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Abstract

Edge computing relies on devices at the edge of the network to best meet the
application’s needs, such as low communication latency and data caching.
However, unbalanced networks and resource heterogeneity are challenging
factors when optimizing data transfers and applications’ performances in the
edge. In this paper, we explore these two concerns through a comprehensive
set of benchmarks and illustrate their importance with the help of two ele-
ments that should be part of any edge computing toolkit: data locality and
context awareness. Thanks to the benchmarks, we highlight some pitfalls
and opportunities that may be met when trying to deploy applications on
the edge.

Keywords: Data locality, Context-awareness, distributed scheduling, DHT
storage, performance evaluation, communication bottleneck, edge
computing, fog computing, cloud computing

1. Introduction

Edge computing appears as an emerging paradigm enabling the use of
proximity resources for data processing. It advocates for the deployment at
the network edge of services traditionally placed on cloud platforms. Just
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like the almost similar concept of fog computing, this paradigm is presented
as an alternative to ”pure cloud” solutions, particularly when considering
telecommunications (5G networks, for example) or IoT (Internet of Things)
applications. These applications can be very data-intensive, producing and
transferring data to cloud platforms for further analysis or storage.

Many problems may arise from this pure cloud model, as underlined by
several authors [1, 2, 3]. Among these problems, we may cite security and
privacy concerns, but also latency issues. Data transfers between IoT de-
vices and cloud platforms may be subject to considerable latency, which may
negatively affect application behavior. For example, the data transfer to a
remote facility may induce non-negligible delays and slow down data process-
ing and decision-making. For this reason, next-generation telecommunication
networks such as 5G rely on services running at the very antenna stations
to provide very low latency applications to the final users [4]. Hence, Edge
computing is a paradigm in which substantial computing and storage re-
sources are placed at the Internet’s edge in close proximity to mobile devices
or sensors [5].

Applications that rely on distant services may also freeze or fail if the
network connection is unstable or faulty. Placing such applications on edge
devices may allow at least a partial operation even in cases of network failure,
enough to respect SLA (Service-Level Agreement) commitments. By using
resources at the edge of the network, edge computing also promotes the idea
of exploiting resources near to data production devices, reducing amounts
of data transferred between IoT devices and cloud platforms. Also, edge
computing emphasizes QoS (Quality of Service) through the proximity to
end-users, enabling superior users’ experience and reduced latencies [6].

To be able to provide such service level, edge platforms should ensure
that the services are deployed close to the end devices and that the comput-
ing resources are assigned according to their capabilities at run time. For
this, they have to cope with some ”defining characteristics” pointed out by
Bonomi et al. [7], including location awareness, mobility, and heterogene-
ity. On the one hand, keeping the data local produces two main benefits:
reducing wireless access traffic and easing Internet cloud load [6]. Achieving
data locality is then one of the key objectives for edge computing [8]. On the
other hand, nodes heterogeneity and mobility will affect application execu-
tion. Edge nodes are heterogeneous, possibly displaying a vast set of RAM
(Random Access Memory) capacities, CPU (Computer Processing Unit) per-
formances, storage supports, and network bandwidth. Also, connectivity to

2



edge nodes may suffer from unreliable or dynamic networks (Bluetooth, mo-
bile, LoRaWAN, etc.) contrarily to cloud servers [9]. Sometimes, resources
are even scattered over intermittently connected personal and vehicular plat-
forms [6].

In other words, to fulfill edge promises and achieve reduced latency, we
need to reinforce data locality through a conscious exploration of heteroge-
neous resources at the network edge. One question arises from this situation:
how much the heterogeneity of resources and networks may compromise the
performance of edge applications and platforms, and how can we prevent it?
To tackle this question, two main aspects should be considered: (i) first, the
effects of heterogeneity on communications and data management; and (ii)
the effects of heterogeneity on the tasks’ execution and placement.

Therefore, this paper explores these questions by performing practical
experiments on a real edge platform, introduced in previous works [10]. This
experimental platform allows us to set very heterogeneous environments,
connecting HPC (High-Performance Computing) servers and cloud nodes
to small nanocomputers, allowing us to investigate the heterogeneity impact
in communications, data storage, and service execution. Hence, the current
paper uses that platform to develop the preliminary ideas for data locality
control in P2P (Peer-to-Peer) networks initially presented in [11, 12]. Thanks
to the data locality control, we are able to evaluate the performance of up-
link and downlink communications involved in a DHT (Distributed Hash
Table) storage process, and at several degrees (from the local network to the
cloud). All these observations allow us to compile a set of recommendations
to optimize the deployment of edge computing and storage services.

Also, this paper presents a new section dedicated to task scheduling in a
distributed computing edge environment. Using real nodes and detailed task-
level tracking, we show how the overload of a node can impact the execution
of tasks, and how context information may be used to improve the efficiency
of the schedulers.

Therefore, the contributions of this paper include:

• A comprehensive benchmark of edge ↔ cloud and edge ↔ edge per-
formances for data transmission and storage, obtained in real environ-
ments

• Benchmarks with devices presenting a variety of performance profiles
and capabilities
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• The evaluation of a data-locality strategy for DHT storage and the
assessment of its impact on low-end edge devices

• The implementation of a context-aware scheduler and its benchmark
on a network with heterogeneous computing devices

The remainder of this paper is organized as follows: Section 2 presents
the background works and definitions around edge (and fog) computing, and
discuss related work on edge computing benchmarks. Section 3 presents the
main architecture and operation mechanisms that lie at the core of Cloud-
FIT, the distributed computing framework used as execution platform for
this work. Section 4 discusses data locality issues, presenting strategies to
embrace data storage inside an edge computing platform, followed by real
benchmarks and the analysis of the performances from these strateiges. Sec-
tion 5 continues the discussion towards resource heterogeneity, suggesting
strategies for context-awareness scheduling on the edge and presenting a set
of experiments that illustrate the importance of context-aware scheduling on
task execution on the edge. Finally, section 6 presents our conclusions and
future research directions.

