efforts on data processing (including the generation of synthetic data for pre-
Covid19 months) proved successful. For instance, our models can perform national
forecasts for a 20-30 days window with error rates as low as 1%, in the best cases.

This work was carried on the basis of the official data provided by the French
Ministry of Health, and the different models designed by our team were con-
structed to respond to the actual needs of leading authorities. Hence, the first
task we focused was the modeling of confirmed Covid19 cases. This is an impor-
tant indicator because it represents the transmission of the disease. However, it
depends on the number of available tests being conducted, and does not relates di-
rectly to the actual burden of the epidemic on the health system. As a consequence,
the second task we focused was the hospitalization forecast, at both national and
regional scales. This is a more important indicator as a sudden increase in hos-
pitalization can lead to the saturation of hospital services, which may be forced
to move patients to other facilities (often in different regions of the country) with
available beds and healthy medical staff. To better anticipate the impact on the
health structures, we created a deep learning based approach to model a wide
set of Covid-19 indicators, such confirmed cases, hospitalizations, hospitalizations
requiring artificial ventilation, number of recoveries and number of deaths.

This paper is organized as follows: Section 2 describes related work on Covid-
19 epidemic modeling, Section 3 describes the data sources used in this work, how
they were used, as well as the computing environment supporting our experiments.
Section 4 describes the proposed models and Section 5 describes the obtained
results. Finally, Section 6 discusses the results and their implications, and Section
7 concludes this work.

2 Related Works

Epidemic modeling is commonly achieved with compartmental models like Sus-
ceptible - Infectious - Recovered (SIR) [40]. In the SIR model, the population is
divided into three compartments:

– Susceptible: the part of the population that can be infected.
– Infectious: the part of the population currently infected.



4 Lucas Mohimont et al.

– Recovered: the part of the population that recovered from the disease and
that is now immune.

Each compartment is associated to a function that represents the evolution
of the population. The modeling is performed by solving a system of differential
equations. The SIR model can be extended with other compartments like De-
ceased (SIRD model) or Exposed (SEIR model). Those models need parameters
specific to the studied disease like the rate of infection, rate of recovery and rate of
mortality. Initial conditions for the compartments population are also needed. In
practice, parameters are estimated by fitting the models to the available data. This
is achieved with methods for non-linear optimization problems like the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [34]. Compartmental models can be
used for prediction modeling or for a-posteriori analysis.

The need for good initial conditions and a good knowledge of the studied
disease is one of the main weakness of this parametric approach. In the case of
Covid19, a SIRD model predicted the peak of the Italian first wave for March
21th with 26,000 confirmed cased and 18,000 deaths by the end of the epidemic
[17]. Those predictions revealed to be highly inaccurate, as the peak of confirmed
cases was achieved on April 19th reaching more than 109,000 cases, and the death
toll rose above the predicted 18,000 on April 9th. Similarly, a SEIR model was
proposed to predict the second wave in France and Italy [18]. This model was
first used to estimate the fraction of the population that got infected during the
first wave. This model estimated that 6% of the French population was infected
during the first wave. A similar work was proposed by [43], using the data from
the Diamond Princess outbreak to estimate the infection fatality ratio in France.
A compartmental data was applied to hospital data, estimating that 4.4% of the
French population would have been infected by May 11th. Both results are close.
However, the uncertainty of the estimate achieved by [18] is high, with estimations
ranging from hundreds of thousands to 18 million infections in France. Nonetheless,
SIRD models were used to measure the impact of the lockdown on the French
epidemic and it was estimated that the reproductive number R0 was divided by 7.
In the overall, compartmental models are useful to create complex scenarios and
to perform analysis of past epidemics. However, other methods based on statistical
and machine learning techniques seem to be more suitable for real-time forecasting
[24].

An alternative to compartmental models is a data-centric approach that does
not uses pre-determined rules about the disease spreading behavior. Instead, the
rules are determined from the data. A death prediction model using a mixture of
past predictors was proposed by [44]. The main idea is that the death trend of a
country can be represented as a mixture of past death trends from other coun-
tries. As a result, good accuracy levels were achieved for up to 10 days forecasts.
However, this modeling approach is limited to short-term forecasts. The mixture
model needs multiple sequences from different countries that have higher death
rates. Those countries are considered to be ahead of time in the epidemic trajec-
tory of the studied country (the one we want to forecast). In practice, the authors
have shown that accuracy is low beyond 10 days forecasts because not enough pre-
dictors (countries) are available. Therefore, a SIRD model was used as a predictor
for longer forecasts.
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Genetic Expression Programming was used to create formulas for confirmed
cases and deaths evolution in 15 countries [42]. This method seems to be more
reliable than LSTM with a higher RMSE and higher R2. However, it is limited by
the used data because only Covid-19 time series are used in the modelling pro-
cess. A hybrid method using ARIMA and Wavelet-based forecasting was proposed
for confirmed cases forecasting [7]. Wavelet-based forecasting was used for error
remodeling of the ARIMA model. Good accuracy is shown on the training set.
Accuracy for the real-time forecasts in France is lower with almost double RMSE
compared to the training set. This can be explained by the French lockdown that
started on March 17th and its effects were not visible on the training data.

In this work, we chose to use neural networks as modeling tools. Neural net-
works have the ability to model complex non-linear patterns and many different
architectures are available. One of the most popular architecture for time series
analysis is Long Short-Term Memory (LSTM) [23]. It is an improvement of the
classical neural network that was developed to solve the vanishing gradient prob-
lem. LSTM is suitable for sequence modeling as it is able to model temporal effects.
It was used in multiple research works on Covid-19 forecasting, as in the case of
Canada [10] or India [47]. Accuracy of 93.4% and 92.67% were found respectively
for short and long-term predictions [10]. Similar performances were found by [47],
with error percentages ranging from 1.64% to 8%.

LSTM was also compared to ARIMA and Nonlinear Auto-Regression Neural
Network on confirmed cases predictions of eight European countries [31]. In both
cases, LSTM achieved the best accuracy. Other works compared multiple neural
network architectures including LSTM, Recurrent Neural Network (RNN), Bidi-
rectional LSTM, Gated Recurrent Unit (GRU [11,12], a variant of LSTM) and
Variational Autoencoder (VAE) in order to forecast confirmed cases and recov-
ery predictions [49]. The VAE achieved the best results with a clear margin. It is
thought that VAE needs fewer data compared to other neural networks. LSTM
can achieve a moderate accuracy but with a lower explained variance compared
to the VAE.

Another popular type of neural network is the Convolutional Neural Network
(CNN). It became the new state-of-the-art model for image classification in 2012
when a CNN won the ILSVRC-2012 competition on the ImageNet dataset [30].
Although CNNs were first successful on image processing task, they can also be
applied on 1D data like Covid-19 time series. CNN are not as popular as LSTM de-
spite potential better accuracy and more efficient training with GPU acceleration
[3]. For this reason, CNNs were mostly applied to Covid-19 detection from x-ray
images [38,46,2]. Nonetheless, CNNs were used for confirmed cases forecasting in
China [25]. In that study, it was compared to LSTM, GRU and to the Multi-layer
Perceptron, and CNN achieved a better accuracy. In this work we chose to ex-
plore the use of CNNs instead of LSTM, as it presented better results during our
preliminary experiments with confirmed cases forecasting.

