
HAL Id: hal-02994448
https://hal.univ-reims.fr/hal-02994448

Submitted on 7 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an interactive navigation in large virtual
microscopy images on 3D displays

J. Sarton, N. Courilleau, Y. Remion, Laurent Lucas

To cite this version:
J. Sarton, N. Courilleau, Y. Remion, Laurent Lucas. Towards an interactive navigation in large
virtual microscopy images on 3D displays. International Conference on 3D Imaging (IC3D), 2016,
Liège, Belgium. pp.1-5, �10.1109/IC3D.2016.7823463�. �hal-02994448�

https://hal.univ-reims.fr/hal-02994448
https://hal.archives-ouvertes.fr

TOWARDS AN INTERACTIVE NAVIGATION IN LARGE VIRTUAL

MICROSCOPY IMAGES ON 3D DISPLAYS

J. Sarton1, N. Courilleau1, 2, Y. Remion1, and L. Lucas1

1. Université de Reims Champagne-Ardenne, CReSTIC, France

2. Neoxia, France

ABSTRACT

Acquiring biomedical images - multichannel, 3D, and/or

time-lapse - using modern techniques such as slide scanners,

confocal, or electron microscopy generates today huge data

streams. This trend raises a large number of issues related

to the management of these massive datasets. Efficient so-

lutions for data storage and processing must be developed in

order to deliver increasingly reliable and faster analyses. In

addition, the improvement of workflows also requires the re-

inforcement of visualization capabilities. In this article, we

introduce a new approach for high capacity screening of slices

based on a tool combining pyramidal images representation

and 3D visualization on multi-stereo display, in order to sim-

ulate virtual microscopy (VM). The preliminary results sug-

gest that the proposed solution facilitates the reading and the

understanding of data essentially because they are spatialized.

Index Terms— Virtual high-resolution microscopy, 3D

display, Out-of-core hierarchical visualization, GPU render-

ing.

1. INTRODUCTION

Current biomedical acquisition devices can generate ultra-high

resolution image data. Electron microscopy like digital his-

tology allows, for instance, to deliver volumes of brain tissue

with a resolution that may contain terabytes of raw data [4].

Interactive visualization of these volumetric data is essential

partly because; i) our screens are only able to display a frac-

tion of the resolutions of large images; and ii) they help to

mentally understand the three-dimensional structures of im-

ages - how cells are organized to form tissues and organs or

how a pathology changes the nature of the tissues.

In practice and thanks to the advances in computer tech-

nology, the development of VM [6, 17, 15] has partially ad-

dressed this issue. As a reminder, a VM could be defined as a

system that simulates the observation of microscopic samples

This work is supported by the French national funds (PIA2’program)

under contract No. P112331-3422142 (3DNS project). We would like to

thank the three clusters (Cap Digital and Systematic for ICT and Medicen for

Health) that support this project.

on computer mimicking a conventional microscope allowing

to observe, navigate, and annotate virtual slides.

Our solution is based on this latter concept of VM. While

many of these issues were addressed on the web, no formal

study has ever been conducted in order to assess the contri-

bution of 3D vision in this context. Our system, based on a

multiresolution pyramidal representation of stacked images,

provides a multiview display to improve the quality of the

user experience.

Like DeepZoom [1] or other equivalent methods [7, 2],

the basic idea of our tool consists in streaming visualization

of large multiresolution datasets. Nevertheless, Hortsch [12]

notes a drawback in such system used as a virtual microscope

to study virtual slides. He reports that users of such equivalent

tools were frustrated to have only a single plane focus and to

lose three-dimensional perception. To compensate these dis-

advantages, we propose a rendering of each sight on an au-

tostereoscopic screen [11]. In addition, this extension allows

the user to freely navigate - zooming in or out like Google

Earth - in the whole volume rather than in a single slide.

