S. M. Rowe, S. Miller, and E. J. Sorscher, Cystic Fibrosis, New England Journal of Medicine, vol.352, issue.19, pp.1992-2001, 2005.

N. Pillarisetti, E. Williamson, B. Linnane, B. Skoric, C. F. Robertson et al., Infection, Inflammation, and Lung Function Decline in Infants with Cystic Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.184, issue.1, pp.75-81, 2011.

J. F. Chmiel, M. Berger, and M. W. Konstan, The Role of Inflammation in the Pathophysiology of CF Lung Disease, Clinical Reviews in Allergy & Immunology, vol.23, issue.1, pp.005-028, 2002.

S. Halldorsson, T. Gudjonsson, M. Gottfredsson, P. K. Singh, G. H. Gudmundsson et al., Azithromycin Maintains Airway Epithelial Integrity duringPseudomonas aeruginosaInfection, American Journal of Respiratory Cell and Molecular Biology, vol.42, issue.1, pp.62-68, 2010.

S. Rajan, G. Cacalano, R. Bryan, A. J. Ratner, C. U. Sontich et al., Pseudomonas aeruginosaInduction of Apoptosis in Respiratory Epithelial Cells, American Journal of Respiratory Cell and Molecular Biology, vol.23, issue.3, pp.304-312, 2000.

M. Berger, Inflammation in the Lung in Cystic Fibrosis A Vicious Cycle That Does More Harm Than Good?, Cystic Fibrosis, vol.3, pp.119-142, 1990.

J. A. Voynow, B. M. Fischer, B. C. Roberts, and A. D. Proia, Basal-like Cells Constitute the Proliferating Cell Population in Cystic Fibrosis Airways, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.8, pp.1013-1018, 2005.

N. T. Trinh, O. Bardou, A. Privé, E. Maillé, D. Adam et al., Improvement of defective cystic fibrosis airway epithelial wound repair after CFTR rescue, European Respiratory Journal, vol.40, issue.6, pp.1390-1400, 2012.

C. Hubeau, M. Lorenzato, J. P. Couetil, D. Hubert, D. Dusser et al., Quantitative analysis of inflammatory cells infiltrating the cystic fibrosis airway mucosa, Clinical & Experimental Immunology, vol.124, issue.1, pp.69-76, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00152211

M. W. Leigh, J. E. Kylander, J. R. Yankaskas, and R. C. Boucher, Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients., American Journal of Respiratory Cell and Molecular Biology, vol.12, issue.6, pp.605-612, 1995.

T. Piorunek, A. Marszalek, and W. Biczysko, Correlation between the stage of cystic fibrosis and the level of morphological changes in adult patients, J Physiol Pharmacol, vol.59, pp.565-572, 2008.

H. A. Tiddens, L. P. Koopman, R. K. Lambert, W. M. Elliott, W. C. Hop et al., Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs, European Respiratory Journal, vol.15, issue.4, pp.735-742, 2000.

M. Dovey, C. L. Wisseman, and V. L. Roggli, Ultrastructural morphology of the lung in cystic fibrosis, J Submicrosc Cytol Pathol, vol.21, pp.521-534, 1989.

C. Coraux, C. Martinella-catusse, B. Nawrocki-raby, R. Hajj, H. Burlet et al., Differential expression of matrix metalloproteinases and interleukin-8 during regeneration of human airway epitheliumin vivo, The Journal of Pathology, vol.206, issue.2, pp.160-169, 2005.

, J Pathol, vol.206, issue.2, pp.160-169, 2005.

F. Dupuit, D. Gaillard, J. Hinnrasky, E. Mongodin, S. De-bentzmann et al., Differentiated and functional human airway epithelium regeneration in tracheal xenografts, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.278, issue.1, pp.L165-L176, 2000.

K. R. Schiller, P. J. Maniak, and S. M. O'grady, Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair, American Journal of Physiology-Cell Physiology, vol.299, issue.5, pp.C912-C921, 2010.

K. L. Kirk, CFTR channels and wound healing. Focus on ?Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair?, American Journal of Physiology-Cell Physiology, vol.299, issue.5, pp.C888-C890, 2010.