A hybrid of LSTM and CNN, the ConvLSTM model, was used by [39] for
Covid-19 spatiotemporal modeling of confirmed cases. Pixels map for Italy and
USA were created from the available datasets and an ensemble of ConvLSTM was
trained. The ConvLSTM uses both convolutional layers to process images input
and LSTM layers for sequences modeling. The ConvLSTM is an adaptation of
CNN for image sequences modelling.
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CNN have also been adapted to generic sequence modelling tasks by using
causal and dilated convolutional layers. This family of model is called Temporal
Convolutional Network (TCN). TCN models are fully convolutional networks that
can be applied on sequences on any length. A more complete description of TCN
is proposed in section 4. TCN have been applied to different application such as
stock price prediction, energy consumption forecasting and for automatic sepsis
prediction in hospitals [35,32,29]. Both classical CNN and TCN are applied to
multiple Covid-19 modelling tasks. To the best of our knowledge, this is the first
time TCN are used for epidemic modelling. Another difference from our work to
related work is the development of a multi-level forecast model. Indeed, most works
are focused only on national level modeling, but the epidemic crisis management is
often operated at regional levels. It is therefore important to provide projections
at a local scale. In this work, we preferred to keep the data at a meaningful
regional level (the official regional organization of France) during both training
and prediction.

3 Datasets

Our work started in mid-March, at the moment the lockdown was declared in
France. Several indicators such as French hospitalization data were not yet avail-
able. Therefore, an important effort was made on data curation.

3.1 Data Sources

In this work we relied on four datasets, composed from different data sources. They
are summarized in Table 1 and were used for the training of the neural networks.
Covid-19 data come from different sources like testing laboratories and hospitals.
The centralization of French Covid-19 data is a difficult but necessary task that
involves hundreds of establishments. Hospitals and testing data are collected and
verified by Santé Publique France, a french public organisation for public health
surveillance. Those data are openly available and they can be visualized on the of-
ficial dashboard [19]. Data reliability is important for modelling but some mistakes
are expected when many differents establishments are involved. Data anomalies
are checked and corrected regularly.

The first dataset was built from the Covid-19 data collected by the Center for
Systems Science Engineering at John Hopkins University. They are used for world-
wide visualization of the epidemic on an online dashboard and they are available
on their Github repository [16]. The Covid-19 time-series data start on January
22nd and are updated every day. The time series are confirmed Covid-19 cases,
confirmed recoveries and confirmed deaths. Each sample is corresponding to one
geographic area and to one specific date (one sample per day). Data for 188 coun-
tries are available. Demographic, economic and health indicators coming from the
United Nation were added to the dataset.

The second dataset was built from the official French dataset regarding Covid-
19 hospitalizations [20]. It includes time-series of current Covid-19 hospitalizations,
current hospitalizations with artificial ventilation, cumulative recoveries and cu-
mulative deaths. The time series are starting from March 18th and are updated
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every day. They are available at national, regional and departmental levels. Ex-
ternal data were added to this dataset. They are demographical indicators coming
from National Institute of Statistics and Economic Studies (INSEE) and mobility
data extracted by the French mobile operator Orange.

The third dataset is similar to the second one but the Orange mobility data are
replaced by the Google mobility data [26]. These mobility data are six indicators of
mobility changes from a baseline period in different sectors: grocery and pharmacy,
parks, public transports, retail and recreation services, residences and workplaces.
Finally, the fourth dataset is built by merging the first dataset and the Google
Mobility data.

Most of the development time was dedicated to data curation (data collection,
cleaning and preparation) during the beginning of the project. One problem was
to find interesting dynamical data for our models. Google have created mobility
reports at different geographical scales (national, regional, city, etc.), which in-
clude the time series of six mobility indicators described previously. Such variables
are useful because population mobility has an impact on the epidemic spreading.
Finding relevant dynamical data is difficult because systematic data collection is
not always possible for many reasons (ethics, security concern, large amount of
processing, etc.).

Table 1 Summary of the training datasets. The starting dates of the time series are shown
in the Dataset column.

Dataset Target Granularity Features
Worldwide
dataset (Jan
24)

Confirmed
cases

Daily / country
or region

Demographic, health, interna-
tional mobility and economic
features

French dataset
(Mar 18)

Hospitalizations Daily / depart-
ments and re-
gions

Population by age, population
density. Static mobility data
(changes before and after lock-
down) extracted from Orange
operator.

French dataset
with mobility
data (Mar 18)

Hospitalizations
, Artificial
ventilation,
Recoveries,
Deaths

Daily / depart-
ments and re-
gions

Population, population den-
sity, Google mobility data

Worldwide
dataset with
mobility data
(Feb 15)

Confirmed
cases

Daily / country
or region

Google mobility data, demo-
graphic, health, international
mobility and economic features

3.2 Data extraction

Data curation was partially performed with Excel, then with the Python library
Pandas. Data processing was performed in Python with Pandas and Numpy. Deep
learning models were created and trained with Tensorflow and Keras. To adapt
the data sources to our needs, we developed some assumptions. Our main assump-
tion for this work is that convolutional neural networks (CNN) are robust enough
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to learn valuable features from data without much pre-processing. Another as-
sumption is that CNN can benefit from data built from countries with different
Covid-19 epidemic evolution.

The datasets contain multivariate time-series of different duration depending
on the country or the data source. CNNs require input samples to have the same
size. Therefore, time-series were converted into input and target sequences of con-
stant size for supervised learning. One problem was the size of the datasets at
the beginning of the project. For french hospitals data, only 12 days of data were
available for each department. As data before March 18th was unavailable, the
input sequences length were limited to 5 days. Also, the classical CNN proposed
in Section 4 was used to estimate the missing values before March 18th. This was
done to artificially increase the dataset size. This augmentation was performed by
reversing the order of the value in sequences. Hence, the equivalent of ten days of
sequences was added to the dataset using this technique. While the datasets were
daily updated with new sequences, there were only a few hundreds of entries at
the end of March 2020, when we started our project. Today, the datasets count
with thousands of sequences available for training the neural networks. Due to
the nature of the entries, the datasets are relatively small and can be processed
quickly on consumer-grade hardware.

Features are normalized to zero mean and unit variance. The Orange mobility
data were originally daily time-series but they had to be simplified to constant
features. The Orange mobility features represent the change in mobility before
and after the beginning of lockdown. This limitation was caused by the difficulty
to obtain frequent update of the data. Google’s mobility time series were smoothed
by a 14-days sliding-window average to remove noise and weekly seasonality.

4 Developing Models for Covid-19 Forecast

As presented in Section 1, we developed several models to cover different indicators
for the Covid19 epidemic. In this section we present these models, and how they
were applied to the datasets in order to produce forecasts.