In order to reach this quality of navigation, we draw our

inspiration from out-of-core methods management of large

volume data on GPU used in the context of volume visual-

ization. Usually, in these approaches, a pyramidal level of

resolutions is created from the datasets. Each level of the

pyramid is subdivided into blocks of data (called bricks) of

the same size regardless the level. The Gigavoxel approach

by Crassin et al. [8] stores the bricks in a tree structure. We

rather turned to the proposed method of Hadwiger et al. [10]

who provides a virtual memory approach with a multi-level,

multi-resolution page table mechanism. This approach has

already been validated by a concrete application with interac-

tive exploration of petascale volumes [5].

The remainder of this paper is organized as follows. In

Section 2, a brief overview of the system is provided. In Sec-

tion 3, our visualization-driven pipeline is detailed. Experi-

mental results are then presented and discussed in Section 4.

Finally, conclusions are given in Section 5.

978-1-5090-5743-6/16/$31.00 c©2016 IEEE

Fig. 1. System overview: The navigation in a virtual image stack and in a given slice (1.a) induce a streaming and a construction

stage to compose a multi-view image (1.b) that can be visualized on a multiscopic 3D display (1.c). (2) An addresse translation

system with a multi-level multi-resolution page table hierarchy and a caching system on the GPU. (3) A bricked multi-resolution

pyramidal representation stored on a larger space storage.

2. METHODOLOGY

2.1. System Overview

An overview of our system architecture is shown in Fig.1.

Our method proposes a threefold concept:

• an interactive on-demand streaming system to navigate

in large multi-resolution images;

• an out-of-core data management with a GPU cache mech-

anism to manipulate very large volumes;

• a visualization on 3D multi-view displays.

The treatments to apply this rendering method on 3D dis-

play (Fig. 1.1.c) are mainly matrix computations (Fig. 1.1.b).

They are completely adapted to the massively parallel archi-

tecture of GPUs. Furthermore, the use of GPUs is recom-

mended to reach an interactive navigation. However, the re-

stricted memory space on GPUs implies the use of an ap-

propriate data representation and data structure to manipulate

huge volumes in an out-of-core way. That is why a bricked

multi-resolution data representation is proposed, computed

in a preprocessing step (Fig. 1.3). In addition, we propose

to use a multi-level, multi-resolution page table hierarchy as

data structure to address the entire volume in a virtual way

(Fig. 1.2) and, a GPU cache mechanism to store and manage

bricks. This allows us to propose an interactive on-demand,

bricks streaming system (Fig. 1.2).

The entire pipeline is driven by the visualization. When

the view changes, it triggers the following steps.

First, the system determines which bricks are needed to

the final multi-view frame construction. Second, using the

GPU data structure, it accesses these bricks. For bricks that

are not present on the GPU memory (cache miss), it send a

request to the CPU to asynchronously get them back. They

are either, in the CPU memory or on the storage device, where

the bricked multi-level volume representation is stored. Third,

when all the needed bricks are present in the GPU cache, it

builds the final multi-view frame and visualize it on the 3D

multi-view display.

The change of the view position can result to one of the

following actions: i) a zoom in/out on a given slide, which in-

duces a pyramid navigation; ii) a [x, y] pan in a given slide in

the same pyramid level; or iii) a slice change (volume depth)

in the same pyramid level.

2.2. Data representation

Before being able to use the data in the real-time pipeline for

the navigation, the volume needs to be transformed. This step

consists in the creation of a bricked pyramidal data represen-

tation (Fig. 1.3). The bricked representation allows to manip-

ulate small (e.g., 163 or 323 pixels) independent bricks rather

than the whole large volume. In contrast to Hadwiger et al.

[10], the acquisition of the whole volume is considered to be

already completed and it does not need to handle tile streams

from a microscope. Thus, the brick creation step can be done

once on the whole volume in a preprocessing step.

This data representation is then fully stored on a large stor-

age space like a hard drive disk. It is possible to stock these

data in a compressed format in order to manipulate smaller

files. The chosen compression algorithm should be able to

compute the extraction step in real-time before providing the

brick to the GPU memory.

Fogal et al. [9] propose a study on the optimal size for

the bricks. It is shown to be more interesting to have a brick

size of 1283 or 2563 for the storage or for the data transfer

but it is preferable, for the renderer, to manipulate smaller

bricks, such as 323. However, this study was made for the

visualization via volume ray-casting. In our case, it could be

more interesting to use even smaller brick size in our renderer.