2. Background and Related Work

The dissemination of nearby devices with non-negligible computational
capabilities promotes the production of large amounts of data as well as the
integration of these devices into the data processing. More and more services
that once were restricted to powerful servers are now being relocated close to
the final users, such as in the case of artificial intelligence [13] or virtual reality
games [14]. Over the last decade, several initiatives like pervasive grids [15],
opportunistic edge computing [8], mobile cloud computing [6], mobile edge
computing [16], cloudlets [17], edge-centered computing [18] or fog computing
[7] have been proposed to move some applications and services closer to
the end user. On the other hand, edge computing is a paradigm in which
substantial computing and storage resources (cloudlets, micro datacenters,
or fog nodes) are placed at the Internets edge in close proximity to mobile
devices or sensors [5].

Today, both edge and fog computing domains share most definitions [19,
3, 9] and challenges. For example, the term ”fog” was coined to express the
idea of services surrounding users and data sources [7], enabling computing
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Figure 1: Conceptual architecture from a fog/edge infrastructure [20]

services to reside at the edge of the network, emphasizing proximity to end-
users and resulting in superior user experience and redundancy in case of
failure [6]. The similarities between edge and fog computing can be seen in
the scenario from Figure 1, which depicts the relationship between IoT, fog
nodes (which are located at the edge of the network), and the cloud [20].

Hence, from a more systemic point of view, edge computing can be de-
fined as an application deployment strategy to explore data processing power
at the border of a network, avoiding moving unnecessary data to a central
data center. Fog computing complements this view by reasoning on how
applications and data can be efficiently allocated in the continuum from the
cloud to the edge and the end-user nodes.

As a result, the literature often struggles between two different visions.
First, we have those works, such as [21, 22], who advocate that the main
goal of edge platforms is to minimize communication with the cloud, without
necessarily eliminate this remote element. In this vision, the cloud is always
part of the equation, with the edge nodes acting to minimize the drawbacks
of cloud computing (latency) or the limitations of mobile devices (computing
power, for example). A second vision, suggested by [9, 17, 23], considers
using edge resources for moving data processing and services to the edge of
the network, without necessarily counting on cloud resources. They propose
to take profit of nearby resources mainly for processing data nearest to their
sources, minimizing or even discarding the use of cloud platforms. On this
vision, the edge is not deployed to compensate the cloud drawbacks, its design
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is driven by the new opportunities that surrounding resources may offer.
According to Bonomi et al. [7], fog/edge computing enables a new breed of
applications and services between the cloud and the edge, particularly when
it comes to data management and analytics.

Despite their differences, both visions agree on the use of resources on the
edge of the network for data processing and services execution, potentially
reducing costs and latency and, hopefully, improving the user experience.
They require leveraging resources that may not be continuously connected
to a network and that may be limited in their computing power, storage
space but also their battery lifetime [6]. Therefore, we consider in this paper
that the term edge computing groups the many challenges of these weakly
coupled environments, characterized by the heterogeneity of resources and
tasks but also by their strategical situation, right between the cloud and the
end users.

Indeed, edge computing is still a vast research domain where low-end de-
vices and SOCs (System-on-a-Chip) are often evoked as proximity servers
[24, 25], despite some efforts to re-brand and advertise edge computing as a
pure industrial domain (such as in telco edge platforms, with edge servers and
micro-clouds data centers installed in cell towers or street cabinets). Since
nearby devices can perform basic services and data processing on the edge,
applications and services need to be redefined to minimize the transfer of
large amounts of data to cloud infrastructures. As IoT edge gateways or sink
server can also be considered as edge nodes, applications and platforms de-
ployed on these nodes must also handle heterogeneous network performances
(WiFi, Bluetooth, LoRaWAN, mobile networks) and energy consumption
constraints [5]. Therefore, edge computing is all about developing applica-
tions that shall be distributed to locations at the edge of the network to best
meet the application’s needs.

As noticed by [26], the challenges on edge computing include the deploy-
ment, the orchestration, the migration of tasks/services, the management of
the networks, and so on. Most works try to minimize this complexity by re-
lying on specific hardware (e.g., [27]) or on a centralized server to coordinate
the resources (e.g., [28]). Other works rely on a ”cloudification” approach,
proposing edge architectures based on virtualization [17], micro-clouds [29],
micro-services [30] or workflows [9]. Some standardization initiatives like
Open Edge Initiative [31], OpenFog Consortium [32] or Mobile Edge Com-
puting [33] also contribute to this problem, as they usually impose a complex
software dependency or a non-negligible memory footprint that may prevent
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the deployment in low-end devices. In our understanding, bringing the cloud
to the edge thanks to the massive use of virtualization (with either hypervi-
sors or containers) only postpones the handling of real edge-related problems.

When considering the challenges in an edge environment, the hetero-
geneity of edge devices is on the first line, requiring suitable data and task
placement [34]. Indeed, frequent or heavy data transfers may negatively
impact the network and the application performance on low-end devices,
as we demonstrate on [35]. Transferring data is not just a network band-
width/throughput issue but also depends on the nodes’ capacities to handle
data volumes. Quite often, uncoordinated communications may cause net-
work bottlenecks or slow down applications due to the data handling over-
head. As a consequence, the notions of data locality and context-awareness
become key factors when considering job placement as they may also help
coordinate/compartmentalize communications and reduce the overhead.

The challenge here is how to manage the resources and deploy services, as
the edge needs to efficiently interpose between end users and the cloud with-
out becoming dependent on the latter. Solutions relying on specific hardware
[27] or centralized servers often limit the scalability and compatibility of the
solutions. The same problem also affects solutions based on hybrid hierarchi-
cal topologies, such as [36, 34, 37, 38], in which a server, broker, or proxy is
in charge of a set of nodes in a given perimeter. To prevent such drawbacks,
P2P-based platforms can be seen as interesting alternatives for the intercon-
nection, deployment and management of edge computing devices, as their
loose coupling brings the flexibility, scalability, and fault tolerance required
on edge environments [39, 40, 38].