4.1 Convolutional Neural Network for Time Series

Convolutional Neural Networks (CNNs) were designed in the late 1980s to solve
image classification tasks. They were successfully applied to computer vision tasks
like handwritten digits recognition [13]. CNNs are therefore not a new idea but
many limitations have prevented them from a more widespread success in the
1990s. Indeed, CNN training requires powerful computers and a vast amount of
data, which were not available at the time. Multi-layer neural networks training
were also known to be difficult and other techniques like the Support Vector Ma-
chine (SVMs) were successful alternatives. CNN only achieved widespread recogni-
tion when a CNN architecture, Alexnet [30], won the ILSVRC-2012 challenge. The
goal of this challenge was to achieve the best accuracy on the Imagenet dataset
(1000 class tasks) and AlexNet got a 10% improvement over the second-best entry.

CNNs are Multilayer Perceptron (MLP) adapted to image processing. A typical
MLP is made of fully connected layers only which is impractical for image inputs
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as the number of parameters would be too high. For example, an MLP first layer of
32 neurons and 28x28 pixels grayscale image input would have 25,088 parameters
(and over 66 million parameters for a full HD image), and fully connected layers do
not account for the pixel’s neighborhood which limit the ability to learn complex
image pattern. The CNN solves this issue by using convolutional layers. Here, the
fully connected neurons are replaced by 2D convolutional filters. These filters can
be seen as shareable neurons as they are applied in a sliding window manner on
the whole image, acting as feature extractors that are reused on every part of the
image. The motivation for this is that shapes, textures or objects can be anywhere
in the image. Convolutions are followed by a non-linear activation to produce the
final output. Each filter produces a feature map and each feature maps are stacked
together to be used as input in the next layer. A sub-sampling, or pooling, layer
can be used after a convolutional layer to reduce the size of the feature maps. A
typical CNN uses a succession of convolutional/pooling layers to produce a robust
feature extractor. Fully connected layers are then used for classification with a soft-
max function. The parameters of the filters and of the fully connected are both
calculated by optimizing a loss function. This is generally performed by stochastic
gradient descent and with the back-propagation algorithm [41].

As a result, a trained CNN can be described as a hierarchical feature extractor.
The first layers can be used to extract low-level features like edges or lines while
the next layers can be used for more complex shapes, textures or object parts [48].

The idea of using CNN for time series processing is not new. It was proposed in
the 1990s by the original inventor of CNN Yann LeCun [33]. A CNN for time series
processing uses 1D filters instead of 2D filters. Time series can be represented as
1D arrays in the same way images are represented as 2D arrays. Few changes can
also be made to solve regression tasks. The main changes are the selection of the
appropriate output activation and loss function, that can be, for example, ReLU
(Rectified Linear Unit) or the mean-squared error.

4.2 Temporal Convolutional Neural Networks

In addition to the CNN-based architecture for time series presented in the pre-
vious section, the literature contains other time series processing architectures
that worth being studied. One of them is the Temporal Convolutional Network
(TCN) architecture. TCNs use techniques that were first used in Wavenet [37].
This model was initially designed for sound-related predictions, as for example in
the case of music or speech synthesis, using raw data and set a new state-of-the-art
in Text-to-Speech systems. TCNs use causal dilated convolutional layers, in which
the convolutions preserve the time causality. Causal convolutions do not use future
values of the input sequence to calculate their activation. The difference between
a classical and a causal convolution is illustrated in Figure 1. Causal convolutions
are used in TCNs with an increasing dilation rate. The dilation rate is a parameter
that can be used to expand the input window of the convolution while keeping
the same kernel size (some values of the input are ignored). A higher dilation rate
corresponds to a higher receptive field. Therefore, many causal and dilate convolu-
tional layers are stacked to each other to process long sequences. This is illustrated
in Figure 2 and Figure 3.
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One inconvenient of most TCNs is that they do not have pooling layers to
avoid a loss of information. This can be circumvented with the use of a residual
skip connection, first introduced in the ResNet models [22]. Skip connections are
inserted between the input and the output of the convolutional layers to overcome
the vanishing (or exploding) gradient problem.

t-1 t t+1

t-1 t t+1

t-1 t t+1

t-1 t t+1

(a) (b)

Fig. 1 a) Classical convolution with a size 3 kernel that does not respect time causality. b)
Causal convolution with a size 3 kernel [37]

t-2 t-1 t

t-2 t-1 t

(a) (b)

t-2 t-1 t

t-2 t-1 t

Dilation rate = 1 Dilation rate = 2

Fig. 2 a) A causal convolution with a dilation rate of 1. b) A causal convolution with a dilation
rate of size 2. The receptive field is bigger while having the same number of parameters [37].

4.3 Adapting CNN Models for the Covid19 Epidemic

4.3.1 Description of the proposed CNN

The first proposed model is a classical CNN for time series regression. It was a first
attempt at Covid-19 modeling at the beginning of French lockdown in mid-March
2020. The model was therefore limited because the available dataset was small and
most of the development time was focused on data curation. The proposed CNN is
a one-step-ahead regression model. It takes a 5 days input sequence and produces a
forecast for the next day. This limited sequences size was chosen because only few
days of data were available at the beginning of the project. Multi-step prediction
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t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

Layer 3
d = 4

Layer 2
d = 2

Layer 1
d = 1

Input
Sequence

Fig. 3 Stacked causal and dilated convolutional layers. The increasing dilatation rate is used
to artificially increase the receptive field while keeping small kernel of size 2 [37].

1D Convolution Max Pooling Fully Connected Fully Connected

Input Sequence +
Static Features Forecast

Fig. 4 The proposed CNN for confirmed cases modelling scenarios

is done by shifting the input and by using the one-day forecast as the last value
of the input sequence. The CNN uses a single 1D convolutional layer with 2x1
filters followed by a max-pooling layer. Two fully connected layers are then used to
produce the final output. The model architecture is described in Figure 4. Another
version of this CNN was used. It uses two separates inputs: a convolutional layer
for the Covid-19 sequences and a dense layer for the static data. The output of both
layers are then concatenated to be used in the final dense layers of the networks.
The summary of this CNN architecture can be seen in Figure 5. In this version,
dropout was used on the dense input and on the dense hidden layer to reduce the
effect of potential over-fitting [45]. A dropout probability of 0.5 was used. Dropout
was also used to produce confidence intervals [21]. Both versions of the CNN were
trained with the Adam optimizer with a learning rate of 0.0001 and a mini-batch
size of 64 [27].

4.3.2 Model for confirmed cases prediction

The first version of the CNN-based model was applied to cumulative confirmed
cases forecasting. Three scenarios, corresponding to three independent training,
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Fig. 5 Multi-input CNN with dropout

were built by filtering the dataset (Dataset 1). The filtering was based on the data
available on March 29th. The first, optimistic, scenario used data from countries
where the epidemic was stopped. Therefore, this scenario only used data from
China and South Korea to train the CNN. The second, compromise, scenario used
data from every country that had at least 1000 confirmed cases (including China
and South Korea). Finally, the third scenario is the a pessimistic approach to the
second scenario where China and South Korea were removed from the training set.
The second version of the CNN was applied to daily confirmed cases forecasting.
The goal of this model was to create an optimistic scenario of daily increase of
confirmed cases. The training was achieved by using decreasing sequences only
(corresponding to the countries where the epidemic was receding). Data available
on May 8th were used during the training.