To perform this, the use of the rebricking system presented by

Fogal et al. [9] could considered.

It can note that acquisitions of biomedical data may pro-

vide an anisotropic representation. The data representation

shown is able to deal with this, by applying different down-

sampling ratios for each axes of the volume and for each level

in the pyramidal representation.

3. VISUALIZATION-DRIVEN PIPELINE

3.1. Volume data construction

To compute the final multi-view image that will be displayed

on the multi-view screen (Sec. 3.2), it needs to create the N

images (N = number of view of the display) required to its

composition. The navigation is performed in a virtual volume

(Fig. 1.1.a) that represents the size of the whole volume to

the highest resolution. In this virtual volume, a 3D position

and a level of resolution in the pyramid are determined. The

3D position could make reference to upper-left corner of the

reference area to visualize. The level of resolution is chosen

by the user. From the previously described information and

the definition of the screen, the system deduce which bricks

will be required to compose the N images. Finally, for each

required bricks, brick requests are sent to the cache manager.

The data structure used is a multi-level multi-resolution

page table hierarchy [10]. It allows the addressing of the

whole volume with the concept of virtual memory. The vol-

ume is virtualized and we reach it with the translation of a

virtual address to a physical address thanks to the page table

hierarchy. In the case where the volume is too massive, we

can apply the same concept of virtualization on the page table

itself. This is why we talk about multi-level table. According

to Hadwiger et al. [10], such hierarchy with two levels al-

lows the addressing of several peta-bytes of data and is more

appropriate than a tree structure. To handle this data struc-

ture we use the memory of the GPUs. Two pools are created,

one for the page table hierarchy and the other one for the data

(bricks, Fig. 1.2). The cache updates are managed with a

Least Recently Used (LRU) cache.

When the navigation is only done through the pyramid of

resolution (meaning a fixed [x, y] camera position), it could

be interesting to use a strategy to handle a progressive load-

ing of levels of resolution. When this case occurs, the bricks

of lower resolution could be used while the ones from the re-

quested resolution are not loaded in the GPU memory.

3.2. 3D display

Our system uses an N -view autostereoscopic display. We

now describe our proposal to create a viewable frame on such

screens. This process has a strong dependency on the display

hardware (definition and view number N).

To create a viewable frame, it is required to generate the

N images that compose it. These images are created accord-

ing to a reference image. The reference image is the one the

user is interested in; it is the one corresponding to the 3D po-

sition used during the virtual volume navigation.

... ...

... ...

H

W

H

W W

H

[
xref+n∆ x

yref

zref +n∆z
][

xref−n∆x

yref

zref−n∆z
]

k
ak

b

[x ref , y ref , zref]

Fig. 2. Computing area positions in the selected slices.

Let W be the width of the display definition, H the height

of the display definition and p = [xref , yref , zref], the posi-

tion of the upper-left corner for the reference image. To create

this image, it has to get all the needed bricks ∈ [xref , xref +
W] and ∈ [yref , yref +H] in the slice zref .

We select, in the volume, kb slices before and ka slices

after the reference slice position (zref). The value ka may be

different from kb, depending on the number of views of the

display (e.g., if the display requires an even number of views)

and where the camera is positioned in the volume (e.g., if the

camera position is at the edge - front or back - of the volume).

To pick up the images around the reference one, we apply

an offset on the x-axis (noted ∆x), encoding the horizontal

disparity [13, 14] and a ∆z for the slice position. In this

way and according to the previous notations, the positions

for the images before, with n ∈ [1; kb], are pn = [xref −
n∆x, yref , zref − n∆z] and for the images after, with n ∈
[1; ka], are pn = [xref + n∆x, yref , zref + n∆z] (Fig. 2). In

the same way as the reference image, we need all the bricks

from positions p to p.x+W and p.y+H in the corresponding

p.z slice.