A. Schwab, V. Nechyporuk-zloy, A. Fabian, and C. Stock, Cells move when ions and water flow, Pflügers Archiv - European Journal of Physiology, vol.453, issue.4, pp.421-432, 2006.

A. Girault and E. Brochiero, Evidence of K+ channel function in epithelial cell migration, proliferation, and repair, American Journal of Physiology-Cell Physiology, vol.306, issue.4, pp.C307-C319, 2014.

R. Hajj, P. Lesimple, B. Nawrocki-raby, P. Birembaut, E. Puchelle et al., Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis, The Journal of Pathology, vol.211, issue.3, pp.340-350, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141220

A. Cantin, Cystic fibrosis lung inflammation: early, sustained, and severe., American Journal of Respiratory and Critical Care Medicine, vol.151, issue.4, pp.939-941, 1995.

T. Z. Khan, J. S. Wagener, T. Bost, J. Martinez, F. J. Accurso et al., Early pulmonary inflammation in infants with cystic fibrosis., American Journal of Respiratory and Critical Care Medicine, vol.151, issue.4, pp.1075-1082, 1995.

K. Balough, M. Mccubbin, M. Weinberger, W. Smits, R. Ahrens et al., The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis, Pediatric Pulmonology, vol.20, issue.2, pp.63-70, 1995.

M. W. Konstan, K. A. Hilliard, T. M. Norvell, and M. Berger, Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation., American Journal of Respiratory and Critical Care Medicine, vol.150, issue.2, pp.448-454, 1994.

R. A. Klocke, Transition., American Journal of Respiratory and Critical Care Medicine, vol.150, issue.3, pp.607-607, 1994.

D. S. Armstrong, K. Grimwood, R. Carzino, J. B. Carlin, A. Olinsky et al., Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis, BMJ, vol.310, issue.6994, pp.1571-1572, 1995.

M. W. Konstan and M. Berger, Current understanding of the inflammatory process in cystic fibrosis: Onset and etiology, Pediatric Pulmonology, vol.24, issue.2, pp.137-142, 1997.

M. Bodas and N. Vij, The NF?B signalling in cystic fibrosis lung disease: pathophysiology and the therapeutic potential, Discov Med, vol.9, pp.346-356, 2010.

T. L. Bonfield, M. W. Konstan, and M. Berger, Altered respiratory epithelial cell cytokine production in cystic fibrosis????, Journal of Allergy and Clinical Immunology, vol.104, issue.1, pp.72-78, 1999.

M. N. Becker, M. S. Sauer, M. S. Muhlebach, A. J. Hirsh, Q. Wu et al., Cytokine Secretion by Cystic Fibrosis Airway Epithelial Cells, American Journal of Respiratory and Critical Care Medicine, vol.169, issue.5, pp.645-653, 2004.

S. F. Okada, C. M. Ribeiro, J. I. Sesma, L. Seminario-vidal, L. H. Abdullah et al., Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways, American Journal of Respiratory Cell and Molecular Biology, vol.49, issue.5, pp.814-820, 2013.

D. Y. Koller, I. Nething, J. Otto, R. Urbanek, and I. Eichler, Cytokine concentrations in sputum from patients with cystic fibrosis and their relation to eosinophil activity., American Journal of Respiratory and Critical Care Medicine, vol.155, issue.3, pp.1050-1054, 1997.

T. L. Bonfield, J. R. Panuska, M. W. Konstan, K. A. Hilliard, J. B. Hilliard et al., Inflammatory cytokines in cystic fibrosis lungs., American Journal of Respiratory and Critical Care Medicine, vol.152, issue.6, pp.2111-2118, 1995.

M. S. Muhlebach, P. W. Stewart, M. W. Leigh, and T. L. Noah, Quantitation of Inflammatory Responses to Bacteria in Young Cystic Fibrosis and Control Patients, American Journal of Respiratory and Critical Care Medicine, vol.160, issue.1, pp.186-191, 1999.

C. J. Dakin, A. H. Numa, H. E. Wang, J. R. Morton, C. C. Vertzyas et al., Inflammation, Infection, and Pulmonary Function in Infants and Young Children with Cystic Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.7, pp.904-910, 2002.

D. Mango, E. Zar, H. J. Prince, and A. , Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8, J Clin Invest, vol.96, pp.2204-2210, 1995.