4.3.3 Model for hospitalizations prediction

The second version of the CNN was applied to French Covid-19 hospitalizations
modeling. This modeling experiment first started in late March when only 12 days
of historical data were available (data collection from French hospitals started on
March 18th). The training was performed every week to include the new data
and projections at both regional and national levels were systematically sent to
our contact at the French Ministry of Health. The main problem was to create a
model that could be used for surveillance of the epidemic after the end of lock-
down on May 11th. Therefore, a baseline model was trained for this purpose. Data
available on May 10th was used for training. Only decreasing sequences were kept
in the training set. The model was then used for short-term projections. Those
projections correspond to a decrease of Covid-19 hospitalizations with a fictional
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extended lockdown. Projections and observations were compared at both regional
and national levels to detect a slow-down of recoveries or an increase in hospital-
izations compared to an ideal scenario.

4.4 Adapting TCN Models for the Covid19 Epidemic

4.4.1 Description of the proposed TCN

The CNN-based models proposed in the previous sections have good short-term
accuracy but has several limitations. For example, it only uses small sequences
of five days because the datasets were too small. Also, more complex models like
TCNs are available for longer sequence processing. To circumvent these limitations,
we also propose the use of a TCN model. The training of a more complex model
was possible because Covid-19 data are updated daily and our datasets were large
enough when the development of the TCN model began (mid-May). The TCN
proposed here is an adaptation of the conditional TCN introduced by [5], originally
applied to financial data forecasting with time series conditioning. This model is
built with three blocks. The input block has two separate inputs, one for the
main sequences and one for the conditionals sequences. The two separate paths
contain a 1D causal convolutional layer as explained in Figure 6. Residual skip
connections are used for both inputs. 1x1 convolutional layers can be used in
the skip connections to change the number of features maps (to have the same
sequence sizes for the addition operation of the skip connection). The central
blocks are residual blocks with causal convolutions and an increasing dilation rate
(Figure 7).

Fig. 6 Input block with 2 separate paths to process the target sequences and the conditional
sequences. Residual skip connections are also used with a 1x1 convolution layer to have the
same number of features maps before the final concatenation [5].

Multiple central blocks are stacked with an increasing dilation rate. The last
central block will have a receptive field that covers the complete sequence length.
The output block, from the original publication, is a single 1x1 convolutional layer
with one filter per output and followed by a global pooling layer (Figure 8). The
TCN proposed in this work uses the same input and central blocks. Each layer have
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Fig. 7 A central block made of one dilated causal convolutional layer with a residual skip
connection. The dilation rate is increased when multiple central blocks are stacked together to
process longer sequences [5].

Fig. 8 The original output block with one 1x1 convolution layer and a final global pooling
layer to produce a one-step ahead prediction. The 1x1 layer can be adapted for multi-task
forecasting by using a filter for each prediction target. Adapted from the figure shown in [5].

32 1D filters of size 2 with ReLU activation. The part that is changing is the output
block. It was adapted to produce confidence intervals with quantile regression as
proposed in [9,28]. This is achieved with three independent output blocks with
5%, 50% and 95% quantile losses as explained in Figure 9. The following quantile
loss equations were used to train the TCN (Equations 1 and 2):
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Fig. 9 The quantile regression output block. Each output is similar to the original output
block. They used the same feature maps as input and can be adapted for multi-task forecasting
by adding more filters to the 1x1 convolutional layers.

l(y, ŷ, q) = q ×max(0, y − ŷ) + (1 − q) ×max(0, y − ŷ) (1)

LOSS =

k∑
(i=1)

l(y, ŷ, qi) (2)

Each output blocks contain a convolutional layer with 1x1 filters with ReLU
activation and dropout regularization. This layer acts as a dense layer applied in
a sliding window manner on the feature maps produced by the last central block.
It is then followed by a final convolutional layer with a single 1x1 filter with ReLU
activation and global polling. A multi-task version of the TCN was studied in this
work. It is a multi-task model with hard-parameters sharing because there is no
output specific to a single target. The whole network is used to produce multiple
outputs from different Covid-19 time series. This is motivated because Covid-19
time series, like hospitalizations and deaths, are highly correlated. The multi-task
output is achieved by using one filter for each target in the last convolutional layer
of the network.
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4.4.2 Transfer Learning and Multi-task TCN for regional Covid-19 prediction

The TCN with quantile regression was applied to the four Covid-19 time series
of the French dataset 3: current hospitalizations, current hospitalizations with
artificial ventilation, cumulative recoveries and cumulative deaths.

Training was first performed independently for each Covid-19 indicators (one-
target models): the main input included one of the four Covid-19 time series and
the daily variation. The Google mobility data, total population and population
density were used in the conditional input. Subsequently, a multi-task TCN was
trained with the four Covid-19 time series altogether. This training was performed
with the Adam optimizer with a 0.0001 learning rate and a 256 batch size. Early
stopping was used for regularization purposes.

We observed that performances at regional and departmental levels were gen-
erally lower compared to the national level. Hence, a hierarchical transfer learning
scheme was applied to train regional models with improved accuracy. This is illus-
trated in Figure 10. There, a global (or initial) model is trained with every available
data from Dataset 3. Regional models are then trained by using the weights of the
initial model instead of random weight initialization. The training at the regional
level only uses data from the concerned region.

Initial Model

Regional Model 1 Regional Model 2

Departmental
Model 1

Transfer Learning

Transfer Learning

Fig. 10 Example of a hierarchical transfer learning for regional and departmental training

Departmental models can also be trained by following the same technique (the
concerned regional model replaces the global model for the pre-training step). In
our case, however, the focus was set onto regional levels as the French epidemic is
managed at the regional level.

Training multiple models, one for each region, can be highly demanding in
computation power. For this step, we mostly relied on the computing resources
of the ROMEO Supercomputing Center 1. ROMEO resources include a mixed
CPU-GPU cluster dedicated to HPC and Artificial Intelligence (ranked 249th in

1 https://romeo.univ-reims.fr
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the TOP500 list, june 2018), as well as a Nvidia DGX-1 server (8x Nvidia V100
GPUs with 16 GB RAM each and NVLink), specially dedicated to AI.

The training of the initial model was performed on a single Nvidia V100 GPU.
Regional models were trained with a multi-thread CPU implementation. Each
training was performed on a single thread on an Intel Xeon 40 cores CPU.

4.4.3 TCN for confirmed cases forecasting

The proposed TCN with quantile regression was also applied on French confirmed
cases forecasting (Dataset 4) in three different ways:

1. the TCN was trained on French data only for cumulated confirmed cases fore-
casting,

2. the TCN was trained on Worldwide data for cumulated confirmed cases fore-
casting

3. the TCN was trained on Worldwide data for daily confirmed cases forecasting

Training were performed with the Adam optimizer with 32, 1024 and 1024
samples per mini-batches and with a learning rate of 0.0001. Early stopping was
used as a regularization technique. Negative values (data error) were removed as
confirmed cases sequences should only contain positive values.

The three training were performed two times with and without data augmenta-
tion. The augmentation technique used is random masking noise (random values
of the sequences are set to 0). Training with augmentation were performed by
creating 9 new sequences with between 6 and 20 random corrupted values.