All the required information are now known and the brick

requests can be sent to the cache, in order to construct the

N images. However, cache misses may appear if the camera

position was changed from the previous rendering pass. In

this case, we could consider different strategies. While the

cache is fetching missing bricks, we can start building images

as soon as all their required bricks are available. This case

could occur when the position of the camera changes on the

x or z-axis. Sadly, because all images required to produce

Fig. 3. Results: The left image is the reference image used, rebuilt from the bricks. The right image shows the result of the

8-views frames composition.

the multi-view frame are sharing the same yref , cache misses

could happened when the camera moves on this axis, there is

no other choice than waiting for all missing bricks from the

cache.

In order to obtain a valuable image, each of the N pre-

build views Vi
c(x, y) must be combined conforming to the

autostereoscopic display device according to the expression

Vfinal
c (x, y) =

∑
i V

i
c(x, y) F

i
c(x, y) with c ∈ {R,G,B}.

As shown in Figure 4, this combination is achieved by select-

ing each color component of the final image in the view lo-

cally indicated by dedicated filtering masks F i : {0, 1}
3
[Z2]

(specific to each 3D display). This process can be easily im-

plemented with a simple GPU kernel. Regarding the filters,

they are provided as inputs. So they can be loaded once on

the GPU during an initialization step.

Finally, the final frame is ready to be displayed on the 3D

display once the sum of the N resulting matrix is done.

x x x+ + =
filter 0 filter 1 filter 2image 0 image 1 image 2

Fig. 4. Filters application on views. [16]

4. RESULTS AND DISCUSSION

Given the following configuration: an high definition screen

(1920× 1080), a brick size of 323, ∆x = 4 and ∆z = 1. The

number of bricks required to compose the final multi-view im-

age will be, in the worst case, 60×34×2 = 4080 bricks. For a

volume with 8-bit pixel encoding, it will take around 130MB.

Modern GPU memory can easily handle this, meaning there is

no need to consider strategies for the GPU memory overflow.

It allows us more freedom on the number of bricks loaded in

the cache. This given 323 brick size allows the user to nav-

igate freely and decently in the volume before getting cache

misses.

In order to perform the tests of our system we were us-

ing an HD autostereoscopic display using a 16:10 aspect ra-

tio. This display is an 8-view autostereoscopic display with

a definition of 1920 × 1200. The sample we used was repre-

sentation of a flower (from [3]) in a discretized volume 10243

of unsigned 8-bit where the voxels are uniformly spaced by

60 µm. In order to get a better rendering, we decided to do

a preliminary processing on the volume to transform it to a

20483 volume, using a bicubic interpolation. We applied this

transformation in order to have one voxel per pixel for a high

definition display. In addition, we applied a LUT in order to

have a volume encoded on 3 channels in colours. The result

is shown in Figure 3.

We chose the delta values [∆x,∆z] = [4, 1]. It appears

that the value of ∆z is directly limited by the physical dis-

tance between two slices. With a distance too large between

slices, even if ∆z = 1, the visualization will not be smooth.

However, if the distance between two slices is very short and

∆z is too small, the user will not have the feeling to move in

the depth of volume. In the same way, the problem appears on

the x-axis where a high ∆x gives an unpleasant feeling when

the user changes of perspective; furthermore, it introduces an

undesirable blur effect.

Thus, the objective to merge the concept of Deep Zoom

applied on a 3D volume displayed on a multiscopic display

was conclusive and a real depth effect can be observed. How-

ever, perception was only visually assessed by the authors of

this paper, and a statistical study on a larger sample of users

is required. In order to increase the quality of the system, the

study should be focused on the feedback of a pool of persons

on their perceptions on multiple samples with different set-

tings. Moreover, the strategies used to create the images may

be improved when cache misses on y-axis appear.

5. CONCLUSION

We have proposed in this article a 3D vision extension to VM.

This approach allows users to interactively navigate through

large multiresolution datasets while preserving the depth in-

formation. To achieve this we suggest a GPU visualization-

driven pipeline based on an adapted data structure. The pre-

liminary results suggest that the proposed solution facilitates

the reading and the understanding of data essentially because

they are spatialized.