In spite of a rich literature on fog and edge computing proposing infras-
tructures and platforms, a reduced number of works are dedicated to Edge
computing benchmarking. Indeed, a recent survey1 from [41] tries to identify
these works and classify their contributions. It obseves that several works
focus on developing benchmark tools that are widely inspired by other grid
or cloud benchmark tools. In other cases, some works ”rely on either trace
data obtained from simulators or simulators for evaluation (which is contrary
to the classic definition of benchmarking)” [41]. Furthermore, most works in
the last years focus on specific hardware (Graphical Purpose Units - GPUs,
Field Programmable Gate Arrays - FPGAs, mobile devices) or specific usages

1Still in pre-print status during the redaction of this paper
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such as container migration, Artificial Intelligence offloading, etc.
Only a few works are sufficiently general to tackle the entire edge com-

puting stack. Hence, [42] compares different Edge computing solutions from
major cloud providers (Amazon AWS Greengrass and Microsoft Azure IoT
Edge), but with a focus on edge-cloud exchanges inside each provider API
(Application Programming Interface) that excludes inter-edge communica-
tions. One of the closest works to our paper is [43], which compares the
performance of object-store systems such as Apache Cassandra or Ceph RA-
DOS in a fog/edge scenario. Contrarily to the present paper, however, the
work from [43] only focuses on the benchmark of storage solutions and does
not account for other important aspects of Edge computing, such as schedul-
ing and deployment of tasks and services.

3. The CloudFIT platform

In this section, we present the distributed computing platform CloudFIT,
developed to be an experimental and lightweight platform for fog and edge
computing research. CloudFIT is inspired by the FIIT (Finite number of In-
dependent and Irregular Tasks) paradigm [44]. By definition, a FIIT problem
can be broken down into a set of tasks that meet the following conditions:

1. a task can’t make assumptions about the execution of another one task;

2. the execution time of a task is not predictable;

3. the same algorithm is used by all tasks, only the input changes.

This computation paradigm allows the representation of most parallel
computing problems that do not require a strong dependency between tasks.
It should be noted that this restriction can be circumvented if we synchronize
jobs or tasks:

• Job Synchronisation Two or more jobs are executed in sequence,
allowing a dependency check at the end of each run. This model cor-
responds to the BSP (Bulk-Synchronous Parallel) programming model
[45], which is based on the succession of supersteps synchronized with a
barrier. In the case of CloudFIT, if no assumption is made on the exe-
cution order of the tasks, the only constraint is that the data necessary
for the next superstep is available at the time of the synchronization.

• Task Synchronisation This fine-grain synchronization provides de-
pendency between tasks, like a Directed Acyclic Graph (DAG). To do
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Figure 2: Simplified representation of the CloudFIT stack

this, we simply modify the task scheduler to take into account the sta-
tus of the tasks and a list of dependencies: a task will only be started if
the tasks on which it depends have already been completed. Although
this violates the first property of the FIIT model (independence be-
tween tasks), its implementation is simple and allows the deployment
of other types of applications.

3.1. Architecture

The CloudFIT architecture was designed as a software stack, inspired
by the TCP/IP and OSI (Open Systems Interconnection) network models.
Thus, we defined four layers representing the different functionalities of the
platform, Network, Protocol, Service and Application.

Despite its name, the Network layer is responsible for all interactions
with third-party systems on which CloudFIT relies(P2P overlays, operating
system, storage systems). For example, the Network Adapter class per-
forms the basic encapsulation and decapsulation of messages, using primi-
tives designed according to the capabilities of the subordinated P2P overlays
(send,sendAll,receive, and so on). The same principle applies to the Storage
Adapter class, where primitives like read,write, delete, lookup interface with
different possible storage solutions (local files, DHTs, databases, cloud stor-
age). We finally find the classes related to the context collection, which
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allow the scheduler to match the resources with the tasks/jobs constraints
or requirements.

The Protocol layer is responsible for the management of messages and
resource management. Thus, the module Core-ORB routes messages re-
ceived from the Network layer to the appropriate services of the higher layer.
Thanks to a publish-subscriber mechanism, different services can register with
the Core-ORB, obtaining a unique identifier used for the reception of the mes-
sages but also for communications between the services within the same node.

The Resource Manager class, on its side, analyzes the information ex-
tracted by the context collector to check if the resources present in the ma-
chine are compatible with the application’s needs. These needs are expressed
as properties (required memory, disk space, etc.) provided by the application.

The Service layer contains the services needed to run distributed appli-
cations. This layer includes the Community class, an abstraction of a group
of machines that drives the deployment of applications and manages events
related to the nodes (input, output, message retransmission, etc.). CloudFIT
defines a default community with all nodes on the network, but additional
instances can be set to create subnets for specific needs (node partitioning,
location awareness, etc.).

Other services in this layer include submission or visualization interfaces.
These services are particularly useful when interacting with IoT devices that
cannot run an instance of CloudFIT, such as Arduino micro-controllers. In
this case, it is sufficient to provide access to a CloudFIT node through a
REST (Representational State Transfer) or JSON (JavaScript Object Nota-
tion) interface for application triggering or data storage.

Finally, the Application layer contains the elements needed to execute
the application, especially the application interface that must be imple-
mented by the user. The application interface is quite simple and intuitive,
following the principles of the FIIT paradigm. Thus, the developer only
needs to write the following methods:

• numberOfBlocks() - method that returns the number of tasks to
launch. This method is called during the configuration of the Task

Scheduler;

• executeBlock(taskID, required[]) - method that starts the actual
execution of a task, delegated to one of the Workers. The taskID allows
the task to customize its execution, and the required [taskID] element
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indicates any dependencies for this task, a parameter used by the Task
Scheduler to manage the execution order to respect the dependencies;

• finalizeApplication() - optional method that is executed by the Task
Scheduler once the task set is completed. This method allows the
aggregation of results, like a Reduce phase in the MapReduce paradigm.

3.2. Execution Model and Scheduling

Multiple applications can be concurrently executed over the CloudFIT
network, according to the available resources and application requirements.
Both regular applications (mono-server) and distributed applications can be
submitted, as CloudFIT coordinated the deployment and communication in
the network. To do so, an application must be expressed as a finite set of
independent irregular tasks that share the same execution code but work on
different data segments, just like an MPI (Message Passing Interface) applica-
tion. Please note that this strategy can be extended by adding dependencies
between applications (like in the BSP programming model) or tasks (like in
a Directed Acyclic Graph - DAG), allowing for example the implementation
of map-reduce applications.