4.5 Evaluation Strategies

Classical CNNs showed in Figure 4 and Figure 5 were respectively applied to cumu-
lative confirmed cases predictions scenarios and daily confirmed cases predictions.
The second classical CNN was applied to hospitalizations forecasting (Dataset
2). The TCN model was first applied to the modeling of French Covid-19 hos-
pital data (hospitalizations, artificial ventilation, recoveries and deaths) with the
Google Mobility reports (Dataset 3). The classical CNN performed poorly when
the Google mobility data were used as inputs. The predictions were too sensitive
to mobility changes. Finally, the TCN was applied to both cumulative and daily
confirmed cases forecasting with worldwide Covid-19 and Google mobility data
(Dataset 4). The different experiments are summarized in Table 2. Performances
were measured with the normalized root mean-squared-error (NRMSE and the
adjusted R-squared as explained in Equations 3, 4 and 5:

MSE(ŷ, y) =

n∑
i=1

(ŷi − yi)
2

n
(3)

RMSE(ŷ, y) =
√

MSE(ŷ, y) (4)

NRMSE(ŷ, y) =
NRMSE(ŷ, y)

Mean(y)
(5)
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The TCN transfer learning scheme was evaluated by comparing the sum of
regional predictions (which account for the whole country) to country observations.
The average regional NRMSE and the weighted average regional NRMSE were
calculated to evaluate the improvement of regional forecast performances. Section
5 presents a dedicated analysis for each model described in Table 2.

Table 2 Summary of the 5 modelling experiments

Model Target Dataset Training pe-
riod

Forecast pe-
riod

Optimistic,
compro-
mise and
pessimistic
scenarios

Total Confirmed cases Dataset 1 January 22nd

to March 29th
March 30th to
April 19th

CNN with
dropout

Daily Confirmed cases Dataset 1 January 22th

to May 7th
May 8th to
July 6th

CNN with
dropout

Hospitalizations Dataset 2 March 18th to
May 10th

May 11th to
May 24th

TCNs with
quantile re-
gression

One model per target
(Hospitalizations, arti-
ficial ventilation, re-
coveries, deaths) One
multi-task model with
the 4 targets

Dataset 3 March 18th to
June 5th

June 6th to
June 30th

Regional
models

Same as TCNs Dataset 3 March 18th to
June 5th

June 6th to
June 30th

Worldwide
models

Daily or cumulative
confirmed cases

Dataset 4 February 15th

August 6th
August 7th to
September 9th

5 Results and Analysis

This section describes the main results of this paper. A summary of the results
is first presented, and a detailed description of the results for each indicator are
presented later.

As presented before, our first proposed model for Covid-19 was applied to con-
firmed cases forecasting. This first model is a classical CNN designed to have a
low number of parameters in order to avoid over-fitting. It was trained on world-
wide data (Dataset 1) for cumulative confirmed cases modeling with optimistic,
compromise and pessimistic scenarios. Results show that confirmed cases evolu-
tion followed a different trend compared to projection. Observed data were below
the lower predictions from May 8th to June 10th and followed a linear increase.
A limitation of this approach is that data filtering must be updated before each
training to produce coherent scenarios.

The same model was retrained later when more data were available, provid-
ing daily confirmed cases forecasts. Only decreasing sequences were kept during
training to produce an optimistic scenario corresponding to an extended lockdown.
Results show that the model was too sensitive to extreme values, which produce
high daily increase predictions. The model was indeed too optimistic, by predict-
ing a stop of the daily increase by July 2020. Actually, observed data from the end
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of the lockdown to early July show a linear increase in the cumulative number of
confirmed cases.

Confirmed cases is an important indicator because it reflects the spread of the
virus in the population, but does not reflect the actual burden caused by the virus
on hospitals. Indeed, a massive testing campaign can increase the number of con-
firmed cases by detecting asymptomatic infected people who don’t overload the
healthcare system. Instead, Covid-19 hospitalizations is a better indicator because
it describes the actual impact of the virus. This indicator is crucial to manage
the crisis, as its forecast is directly related to decisions about the number of avail-
able beds and staff workers. It is also important to decide when patient must be
transferred from a heavily impact region to a less impacted region with available
beds.

The classical CNN for confirmed cases forecasting was then applied to hospi-
talizations forecasting. Training were performed by using French data at depart-
mental, regional and national levels (Dataset 2). Training were performed every
week and projections were communicated to the French Ministry of Health. A
baseline monitoring model was created by using data available up-to May 11th

as training data. Again, we adopted an optimistic scenario corresponding to an
extended lockdown. Projections were compared to observed data every week. The
decrease of hospitalizations were lower than expected from mid-May to mid-July.
This can be explained by the slow-down of hospitals patient recoveries (less people
are getting out of the hospitals). These results have shown that modeling can still
be performed despite the small size of the datasets.

As seen above, the classical CNN model suffers from many limitations. Perfor-
mances at the regional and departmental levels were not satisfying and the model
was too limited to exploit dynamical data such as Google Mobility Reports. There-
fore this work was extended by using a modified Temporal Convolutional Network
(TCN) with mobility data (Dataset 3).

The TCN model was successfully applied to five Covid-19 indicators: confirmed
cases, hospitalizations, artificial ventilation, recoveries and deaths. In addition, the
TCN was successful at different scales: regional predictions could be made from
national data, and national predictions were performed from worldwide data.

TCN was first applied to hospitalizations predictions and good performances
were achieved at the national level, even of regional level performances were still
poor. This was later improved by using a hierarchical pre-training scheme, as
presented in Section 4. Finally, the TCN was applied to confirmed cases forecasting
and it was found successful at both cumulative and daily confirmed cases modeling
(Dataset 4).

The next sections present the detailed analysis for each modeling approach.

5.1 Results for CNN-based Covid-19 modeling

5.1.1 Scenarios for cumulative confirmed cases forecasting

The results presented in this section were obtained with the first classical CNN
proposed earlier. The main objective of these scenarios is to model the evolution of
the epidemic with the few worldwide data available at the time. From March 30th

to April 19th the number of confirmed cases grew from 44,550 to 112,606 with an
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average of 3,403 daily increase. The daily increase peak was achieved on March
31st with 7,578 new cases. Table 3 contains the performance values for the three
scenarios. The optimistic scenario predicted an average of 2,708 daily increase for
the same period with a peak on April 3rd with 8,889 new cases. The predicted
total cases grew slowly to 98,000 on April 19th with less than 200 daily new cases.
The prediction error rate is equal to 9.86% NRMSE for the complete period and
12.94% for the last day of the period. Predictions were optimistic as intended with
a final prediction lesser than 14,000 than the observed total cases. The model was
optimistic by predicting a slow down to 218 daily increase for the last five days
of the periods against 1,600 observed daily increase. The model also predicted a
higher peak with a delay of two days.