6. REFERENCES

[1] Deep zoom. https://www.microsoft.com/

silverlight/deep-zoom. [Online; accessed 08-

October-2016].

[2] Openseadragon. http://openseadragon.

github.io. [Online; accessed 08-October-2016].

[3] University of zurich - department of informat-

ics - visualization and multimedia lab. http:

//www.ifi.uzh.ch/en/vmml/research/

datasets.html. [Online; accessed 08-October-

2016] We acknowledge the Computer-Assisted

Paleoanthropology group and the Visualization and

MultiMedia Lab at University of Zurich (UZH) for the

acquisition of the uCT datasets.

[4] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg,

T. Dickscheid, M-É. Rousseau, S. Bludau, P-L. Bazin,

L. B. Lewis, A-M. Oros-Peusquens, N. J. Shah, T. Lip-

pert, K. Zilles, and A. C. Evans. BigBrain: An

ultrahigh-resolution 3d human brain model. Science,

340(6139):1472–1475, 2013.

[5] J. Beyer, M. Hadwiger, A. Al-Awami, W. K. Jeong,

N. Kasthuri, J. W. Lichtman, and H. Pfister. Explor-

ing the Connectome: Petascale volume visualization of

microscopy data streams. IEEE Computer Graphics and

Applications, 33(4):50–61, 2013.

[6] U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc,

A. Sussman, and J. Saltz. The virtual micro-

scope. IEEE Transactions on Information Technology

in Biomedicine, 7(4):230–248, 2003.

[7] G. Corredor, M. Iregui, V. Arias, and E. Romero. Flexi-

ble architecture for streaming and visualization of large

virtual microscopy images. In Medical Computer Vi-

sion. Large Data in Medical Imaging, number 8331 in

Lecture Notes in Computer Science, pages 34–43. 2013.

[8] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann.

Gigavoxels: Ray-guided streaming for efficient and de-

tailed voxel rendering. In Symposium on Interactive 3D

graphics and games, pages 15–22. ACM, 2009.

[9] T. Fogal, A. Schiewe, and J. Kruger. An analysis of scal-

able GPU-based ray-guided volume rendering. In IEEE

Symposium on Large-Scale Data Analysis and Visual-

ization (LDAV), pages 43–51, 2013.

[10] M. Hadwiger, J. Beyer, W-K. Jeong, and H. Pfister. In-

teractive volume exploration of petascale microscopy

data streams using a visualization-driven virtual mem-

ory approach. IEEE Transactions on Visualization and

Computer Graphics, 18(12):2285–2294, 2012.

[11] N. S. Holliman, N. A. Dodgson, G. E. Favalora, and

L. Pockett. Three-dimensional displays: A review and

applications analysis. IEEE Transactions on Broadcast-

ing, 57(2):362–371, 2011.

[12] M. Hortsch. From microscopes to virtual reality – How

our teaching of histology is changing. Journal of Cytol-

ogy & Histology, 4(3), 2013.

[13] G. R. Jones, D. Lee, N. S. Holliman, and D. Ezra. Con-

trolling perceived depth in stereoscopic images. volume

4297, pages 42–53, 2001.

[14] L. Lucas, C. Loscos, and Y. Rémion. 3D Video: From

Capture to Diffusion. John Wiley & Sons, 2013. Chap-

ters 4 and 14.

[15] J. Molin, A. Bodén, D. Treanor, M. Fjeld, and C. Lund-

ström. Scale Stain: Multi-resolution feature en-

hancement in pathology visualization. arXiv preprint

arXiv:1610.04141, 2016.

[16] O. Nocent, S. Piotin, A. Benassarou, M. Jaisson, and

L. Lucas. 3d displays and tracking devices for your

browser: A plugin-free approach relying on web stan-

dards. In International Conference on 3D Imaging

(IC3D), pages 1–8, 2012.

[17] C-W. Wang, C-T. Huang, and C-M. Hung. Vir-

tualMicroscopy: Ultra-fast interactive microscopy of gi-

gapixel/terapixel images over internet. Scientific Re-

ports, 5:14069, 2015.