To implement this, each community is associated with a Job Scheduler,
which manages the submitted application queue (jobs). The Job Scheduler

is in tight collaboration with the Ressource Manager, both for the scal-
ing of the Workers pool and the verification of the requirements of the job.
Also, a Task Scheduler is instantiated for each started job, allowing spe-
cific scheduling policies. Figure 3 shows in a simplified way the interaction
between the Task Scheduler, the application, and the other elements of the
Service layer: when a new job is received, it is assigned to the Job Scheduler

and then to the Task Scheduler, which is responsible for deploying the tasks.
Please note that the Task Scheduler class is extensible and customiz-

able. By default, CloudFIT provides a simple scheduler that it can be re-
placed by schedulers more elaborate or particularly adapted to the needs
of applications. The default scheduler performs a random redistribution of
tasks, a simple technique that reduces the risk of duplicate work between
nodes. Examples of more sophisticated schedulers include those that sup-
port dependencies between tasks (in the case of a DAG application) or that
use contextual elements, such as the location of a node to minimize the data
access time.
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The choice of each job and task to execute is performed by a distributed
scheduling mechanism using a two-layer scheduler. This two-layered sched-
uler is partially inspired by the Fair Scheduler strategy from Apache Hadoop
[46], which allows multiple jobs to run concurrently instead of blocking the
execution queue in case of resource starvation.

In CloudFIT, the first layer is the ”job” scheduler, which is enriched with
a context manager that helps verifying requirements expressed by each job.
Context information is used to establish if a node is currently able to han-
dle a job or a task. This context information is composed of the nodes’
current status (idle or working, CPU usage, available memory), the nodes
location, and the node specifications (CPU type and speed, total memory,
disk space). Node specifications are used to create predefined communities
corresponding to typical application requirements, so a job can also express
its needs in terms of ”required communities”. Once validated, the application
is deployed over one or more nodes that currently match the requirements,
otherwise it remains in a waiting queue until resources become free. While
the primary objective of the job scheduler is to guarantee resources that fit
the job requirements, it also allows load balancing, QoS, and concurrency
management. By distributing jobs according to the nodes’ current execution
context, i.e., if two communities match the minimal requirements, the sched-
uler will deploy the job on the community that is less overloaded even if it
is not the ”most powerful” community.

On the second layer, we found the ”tasks” scheduler, a per-job sched-
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uler that coordinates the execution of the tasks on each node. The basic
scheduler algorithm in CloudFIT considers tasks as fully independent, so
each node randomly starts a task and then diffuses the status of the tasks
to the other nodes (in execution, completed), updating the list of tasks still
available for execution. However, as this scheduler is inherent to each job,
it can be extended in several ways and applied according to the job’s re-
quirements. Therefore, to implement a data-locality aware scheduling, the
presence of a data resource in the local storage is used as a factor to deter-
mine the tasks’ execution order. By assigning dependencies between tasks
and data resources, we instrument the scheduler to prioritize tasks that have
the required datasets already at hand. As shown in Fig. 4, both layers base
their scheduling decisions on data locality and context information, which
are constantly updated according to the nodes’ conditions.

Additional context elements such as the currently available memory, CPU
load, and disk space also permit the task scheduler to decide at runtime
if a task can be started, avoiding penalizing an application because of an
overloaded node. This context information is collected by a context collector
like the one presented in Fig. 5, which is integrated into the CloudFIT stack.
This collector is based on the standard Java monitoring API, which allows us
to easily access the real characteristics of a node. It allows collecting different
context information like the number of processors (cores) and the system
memory using a set of interface and abstract/concrete classes that generalize
the collecting process. Besides, due to its design, it is easy to integrate new
collectors and improve the resources available for the scheduling process,
providing data about the CPU load or disk usage, for example [47].
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+getCollectorDescription() : String

<<Property>> -bean : OperatingSystemMXBean
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+CPULoadCollector()

CPULoadCollector
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+collect() : List <Double>
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TotalProcessorsCollector

+collect() : List<T>

<<Property>> +collectorName: String
<<Property>> +collectorDescription:String

<<interface>>
Collector

T

Figure 5: Context collector structure [47]

3.3. Distributed Coordination

The previous section illustrates the structuring and interaction of modules
within a CloudFIT instance. However, a distributed computing platform
must guarantee exchanges between the different nodes on the network. In
the case of CloudFIT, the choice to use a third-party P2P overlay simplifies
peer discovery operations, network management (inputs, outputs), message
routing, etc. This allows us to focus on intrinsic platform communication,
such as application deployment, execution progress monitoring, and result
distribution/retrieval.

Everything starts with the submission of a job, carried out directly by
a node already connected to the network or through a submission interface.
This submission contains the application code, the target community, and a
list of properties required for the job to run properly. A message containing
the parameters and properties of the submission is broadcasted over the
network, thanks to the P2P overlay communication mechanisms.

To automatically deploy the application on the executing nodes, we chose
to use the DHT storage associated with the P2P overlay. Indeed, DHT
provides an access to objects and files, from the moment the nodes know
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the DHT key to these resources. Thus, submitting a job involves saving a
jar file containing the application code and its storage key. When the job is
launched, the JobScheduler retrieves the file and extracts its classes, which
will be loaded using a classloader.

DHT storage can also be used to provide input data for the applications,
especially when a large set of data needs to be made available to the appli-
cations. This is not mandatory, since applications also can obtain the data
from external services (Uniform Resource Locators - URLs, cloud storage,
databases).

When a job starts on a machine, it is tagged STARTED and a Task
Scheduler associated with the job is launched. Tasks have 5 possible states:
NEW, STARTED, STARTED REMOTE, COMPLETED, and REMOTE,
as illustrated by the lifecycle shown in Figure 6.

When a task is launched, a message containing the job and task ID is sent
to the other nodes in the Community. This informs other nodes that this
task is being processed by someone and thus minimizing the risk of duplicated
work: ”remote” tasks are marked as STARTED REMOTE and are moved
to the end of the execution queue. A task marked as STARTED REMOTE
will only be executed when all NEW tasks have been exhausted and, of
course, if no other message has come up indicating that the task has been
completed. In fact, the Task Scheduler sends a second message at the end of
the execution of a task, indicating the change of its status to COMPLETED
and also indicating the result values or the coordinates to retrieve this result,
whether it is stored in the DHT or in an external resource.

If a node finishes executing all its NEW tasks, it can speculatively start
tasks marked STARTED REMOTE. This mechanism guarantees the termi-
nation of all tasks (if the original node fails, for example) and even speeds
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up the termination of the computing if the original node is too slow.
In addition to updating the other nodes, these message exchanges also

have the role of notifying a new node joining the network. By seeing ”task
completed” type messages, nodes can ask a neighbor to forward the message
with the job description to them. Its TaskManager will then proceed to
the recovery of REMOTE jobs thanks to specific requests. This mechanism
guarantees the integration of the nodes in a volatile environment and the
durability of the results. It suffices that one machine remains in the network
to keep results accessible.