The compromise scenario is similar to the optimistic predicted peak of 9,467
new cases on April 3rd but with a slower decrease of new daily cases with an
average of 811 for the five last days of the period. Predictions grew from 45,570
predicted cases on March 30th and 110,703 on April 19th. The prediction error
rate is higher than the optimistic scenario with 12.57% NRMSE but was low for
the last day of the period with only a 1.7% error rate. This scenario predicted an
average daily increase of 3,257 new cases for the whole period which is close to the
observed daily increased (3,403 cases). Predictions for optimistic and compromise
scenarios are compared to the real observations in Figure 11 (the pessimistic sce-
nario was omitted for visibility purpose). The pessimistic scenario was different,
with a continuous predicted increase in new daily cases. Predictions grew from
44,882 predicted cases on March 30th to 290,864 on April 19th.

Overall, the three scenarios were successful to describe the optimistic, compro-
mise, and pessimistic evolution of the epidemic for the considered period. Opti-
mistic and compromise scenarios were close to observations with the main differ-
ences being a higher predicted peak and a higher decrease in new daily cases. This
can be seen in Figure 11 with observed data below both scenarios predictions until
April 12th.

Table 3 Performances for the confirmed cases modelling scenarios

Evaluation Optimistic Compromise Pessimistic
First prediction 45,873 45,570 44,882
Last prediction 98,830 110,703 290,864
NRMSE 0.0986 0.1257 0.99
R2 0.85 0.88 0.93

5.1.2 CNN for daily confirmed cases forecasting

Another approach to confirmed daily cases modelling was carried out with the
second version of the CNN described earlier. This was performed when more data
were available and data from every country were used. Predictions and observations
are shown in Figure 12 and performances are shown in Table 4. Dropout was
activated at inference time to create 95% confidence intervals. The predicted total
confirmed cases grew from about 140,000 cases on May 8th to 155,496 for lower
predictions, 164,134 for median predictions and 173,438 for higher predictions on



CNN and TCN for Covid-19 Forecasting in France 21

Fig. 11 Optimistic and compromise predictions from March 30th to April 19th compared to
observed data

July 6th. In the same period, the observed total number of confirmed cases grew
from 138,421 to 168,335. However, observations and predictions have different
slopes. The model predicted a daily increase much higher, over 1,800 new cases,
that would decrease to a few dozen cases while observation shows a stagnation with
509 daily confirmed cases on average. This much higher predicted daily increase
can be explained by the peak in confirmed cases observed on May 6th as raw data
were used. Overall, this model was too sensitive to extreme values and it was overly
optimistic by predicting a stop of the virus spreading by July 2020.

Table 4 Performances for confirmed cases forecasting

Evaluation Lower Median Higher
First prediction 139,642 140,155 140,579
Last prediction 155,496 161,134 173,438
NRMSE 0.041 0.057 0.099
R2 0.49 0.53 0.58

5.1.3 CNN for hospitalizations forecasting

The second version of the proposed CNN was also trained to predict the number of
hospitalizations cases in France at the country level and regional level. Predictions
and observations are shown in Figure 13 and Table 5 contains the performances
of the predictions. From May 11th to May 24th, the number of observed hos-
pitalizations in France decreased from 22,115 to 17,021, with an average of 140
daily decreases in the number of hospitalizations. Lower predictions decrease from
20,966 to 17,149, median predictions from 21,554 to 18,587 and higher predictions
decrease from 22,115 to 20,292. Observations were inside the confidence intervals
for 12 of the 13 regions. Observations for the whole country were close to the lower
predictions with 3.2% NRMSE. This model was applied every two weeks on the
new data in order to compare predictions and observations and also to detect a po-
tential new wave. Predictions were very close to observations at the country level
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Fig. 12 Predictions from May 8th to July 6th compared to observed data

but not for each region. Predictions tend to be overly pessimistic, with a predicted
stagnation or increase for some regions. As we can see in Figure 13, observed hospi-
talizations from May 11th to May 24th were close to the lower predictions because
the virus spreading was stopped and new hospitalizations were low. Observations
were closer to the upper predictions from July 6th to July 16th as shown in Fig-
ure 14. This can be explained by a slow-down in hospitalized patient recoveries
(fewer people are getting out of the hospitals) while new hospitalizations are still
observed.

Table 5 Performances for hospitalizations forecasting

Evaluation Lower Median Higher
First prediction 20,967 21,554 22,115
Last prediction 7,149 18,597 20,292
NRMSE 0.032 0.06 0.12
R2 0.99 0.99 0.96

5.2 Results for TCN-based Covid-19 modeling

5.2.1 TCNs for Covid-19 hospital indicators forecasting

The TCN with quantile regression as described in the previous section is imple-
mented and trained to predict the number of hospitalizations, hospitalizations
with artificial ventilation, recoveries, and deaths. These models are compared to
the multi-task model that predicts the four targets. NRMSE is calculated for the
validation set between median predictions and observations. Country-level perfor-
mances were compared to regional model performances by calculating the sum of
regional predictions that should be close to the national level. The Hospitalization
model achieved good accuracy at the country level with 1.2% NRMSE and 0.99
R2. The sum of regional prediction accurate well with 6.8% NRMSE and 0.98 R2,
observed data were above median predictions and below higher predictions. For
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Fig. 13 Predictions from May 11th to May 24th compared to observed data.

Fig. 14 Predictions from July 6th to July 16th compared to observed data.

both regional and country predictions, the multi-task model creates wider intervals
with an upper limit than stagnate (64 daily decreases against 177 for the higher
predictions at the country level). In both cases, the observed data are close to the
median predictions with 4% RMSE but with lower R2. Performances are shown
in Table 2, and country-level French predictions are plotted in Figure 15.

Similar behavior can be observed with the Artificial Ventilation model. Ob-
served data are close to the lower predictions with 5.6% NRMSE and 0.98 R2

at the country level. Observation went below the lower limit from June 19th to
June 30th. As shown in Figure 16 (country-level French predictions), observed
data are close to the median predictions with 5.2% NRMSE and 0.96 R2 at the
regional level. The multi-task model also produced wider intervals that were ex-
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Table 6 Performances for hospitalizations predictions with TCNs

Hospitalization models Training RMSE Validation RMSE Validation R2

One-target – country 0.02 0.01 0.99
One-target – sum of regions 0.03 0.07 0.95
Multi-task – country 0.02 0.04 0.98
Multi-task – sum of regions 0.02 0.04 0.88

Fig. 15 Hospitalizations predictions from June 6th to June 30th compared to observed data.

pected because artificial ventilation hospitalization is part of the total number of
hospitalizations. The multi-task model higher limit has a 2-daily decrease aver-
age compared to 16-daily decreases at the country level. The performances of the
different models are detailed in Table 3.

Table 7 Performances for Artificial Ventilation hospitalizations predictions with TCNs

Artificial vent. models Training RMSE Validation RMSE Validation R2

One-target – country 0.03 0.09 0.98
One-target – sum of regions 0.03 0.05 0.94
Multi-task – country 0.06 0.41 0.96
Multi-task – sum of regions 0.05 0.4 0.94

The Recovery model achieved good accuracy at both country and regional
level with, respectively, 3.5% NRMSE / 0.98 R2 and 2.3% NRMSE / 0.95 R2. The
multi-task model improved the performances on both levels with respectively 1.2%
NRMSE / 0.98 R2 and 0.7% NRMSE / 0.99 R2. The intervals produced by the
multi-task model were narrower with a 277 daily increase against 410 daily increase
for higher predictions at the country level. It is coherent with the behavior observed
for hospitalization because the number of total recoveries is directly linked to the
decrease in hospitalization. Performances are shown in Table 4, and country-level
French predictions are plotted in Figure 17.
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Fig. 16 Hospitalizations predictions from June 6th to June 30th compared to observed data.