M. L. Fulcher, S. Gabriel, and K. A. Burns, Well-differentiated human airway epithelial cell cultures, Methods Mol Med, vol.107, issue.23, pp.183-206, 2005.

C. Wojnarowski, T. Frischer, E. Hofbauer, C. Grabner, W. Mosgoeller et al., Cytokine expression in bronchial biopsies of cystic fibrosis patients with and without acute exacerbation, European Respiratory Journal, vol.14, issue.5, pp.1136-1144, 1999.

S. R. Hays and J. V. Fahy, Characterizing Mucous Cell Remodeling in Cystic Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.174, issue.9, pp.1018-1024, 2006.

I. Vachier, A. M. Vignola, and G. Chiappara, Inflammatory features of nasal mucosa in smokers with and without COPD, Thorax, vol.59, issue.4, pp.303-307, 2004.

P. K. Jeffery, Comparison of the Structural and Inflammatory Features of COPD and Asthma Giles F. Filley Lecture, Chest, vol.117, issue.5, pp.251S-260S, 2000.

F. Giles, Filley lecture, Chest, vol.117, pp.251-256, 2000.

C. M. Ribeiro, A. M. Paradiso, U. M. Schwab, J. Perez-vilar, L. Jones et al., Chronic Airway Infection/Inflammation Induces a Ca2+i-dependent Hyperinflammatory Response in Human Cystic Fibrosis Airway Epithelia, Journal of Biological Chemistry, vol.280, issue.18, pp.17798-17806, 2005.

U. Lappalainen, J. A. Whitsett, S. E. Wert, J. W. Tichelaar, and K. Bry, Interleukin-1? Causes Pulmonary Inflammation, Emphysema, and Airway Remodeling in the Adult Murine Lung, American Journal of Respiratory Cell and Molecular Biology, vol.32, issue.4, pp.311-318, 2005.

M. Herfs, P. Hubert, A. L. Poirrier, P. Vandevenne, V. Renoux et al., Proinflammatory Cytokines Induce Bronchial Hyperplasia and Squamous Metaplasia in Smokers, American Journal of Respiratory Cell and Molecular Biology, vol.47, issue.1, pp.67-79, 2012.

P. Demoly, J. Simony-lafontaine, P. Chanez, J. L. Pujol, N. Lequeux et al., Cell proliferation in the bronchial mucosa of asthmatics and chronic bronchitics., American Journal of Respiratory and Critical Care Medicine, vol.150, issue.1, pp.214-217, 1994.

R. Hajj, T. Baranek, R. Le-naour, P. Lesimple, E. Puchelle et al., Basal Cells of the Human Adult Airway Surface Epithelium Retain Transit-Amplifying Cell Properties, STEM CELLS, vol.25, issue.1, pp.139-148, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00141214

J. A. Elias, Z. Zhu, G. Chupp, and R. J. Homer, Airway remodeling in asthma, Journal of Clinical Investigation, vol.104, issue.8, pp.1001-1006, 1999.

J. A. Voynow, B. M. Fischer, D. E. Malarkey, L. H. Burch, T. Wong et al., Neutrophil elastase induces mucus cell metaplasia in mouse lung, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.287, issue.6, pp.L1293-L1302, 2004.

K. Yanagihara, M. Seki, and P. W. Cheng, Lipopolysaccharide Induces Mucus Cell Metaplasia in Mouse Lung, American Journal of Respiratory Cell and Molecular Biology, vol.24, issue.1, pp.66-73, 2001.

J. A. Voynow, S. J. Gendler, and M. C. Rose, Regulation of Mucin Genes in Chronic Inflammatory Airway Diseases, American Journal of Respiratory Cell and Molecular Biology, vol.34, issue.6, pp.661-665, 2006.

B. Thomas, P. Aurora, H. P. Spencer, M. Elliott, A. Rutman et al., Persistent disruption of ciliated epithelium following paediatric lung transplantation, European Respiratory Journal, vol.40, issue.5, pp.1245-1252, 2012.

C. Danel, S. C. Erzurum, N. G. Mcelvaney, and R. G. Crystal, Quantitative assessment of the epithelial and inflammatory cell populations in large airways of normals and individuals with cystic fibrosis., American Journal of Respiratory and Critical Care Medicine, vol.153, issue.1, pp.362-368, 1996.