When all tasks are completed, the TaskManager gathers all results, op-
tionally performing additional operations, and the status of the job is set to
COMPLETED. These results remains available to any application or node
that wishes to query them.

4. Data Transfer in Unbalanced Networks

When running applications the edge, it is important to consider the data
access and data management performance, since most operations involve the
collection, transformation, and analysis of data. Indeed, the cost of data
transfers is an essential factor for edge applications. When looking at Big
Data solutions, which are confronted with similar situations, we observe that
platforms such as Apache Hadoop [46] use the concept of data locality to
prioritize computing on nodes that hold a copy of the data to be processed.

Besides data transfer issues, the heterogeneity of edge environments can
also impact the application deployment since devices may have very different
capabilities and constraints. In [10], we observed the effects of the heterogene-
ity on the application performance, highlighting the importance of observing
the nodes’ status before assigning jobs for execution. Thus, we identified two
key points to be addressed by an edge computing middleware: (i) the sup-
port for data locality and (ii) its integration with the task scheduling. In this
section, we introduce some strategies to improve the control over data local-
ity and present several benchmarks for data storage in local, edge, and cloud
servers. The analysis of these results demonstrates that both locality and
nodes’ capacity need to be considered when designing an edge application.

4.1. Data Locality in a P2P overlay

When handling data on the edge, the first factor to consider is where data
lies (the data locality). For any advanced application, edge nodes are not
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only gateways to the cloud but, instead, play an active role in data sharing,
replication, and load balancing [48].

To reduce the dependency on cloud storage services, P2P overlays can
be used to provide decentralized data management [40] with the help of a
Distributed Hash Table (DHT). DHTs use cryptographic hashing functions
such as Message-Digest 5 (MD5) or Secure Hash Algorithm (SHA), providing
a lookup service in which any node can efficiently retrieve the value associated
with a given key. In the case of DHT storage, hashing is used to assign
resources (data) to nodes that will hold a copy of this data.

Most DHT overlays use plain hashing functions that uniformly distribute
and replicate their data across the network. Uniform hashing allows load bal-
ancing among the nodes and, in most cases, helps to prevent data losses when
clients disconnect. However, it makes data transfer optimization harder since
data locality information is lost [49, 43]. While some non-uniform hashing
functions exist [50], basic DHT storage is insufficient for data management
in edge platforms, as we seek to control where data is stored.

In recent years, the development of geographical databases and NoSQL
boosted the research for performance improvement through co-located data
[51]. Most of these works concern specific data types like those found on geo-
graphical databases, whose queries can benefit from grouping data in a given
area. Hence, one can express the data location as a set of coordinates, used
to generate a geohash key [52], or to identify zones like in CAN (Content
Addressable Network) [53], quad-tree hashing [54] or in a Voronoi overlay
network [55]. [43] propose the use of external storage services such as Cas-
sandra (a P2P database), which can be configured to segment the network
in data centers. In all these works, the network partition scheme is often
predefined, which created a strong dependency between the partition, the
nodes, and the applications that can be executed on these nodes.

As none of the cited works efficiently deal with dynamic environments
and ephemeral applications deployment, we proposed in [11] a pure P2P
solution that ensures that data segments for the application are distributed
preferentially among the nodes that will execute that application, all in a
dynamic environment where nodes can join or leave the network.

To do this, we need to extend the concept of data locality to accommo-
date the principle of group membership. The group membership (that we
call ”community”) represents a subset of the system nodes and may be stat-
ically or dynamically defined. In the first case, previous knowledge of the
network and the application requirements drives the assignment of a group
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of nodes to perform some specific role. Indeed, a community may include
the nodes covering a specific area (used to host a proximity service), nodes
that present similar computing performances (same CPU type, for example),
etc. In the second case, dynamic factors such as the status and context of
the nodes, or even the evolution of the network (nodes joining or leaving),
are used to form temporary associations between nodes in order to execute
an application. In both cases, different communities may be created to fulfill
specific requirements (nodes capabilities, location or security requirements,
etc.), and a node may belong to one or more communities.

As both static and dynamic communities require data locality to perform
correctly, we proposed to manipulate the hash key so that data is not ran-
domly spread among all nodes but attached to a community. While a typical
DHT uses a single hashing function that computes the data hash (the con-
tent key) and the node ID (the location key), we rely on a double hashing
function that decouples the location and the content key for a resource: first,
the content key is obtained through a traditional hashing method. Later,
the location key is computed to map only among the community nodes. To
query a resource, two strategies can be applied. If the community is statically
defined, one can rely on the same hashca() function to find the resource. If
the membership varies with the time (nodes joining or leaving the commu-
nity), an index file keeps track of the resources’ location, despite the eventual
mapping skew when the group changes. Both operations (write and read)
are schematized in Figures 7 and 8, where we consider that applications and
storage services are interconnected by a ”DHT” component.

To illustrate how this strategy reinforces data locality, we present in Fig-
ure 9 a P2P network with several nodes and a community C1 composed by
nodes with IDs n2, n3 and n6 (the yellow blob). We also assume that a
node n is the primary storage site for a resource with location key kln. For
instance, in a traditional P2P storage with a single location key, a resource
R could be stored in any node in the network, depending on the hash re-
sult (e.g.: hash(R) = kln). On the contrary, by using a location key and a
content key with a community-aware hash function hashca(), we can bound
the location key to the nodes in the community, while properly identifying a
resource. Hence, for a resource R and the community C1, we can compute a
community-aware location key kl3 that points to a node from this commu-
nity. This way, the primary copy of the resource R will be located in the node
n3. As a result, the proposed mapping procedure improves the probability
that the primary copy of a resource lies in a node belonging to the group.
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Figure 9: Location key remapping to reinforce data-locality [11]

Please note that this procedure does not restrain the creation of additional
replicas on other nodes, even those outside the community, just ensures that
at least one copy of the data is located within the community.