Table 8 Performances for recovery predictions with TCNs

Recovery models Training RMSE Validation RMSE Validation R2

One-target – country 0.01 0.03 0.98
One-target – sum of regions 0.01 0.02 0.98
Multi-task – country 0.01 0.01 0.95
Multi-task – sum of regions 0.01 0.01 0.99

The error rate is low with, respectively, 5.5% and 4.3% NRMSE regarding the
predictions of death number by both country and regional model. However, the
increasing trend is overestimated with a predicted daily increase of 98 compared to
the 21 daily increase observed during the validation period. The predicted increase
is lower for the multi-task models, but they produced anomalies with a small
decreasing cycle. The predictions trends are still increasing but there are decreasing
values that seem to correspond to weekends. This is related to the way data are
reported, as fewer deaths are reported on weekends and they are added to the
following weekdays. Performances are shown in Table 5, and country-level French
predictions are plotted in Figure 18.

Finally, we can say that good performance can be achieved at the country
level on the four targets with individual models. The multi-task model can achieve
good performances too, with wider or narrower intervals that are coherent with
the high uncertainty of the task. However, performances on regional data are
not homogeneous among the regions. High accuracy can be achieved in the most
impacted regions such as Ile-de-France (Paris region) or Grand-Est (north-east of
France), but lower accuracy is observed in smaller regions.

5.2.2 TCNs with transfer learning for regional forecasting

Regarding the hospitalization predictions, better performances were found with
regional training with transfer learning with a weighted average of 6.7% NRMSE,
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Fig. 17 Recovery predictions from June 6th to June 30th compared to observed data.

Table 9 Performances for deaths predictions with TCNs

Death models Training RMSE Validation RMSE Validation R2

One-target – country 0.01 0.05 0.95
One-target – sum of regions 0.03 0.04 0.94
Multi-task – country 0.01 0.01 0.95
Multi-task – sum of regions 0.01 0.01 0.50

an average of 15% NRMSE, and 4% sum of predictions NRMSE against 9%, 22%,
and 7% with the initial model, respectively. Performances are better for eight of
the 13 regions and slightly worse for five regions. The initial multi-task model
achieved worse performances with 9.5% weighted average NRMSE, 32% average
NRMSE, but presented a better sum of prediction performances, reaching 4%.
The regional multi-tasks models achieved the best weighted average performances
with 4.7% but with an average RMSE similar to the initial model with 21.5%. The
regional multi-task models improved performances in the region that contributed
the most to the number of total hospitalization while performances were worse in
other regions. All these results are shown in Figure 19.

Similar results with Artificial Ventilation predictions were found. Regional
models achieved 8.2% weighted average NRMSE, 20.5% average NRMSE, and
3% sum of predictions NRMSE against 12.3% weighted average NRMSE, 28.5%
average NRMSE, and 5% sum of predictions NRMSE. Performances were bet-
ter on nine of the 13 regions, while four regions presented slightly worse results.
Performances were worse on each region with both initial multi-task and regional
multitask models, as summarized in Figure 20.

Recoveries NRMSE were lower than 10% for 11 of the 13 regions on both
initials and regional models. Performances were improved slightly by the multi-
task regional models with 1.3% weighted average NRMSE, 2.7% average NRMSE,
and 1% sum of predictions NRMSE against respectively 3.1%, 5.4%, and 2% for
the initial model as shown in Figure 21.
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Fig. 18 Deaths predictions from June 6th to June 30th compared to observed data

Fig. 19 Performances of the 4 models on hospitalizations predictions

The weighted average NRMSE is slightly lower for deaths predictions with
multi-task regional models but decreasing predictions can be found with up to 5
values out of the 25 of the validation periods despite having no decreasing trend on
the training set. The one-target regional models’ performances are similar to the
initial models while the initial multi-task model shows slightly worse performances.
One-target initial and regional models show a high correlation with 0.94 R2 but the
predicted daily increase is off with more than 94 predicted daily increase compared
to the observed 21 daily increase, all these results are presented in Figure 22.

5.2.3 TCNs for confirmed cases forecasting

The TCN trained on French data only show signs of overfitting with 4.4% NRMSE
on the training set and 14.5% NRMSE on the validation set. Also, the projections
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Fig. 20 Performances of the 4 models on artificial ventilation hospitalizations predictions

Fig. 21 Performances of the four models on recovery predictions

of this model were incoherent because they were below the values of the input
sequences (confirmed cases can only increase or stay constant). The TCN trained
with data augmentation had similar performances with 8.2% NRMSE on the train-
ing set and a slightly better validation NRMSE of 12.6%. The projections remain
incoherent. Performances for this model are shown in Table 10.

The TCN trained on worldwide data for cumulative confirmed cases forecast-
ing achieved 4.1% NRMSE on the training set and 2.7% on the validation set. The
performances were of 1% NRMSE for the training set and also 1% NRMSE for
the validation in France. The TCN trained for daily confirmed cases forecasting
achieved 69.5% NRMSE on the training set and 83.4% NRMSE on the valida-
tion set on daily sequences. Performances are shown in Table 11 and predicted
values for the validation period are compared to observed data in Figure 23. Per-
formances for France were of 65% on the training set and 29% on the validation
set for daily sequences and of 5% and 5% on both training and validation sets for
cumulative sequences. Performances are shown in Table 12. The high NRMSE on
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Fig. 22 Performances of the four models on deaths predictions

daily sequences was expected because daily increase of confirmed cases is subject
to noise and cyclical patterns related to the organization of Covid-19 test center.
However, the actual error on cumulative cases remains low with 5% in France.
Data augmentation did not improve the performances of those two models. The
performances achieved by both TCN trained with worldwide data show that the
proposed TCN can be applied successfully to different Covid-19 related modeling
tasks like confirmed cases, hospitalizations, artificial ventilation, recoveries and
deaths forecasting. The TCN achieved good performances on both national mod-
eling (confirmed cases forecasting with worldwide data) and regional modeling
(hospitalizations forecasting with French data). Finally, the proposed TCN was
able to overcome the limitations of the classical CNN proposed in section 4.1.2.

Table 10 Performances for the TCN trained on French data only

Data Training RMSE Validation RMSE
France 4.4% 14.5%
France with data augmentation 8.2% 12.6%

Table 11 Performances for the TCN trained on worldwide data for cumulative confirmed
cases

Data Training RMSE Validation RMSE
Whole dataset (Dataset 4) 4.1% 2.7%
France 1% 1%

6 Discussions and Future Works

The results have shown that CNN and TCN can produce accurate projections of
multiple Covid-19 indicators. Best performances for confirmed cases and hospital-
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Fig. 23 Predictions and observed data from August 6th to September 9th for confirmed cases
forecasting

Table 12 Performances for the TCN trained on worldwide data for daily confirmed cases

Data Training RMSE Validation RMSE
Whole dataset (Dataset 4) 70% 83%
France (daily) 65% 29%
France (cumulative) 5% 5%

izations of the proposed CNN and TCN are compared in Figure 24. TCN seems
to achieve good accuracy, but this comparison is limited because the error rates
were calculated for different periods. Also, TCN benefited from more data. Over-
all, TCN can achieve 1% error rate, or less, in the best case. Confirmed cases from
September 11th to September 24th have been computed, as seen in Figure 25, and
high accuracy was achieved with only 0.5% NRSME.