C. Danel, S. C. Erzurum, N. G. Mcelvaney, and R. G. Crystal, Quantitative assessment of the epithelial and inflammatory cell populations in large airways of normals and individuals with cystic fibrosis., American Journal of Respiratory and Critical Care Medicine, vol.153, issue.1, pp.362-368, 1996.

L. A. Clarke, L. Sousa, C. Barreto, and M. D. Amaral, Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies, Respiratory Research, vol.14, issue.1, p.38, 2013.

J. Roux, T. Jolly, S. Collet, P. Birembaut, and C. Coraux, Epithelial factors produced during the remodelling of the human airway epithelium, Journal of Cystic Fibrosis, vol.8, p.S23, 2009.

, Human tissues were transferred to our laboratory in RPMI 1640 medium supplemented with 20 mM HEPES (Gibco) and antibiotics (200 UI/ml penicillin, 200 µg/ml streptomycin; Gibco)

, Figure 5?figure supplement 2. Effects of Silencing of MLYCD in RPMI-8226 cells.

A. D0, A. D7, A. D15, A. D25, and A. D35, Switzerland) and seeded (5x10 4 cells per membrane) on type IV collagen (Sigma Aldrich)-coated porous 12 mm from the upper compartment (ALI D0) and the epithelium was allowed to differentiate at the ALI with supplemented BEGM/DMEM/F12 of 5% CO2. In some experiments, the ALI medium was supplemented with a cocktail of pro-inflammatory cytokines called cytomix from ALI D0 to ALI D35, Nasal HAE cells (P0) were suspended in CnT17 medium (CELLnTEc

, CF and CF HAE cells were plated on type IV collagen-coated plastic flasks for cell proliferation in CnT17 medium. When confluent, the cells were detached by tryspine/EDTA (Gibco) treatment and called cells at passage P1 (P1)

. Zoeterwoude, The Netherlands), frozen in liquid nitrogen and stored at -80°C until use for histology and immunohistochemistry

, Seven-micrometer frozen sections were cut with a microtome, collected on superfrost slides (Thermo Scientific, Braunschweig, Germany), and either stained with hematoxylin-eosin using Rapid-Chrome Frozen Sections Staining Kit, ) and mounted in Eukitt (Electron Microscopy Sciences

K. Monteith, Phosphate-buffered Saline (PBS) v1 (protocols.io.p4rdqv6), 2018.

, BSA 10% for 30 minutes at room temperature (RT) to prevent unspecific bindings. ALI D35 sections were incubated with mouse anti-human CK13 (dilution 1/1000), mouse anti-MUC

, Figure 5?figure supplement 1. Proportions of anti-prM antibodies from both D2VLP immunization groups were measured using an epitope-blocking ELISA., vol.7, p.15

, diluted in PBS-BSA 3 % overnight at 4°C. After washes with PBS at RT, sections were blocked again with PBS-BSA 10 % for 30 minutes at RT, then incubated with the goat anti-mouse Alexa Fluor 488 secondary antibodies diluted in PBS/BSA 3% (dilution 1/200) for 60 minutes at RT, washed with PBS, and D35 culture sections with mouse anti-human Ki67 antibodies (dilution 1/10)

, MDCK cells were infected with influenza A virus and were fixed at 7 h postinfection. The cells were subjected to indirect immunostaining with anti-alpha-tubulin monoclonal antibody (clone DM1A, Sigma-Aldrich) and Alexa Fluor 488-conjugated anti-mouse Ig., Microbiology and Immunology, vol.59, issue.2, pp.i-i, 2015.

. Fab, Fab fragments

J. Immunoresearch, PA) to block free sites of mouse anti-MUC-5B antibodies, and finally stained with anti-MUC-5AC antibodies followed by incubation with Alexa Fluor 594-goat anti-mouse antibodies (dilution 1/200 in PBS/BSA 3%; Molecular Probe

, Author response image 1. Anti-DDR1 mAbs inhibit collagen-induced DDR1 clustering.

, Figure 8?figure supplement 1. 5-Ethynyl-2?-deoxyuridine (EdU) incorporation assay.

, Figure 8?figure supplement 1. 5-Ethynyl-2?-deoxyuridine (EdU) incorporation assay.