This mapping can be implemented on any DHT overlay through the use
of specific hashing functions. To validate this approach, we implemented
it using our distributed computing platform CloudFIT [10]. CloudFIT is
a lightweight middleware adapted for edge and fog environments, struc-
tured around collaborative nodes connected over a P2P overlay network
that provides communication, fault-tolerance, and distributed storage. The
TomP2P2 overlay network provides discovery, communication, and storage
services, which uses up to four keys kl, kd, kc, kv to identify a resource, instead
of a single key:

1. kl - location key, which determines the node ID closest to the hash key;

2. kd - domain key, used for namespacing;

3. kc - content key, which identifies different resources stored in the same
location; and

4. kv - version key, which allows the management of different versions of
the same resource.

2https://tomp2p.net/
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The next sections present benchmarks conducted to study the impact of
data locality on the storage of datasets on an edge environment. We also
extend this experiment towards low-end devices such as Raspberry Pi nodes,
whose storage and network performances have a strong influence on storage
performance.

4.2. Round 1: Local vs Cloud Storage

While Big data strongly relies on data locality to improve its performance,
it usually considers quasi-homogeneous networks with high-performance in-
terconnections. When dealing with edge computing, however, data locality
has a potentially higher impact as not only communications and data trans-
fers can span from the local network to the cloud, but also because devices
are inherently heterogeneous. We present here different experiments to eval-
uate the impact of network latency on the performance of a DHT. By default,
CloudFIT (the fog/edge platform used for the benchmarks) supports a robust
distributed scheduling based on work-stealing, allowing nodes to execute dif-
ferent tasks in parallel when they can communicate to each other or, in the
worst case, to complete all the computation by itself. This original scheduling
was modified to include the possibility to reinforce data locality, as proposed
in Section 4.1, for better control on the data storage and retrieval operations.

In a first experiment, we used the CloudFIT platform to interconnect
nodes in a local cluster and nodes in the Google Cloud Platform (GCP). The
local machines are identical (AMD Opteron 6164 HE, 12 cores, 48 GB RAM)
and interconnected by a Fast Ethernet network. GCP machines are of type
n1-standard-2 (2vCPU, 7.5 GB RAM) and located at the us-central1-c zone.

Three situations were considered: data storage/access in the same ma-
chine, in a close node (same LAN or enterprise network), and over distant
nodes lying in the cloud. The first case represents the situations where the
application can obtain data directly from its own DHT instance, or when
it wishes to store data locally to favor a subsequent task (therefore, using
data locality). The same network situation represents an intermediate case
where the data is located in a nearby server (perhaps a node that has more
storage capabilities and serves other nodes in the network). Finally, the last
situation represents the cases where the data lies far from the node, like when
data-locality techniques were not used.

The experiments performed write and read operations on the DHT, with
file sizes of 1 kB, 10 kB, 100 kB, 1 MB, 10 MB, and 100 MB. These file sizes
cover the typical Big data storage block sizes: for example, Hadoop HDFS
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uses 64 MB or 128 MB data blocks. At each run, the CloudFIT platform
was shut down and the files were removed. Also, the order of the files was
shuffled to prevent pipeline effects on the network, and at least 10 runs were
executed for each situation.

Figure 10 represents the average for each combination of read or write
operations, data size, and situation (same node, same network, on the cloud).
We can observe that both local node and network cases present similar per-
formances when reading small messages. For large data blocks, the reading
time over the LAN becomes more important, scaling to levels almost com-
parable to those of remote nodes. This slowdown evidences not only the
network limitations (a 100 Mbps network) but the overhead of requesting a
resource through the DHT.

Regarding the write operation from Figure 11, an interesting effect is ob-
served: up to 1 MB, it is more expensive to write files in the local node than
in another node on the LAN. This could be explained by the DHT manage-
ment overhead, as the cost of data handling (serialization → transmission
→ deserialization) is shared between different nodes. Also, communication
policies for small messages (buffering, Nagle’s algorithm, TCP NODELAY
option, etc.) may delay transmission is some cases and not in others. Even
the cloud seems more efficient when writing small messages (less than 10kB),
but latency and throughput rapidly increase the cost of cloud operations. As
such discrepancy only is observed on really small filesizes, we believe that its
impact on applications that rely on DHT data storage is limited.

Both read and write observations encourage the use of data locality to
improve the performance of edge applications. Indeed, if we can control the
community boundaries, it is possible to finely adjust the distribution pattern
according to in/out performances and data sizes.

4.3. Round 2: The Case of Low-end Devices

The previous scenario allows us to understand how reading and writing
performances are affected by the data locality and the importance of locality-
awareness during the data placement and the scheduling of tasks. However,
those experiments were conducted with ”regular” machines on both the local
cluster and the cloud. In this scenario, we are interested in the performances
of low-end devices based on SoCs such as a Raspberry Pi.

Several works on fog and edge computing suggest the use of SoC devices
as ”proximity relays” or gateways for the users and IoT devices. Most times,
these devices perform basic computing and data processing, but more and
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Figure 10: Performance comparison when reading data from the DHT
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Figure 11: Performance comparison when writing data from the DHT
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more works try to deploy advanced data processing thanks to artificial intel-
ligence algorithms. The relatively small cost and size of these devices favor
their dissemination and integration in the environment, complementing the
fog ecosystem. Even if new SoC generations tend to integrate more advanced
features like GPUs or even AI accelerators, they still have several limitations
(CPU speed, memory, I/O) that must be considered.

Therefore, this experiment interconnects a Raspberry Pi 3 (4-core ARM
Cortex-A53, 1.2 GHz, 1 GB RAM) to a PC (AMD Opteron 6164 HE, 12
cores, 48 GB RAM) and to a cloud instance of type n1-standard-2 (2 vCPU,
7.5 GB RAM), located at the Google Cloud Platform us-central1-c zone.
Like before, the experiments focus on performing read/write to and from
the Raspberry Pi, according to the ”same machine” and ”same cluster” and
”cloud” locality scenarios previously described.

Besides, we conducted the experiences using different storage supports on
the Raspberry Pi: the built-in MicroSD memory card (class 10), an external
USB 2.0 hard disk, and memory-only storage. The comparison between
the MicroSD and the external USB disk drive is motivated by their relative
performance differences: a class 10 MicroSD should support at least at 10
MB/s when writing (with a reading speed depending on the constructor),
while a USB external disk on a Raspberry Pi 3 can reach at most 20 MB/s.