Training time/cost is a legitimate question that is often overlooked. The size
of the datasets and the size of the models, both CNN and TCN, are small enough
for the training to be fast on consumer-grade hardware. The training of the TCN
can be achieved in about 20 minutes on high-end Nvidia Tesla V100 GPU. The
training can also be performed in a mid-range GPU, like the Nvidia GTX 1050, in
a reasonable time. The problem of the training cost is more visible in the proposed
transfer learning scheme for regional modeling, as each region needs to be trained
on different data and a single region dataset is too small to benefit from GPU
acceleration. A simple technique to reduce the training time is multi-threaded
CPU parallelization. Sequential training takes about 6 hours while parallelized
training takes about 45 minutes on two Intel Xeon E5-2698 v4 (20 cores each).
This is a costly solution, about 6500$ for the two CPUs. However, sequential
training can still be performed in a few hours with cheaper hardware.

As future work, we aim at overcoming some limitations of the current models.
For example, the actual TCN model uses constant mobility data for conditional



CNN and TCN for Covid-19 Forecasting in France 31

Fig. 24 Comparison of CNN and TCN error rates on confirmed cases and hospitalizations.

Fig. 25 Comparison of predicted confirmed cases and observed data from September 11th to
September 24th in France.

forecasting. Ideally, mobility data would be selected to create optimistic and pes-
simistic scenarios by setting mobility constraints in the conditional input of the
model. One problem is the availability of dynamic data. Many factors have an
impact on the evolution of the epidemic and cannot be monitored in real-time.
Those factors include the effectiveness of sanitary measures. People’s behavior has
changed since the first outbreak in March-April. Masks are mandatory in closed
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spaces, telecommuting is recommended, bars and restaurants can be closed earlier
on evenings, universities have limited places etc. Another important dynamical
data is regional mobility. It could be used to create projection maps of the virus
spreading. An approach using ConvLSTM to generate disease spreading maps have
been proposed by [39]. But they did not use mobility data.

The modeling tool GleamViz uses mobility data like commuting networks and
air travel but they use compartmental models only [6]. This tool is also designed for
a-posteriori analysis or scenario explorations. We believe that a hybrid solution can
be designed where, for example, compartmental models could be used to generate
artificial datasets. This synthetic data would include many scenarios based on
different sanitary constraints (an idea proposed by [4]). Another hybrid solution
would be to use deep learning to estimate the parameters of a compartmental
model, as proposed by [15] to model the US epidemic. This approach reached
good results, predicting that the number of confirmed cases would reach 5 million
on August 7th, a number that was finally attained on August 5.

Another development front is related to the multi-task model, which did not
improve performances and show signs of over-fitting on two targets (Artificial ven-
tilation hospitalizations and deaths). We believe that this naive multi-task model
with hard-shared parameters can be improved with soft-shared parameters and
regularization techniques. Constraints would also be necessary to be sure that the
predicted values are coherent (eg.: the number of death cannot decrease, artificial
ventilation hospitalizations should be lower than the total hospitalizations, etc.).
Finally, it is important to ensure that sufficient data is available to feed data-
driven models. This implies that data-driven models are less adapted to predict
the first wave of an epidemic unless automatic health data collection systems are
implemented at the regional or the establishment level. This should be debated as
automatic health data collection poses many security and ethical concern regarding
the use of data, and is subjected to strict regulation in France.

7 Conclusion

In this paper, multiple data-driven models were proposed for Covid-19 forecasting
in France. The proposed TCN can achieve a 1% error rate at the national level
for confirmed cases and hospitalizations predictions (compared to 9 and 5% for
the proposed CNN). Competitive performances were also achieved on artificial
ventilation hospitalizations, recoveries, and deaths predictions with respectively
9%, 3.5%, and 4.5% error rates. The proposed transfer-learning scheme was able to
improve accuracy in 8 regions. Several challenges had to be faced when developing
these models. The first challenge was the lack of data at the Covid19 outbreak.
Hence, one of our contributions was the design of a model based on classical
Convolutional Neural Network capable of providing short-term confirmed cases
and hospitalizations forecasts, even when few data is available.

Another challenge was the need for more representative metrics on the advance
of Covid19 epidemic. Hence, we trained a Temporal Convolutional Network and
achieved good accuracy forecasts for indicators such as confirmed cases, hospital-
ization, artificial ventilation hospitalization and recoveries.

We also had to deal with different granularity levels for our forecasts, as we
had to provide both national scale forecasts and regional/departmental forecasts.
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Indeed, the French management of Covid19 is mainly performed at regional scale,
with a national coordination for resource deployment and patient transfers when
needed. We were able to achieve good national and regional accuracy with im-
proved performances through the use of a hierarchical transfer learning scheme
presented in this work.

Our models are now being used in a integrated Covid19 monitoring and forecast
dashboard that is being developed for the Grand-Est region with the ECOVISION
project. The model can be accessed as an online black-box API with HTTPS
queries (access can be provided upon request).
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11. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using rnn encoder–decoder for statistical ma-
chine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics
(2014). DOI 10.3115/v1/D14-1179

12. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent
neural networks on sequence modeling. NIPS 2014 Workshop on Deep Learning, December
2014 (2014). URL https://nyuscholars.nyu.edu/en/publications/empirical-evalua
tion-of-gated-recurrent-neural-networks-on-sequen

13. Cun, Y.L., Boser, B., Denker, J.S., Howard, R.E., Habbard, W., Jackel, L.D., Henderson,
D.: Handwritten Digit Recognition with a Back-Propagation Network, p. 396–404. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1990)

14. DECOV: Decov gitlab repository. URL https://gitlab.com/covid\ dia/deconf
15. Deng, Q.: Dynamics and development of the covid-19 epidemic in the united states: A

compartmental model enhanced with deep learning techniques. Journal of Medical Internet
Research 22(8) (2020). DOI 10.2196/21173

16. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track covid-19 in
real time. The Lancet Infectious Diseases 20(5), 533–534 (2020). DOI 10.1016/S1473-30
99(20)30120-1

17. Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China, Italy and
France. Chaos, Solitons & Fractals 134, 109761 (2020). DOI 10.1016/j.chaos.2020.109761

18. Faranda, D., Alberti, T.: Modelling the second wave of covid-19 infections in France and
Italy via a stochastic SEIR model (2020)

19. France, S.P.: Covid-19 - dashboard - suivi de l’épidémie de covid-19 en france. URL
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ing of covid-19 cases in various european countries with arima, narnn and lstm approaches.
Chaos, Solitons & Fractals p. 110015 (2020). DOI 10.1016/j.chaos.2020.110015



CNN and TCN for Covid-19 Forecasting in France 35
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