Further, as both methods suffer from bottlenecks due to the Raspberry
Pi chipset configuration, we also included memory-only storage tests in our
experiments. This latter option could benefit volatile datasets that will be
discarded after being processed, like in the example of ”gateway” nodes that
store intermediate data and preprocess it before sending it to other nodes.
The experiment protocol (number of runs, DHT reset, etc.) is similar to the
previous benchmark.

Taking the ”same machine” case, Figure 12 shows the performances when
the Raspberry Pi tries to save data to the DHT address at its own location,
and when it reads data from that address. With no surprise, the memory
storage option is faster on writing, as it does not pay the overload of accessing
the persistent storage. Concerning the MicroSD and the USB disk storage,
their performances are in the same order of magnitude. Nevertheless, a
closer look at the performance numbers shows that the USB disk should be
preferred, as it needs 22.7s on average to write 100 MB on the DHT, against
27.3s for the MicroSD (a 16% improvement).

Concerning the DHT access (reading), all three storage options show sim-
ilar performances. One possible explanation is that the DHT implementation
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Figure 12: Raspberry Pi read/write performances on local host

keeps recent data in the memory, hiding the extra cost of accessing the stor-
age units. Further improvements on the benchmarking protocol should help
study this result, and also to identify why writing on the memory is faster
than any read operation.

In the case of the ”same cluster” scenario, we performed benchmarks in
two directions: the Raspberry Pi performing read/write in the other machine
and the remote machine performing read/write on the Raspberry Pi. This is
due to the performance difference between the machines (processing, memory,
and storage speeds), which leads to asymmetric performances according to
the transfer direction. Hence, Figs. 13 and 14 show the writing and reading
performances when the Raspberry access the other node in the same network,
while Figs. 15 and 16 present the performances when the other node access
the Raspberry Pi.

For the writing operations initiated by the Raspberry Pi (Figure 13), we
observe that all storage supports on the PC or the cloud (disk and memory)
behave similarly for large data sets. This means that, at least for 100 MB
of data, the DHT storage caused no bottleneck on the disk access. This
scenario is quite different in the opposite direction (Figure 15), where the cost
of storing data in the Raspberry Pi is much higher if it involves persistent
storage. Knowing this information is useful as it can help identify the best
role for SoC devices in the edge network.
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Figure 15: PC to Raspberry Pi: Write performance

Figure 16: PC to Raspberry Pi: Read performance

27



This asymmetrical performance is also seen in the read benchmark. While
the reading performance is similar whether we use disk or memory storage,
the absolute values are several orders different according to the direction of
the operation (PC → Pi or Pi → PC). Hence, the cost for a Raspberry Pi to
read 100 MB from an external node is almost three times higher than when
reading from the Raspberry Pi. As this difference disappears for data smaller
than 1 MB, we suspect that the overhead is related to the buffering and
serialization/deserialization operations on the receiver node. While further
investigation should help understand the causes of this unbalance and help
to minimize it, we believe that being aware of the capabilities and limitations
of the devices at the edge would allow the development of better resource
managers and scheduling algorithms.

For instance, the results from these benchmarks suggest that low-end de-
vices are better suited to slowly gather data from nearby devices (sensors,
IoT), perform small computations, and serve this data to other nodes, instead
of receiving large data volumes all at once. If possible, the aggregated data
should be sent to other nodes as soon as possible (i.e., while their amount is
still limited), or at least be stored locally on the low-end device for others to
read, as access from the outside is less expensive for large files than sending
them out. Furthermore, data size is a key aspect to consider, and the ex-
periments point that, at least with the TomP2P DHT, data chunks should
not exceed 10 MB as all scenarios exhibit substantial cost overheads when
manipulating large datasets.

To conclude this section, these experiments demonstrate that edge com-
puting should not only be concerned by the latency impact on the services
but also on the capability of each computing node to perform its tasks effi-
ciently. Choosing whether to deploy an application is a complex task, with
several strategies and optimization heuristics to consider [56]. Hence, as
artificial intelligence applications become faster and less demanding in re-
sources, IoT, mobile, and edge devices are now in the front line. Similarly to
the work of [57] on energy-awareness, intelligent planning on the data flow
in edge environments can lead to significant improvements in the data stor-
age, transfer, and processing performances, benefiting both the users and the
service providers.
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5. Scheduling with Context-Awareness

After considering data locality and network performance issues, we can
now address another topic related to the heterogeneity of the edge. As
the computing performance varies from device to device, context informa-
tion such as processing power, available memory, or current CPU load can
be useful to improve the execution performance, as demonstrated by [16].
Therefore, efficiently matching the tasks with the resources capabilities and
their locations is a fundamental element for the optimization of performance-
sensitive edge applications [58]. In the next sections we discuss this issue
(section 5.1) and analyzed it through practical experiments (Section 5.2).

Finally, due to the heterogeneity that may characterize edge nodes, data
and service placement must also consider runtime conditions on each node,
preferring nodes that have available resources instead of nodes that are al-
ready overloaded by other tasks. In other words, nodes execution context
should be considered for scheduling purposes.

5.1. Heterogeneity and Context-Awareness

As stated before, edge environments present important variations on their
nodes’ characteristics. Contrary to cloud resources, the resources at the edge
can be: (i) constrained, i.e., limited computational resources that cannot be
easily scaled; (ii) heterogeneous, including processors with different archi-
tectures; and (iii) dynamic, since their workloads change, and applications
compete for the limited resources [59].

Edge platforms have to cope with such dynamic and heterogeneous pool
of resources, whose composition and status may vary during execution, and
which are not necessarily dedicated to these platforms, since these resources
may house multiple applications from multiple users (following classification
given by [59]). Such heterogeneity makes resource management a challeng-
ing task, particularly when compared to cloud environments [59, 60]. Since
applications executing on edge platforms can be spread over multiple het-
erogeneous nodes, deciding where to schedule computational tasks is more
difficult when compared to cloud computing [9]. Indeed, data and service
placement must consider runtime conditions on each node to consume re-
sources efficiently, preferring nodes that have available resources instead of
nodes that are already overloaded by other tasks.

Edge platforms should then carefully consider the capabilities of available
nodes and their current state before scheduling tasks on those nodes. As
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recalled by [34], ”Task scheduling decisions cannot be made in a statical
way but need to be done dynamically upon task creation”. Indeed, in a
heterogeneous environment, scheduling tasks without considering the current
status of the nodes may easily lead to a waste of available resources.

More than ever, context awareness [61] becomes a key property for han-
dling appropriately the heterogeneity and dynamicity that characterize edge
nodes. Context-awareness can be defined as the capability a system has to
observe its execution context and to adapt its behavior consequently [61].
Context includes any information that can be used to characterize the situ-
ation of an entity (a person, a place, an object, etc.) considered as relevant
to the interaction between a user and a system [62]. Different information
can be considered as context, according to the system purposes [63]: avail-
able memory, CPU load, available storage, network connection, etc. Works
such as [64, 47] demonstrate the interest of considering context information
for scheduling purposes in such heterogeneous environments, while [34, 37]
have tackled this question in fog environments. Both [34, 37] collect and use
context information for estimating nodes stability and reliability in order to
better place tasks [37] and data replicas [34]. Unfortunately, in both cases,
the presence of a broker can be noticed, acting as a central manager. Accord-
ing to Ghobaei-Arani et al. [60], a centralized manager suffers from a single
point of failure, which makes it vulnerable. Also, since a centralized core is
responsible for processing and managing decisions in centralized approaches,
it limits scalability based on its bandwidth and processing capacity. On the
opposite, decentralized approaches are highly scalable, but they introduce a
certain communication overhead.

In this work, we have thus considered the possibility of adopting a totally
distributed approach and studying the possible effects that variations on the
execution context may have on task execution. For doing so, we also base
our experiments on the CloudFIT platform.

As detailed in section 3.2, Context-awareness is achieved by allowing
nodes to decide by themselves about their capability to execute a task. By
exchanging information with other nodes, they can drive the placement of
replicas and tasks, resulting in a distributed architecture in which nodes col-
laborate to satisfy the user’s demands. The scheduling mechanism we use
was initially proposed in [12] and is structured in two layers that observe both
the execution and the data locality contexts. We call ”job” the application
to be executed, which in turn describes its needs and may split its execu-
tion into several ”tasks” that may be carried independently by the platform
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nodes.
Hence, in the first layer of the scheduling mechanism, a ”job” scheduler

observes the execution context of the node, verifying whether current condi-
tions allow a job (and its tasks) to be run w.r.t. job requirements. In the
second layer, a ”task” scheduler considers the execution of each task, consid-
ering the availability of the resources. In the case of this work, the two-layer
scheduling is associated with context information, allowing an opportunistic
use of available resources and the minimization of data access costs. Indeed,
while the ”basic” scheduler only checks if there are free resources (CPUs,
cores) with the required computing capabilities for a task, the context-aware
scheduler may also include information such as the presence of data chunks
on the local storage, which avoids data transfers over the network, or the
current load of the node.

In the next section, we present a set of experiments we have performed
using the two-layered scheduler, and analyze the impact of observing context
execution conditions on the application performance.

5.2. Evaluating a context-aware scheduling

As mentioned in the previous section, the scheduler presented in [12]
uses context information to decide whether it executes a task locally or not,
following a simple best-effort philosophy. Every scheduler is independent,
deciding on its own which task to run. Since the task list is shared among
the community nodes, any node that decides to execute a task will prevent
the other nodes about its decision; similarly, every time a task is completed,
the node communicates the execution results (and the ”complete” status) to
its neighbor nodes using the communication module. Context information
is observed using a lightweight context manager [47], which keeps track of
several context elements, including CPU average load, CPU process usage,
available memory, and storage.

These experiments were conducted using four nodes of type n1-standard-1
(one virtual processor, 3.75 GB of memory) from the Google Cloud Platform.
We use this configuration since it is one of the most basic ones. Such low-
level configuration (one single processor, low memory capacity) represents
the low-end devices we may find on edge environments. We decided to use
a cloud platform to have nodes within a controlled and reproducible envi-
ronment in which we could concentrate our analysis on the effect of context
information on scheduling without risking unpredictable external influences.
For the same reasons, we decided to focus the experiments presented here on
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a single context element, the CPU average load, which hints the occupancy
of the node. Even if the context manager keeps observing other available
context information, such as available memory, it is the CPU information
that guided our experiments. As a result, we chose a benchmark application
that is CPU intensive. This benchmark application is a Monte Carlo simula-
tion composed of 50 independent tasks with the same number of iterations,
deployed over the network. Despite the same input parameters (iterations,
operation to execute), the running duration for each task depends on the
input data it receives and also the computing capabilities and context of the
executing node.

Several parameters could be used to characterize a heterogeneous exe-
cution environment but some of them are quite subtle to control. Instead,
to illustrate the impact of context-aware scheduling and keep the scenario
the most reproducible as possible, we decided to focus on the execution per-
formance of the nodes under stress. Hence, we overload part of the nodes
and compare the scheduling behavior with and without context-awareness.
To overload the machines, we use the stress-ng tool3 and the parameters
stress-ng -c 0 -l 50 to occupy 50% of the available CPU utilization. The
metric used in the experiment is the CPU system load average over the last
minute, a popular metric from Linux systems, being present in tools such as
top. This metric represents the number of processes being or waiting to be
executed over the covered period. In a single (virtual) processor node, any
value above 1 indicates a high concurrency for the CPU, which may delay
the execution of the applications.

In the first experiment, we execute the set of 50 tasks in a network where
two machines (nodes m3 and m4 ) are overloaded, and no context-awareness
is in use. The Figure 17 represents in a Gantt chart this execution. The lines
represent the current load average (in solid red) and the 100% threshold (in
dashed blue). We can observe that tasks in the overloaded nodes are slower
than in the other nodes and that the average CPU usage raises to 166%
on node m3. From these numbers, we can extrapolate that not only tasks’
execution is interfering with other services in the node but also that the CPU
temperature will rise, incurring extra energy consumption if this was a real
edge node.

Figure 18 uses the same scenario, but now the context information is

3https://kernel.ubuntu.com/~cking/stress-ng/
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Figure 17: Distributed computing scheduling without context awareness

taken into account by the scheduler thanks to tasks with a required context
"CPU average load <= 1.0". When such task requirements are no longer
satisfied (CPU overloaded), the scheduler refrains from starting a new task,
which is perceptible through the white spaces in Figure 18. Although the
application takes a bit longer to complete its execution (239.2s vs. 222.4s),
the context-aware scheduling allows us to preserve the CPU in all machines,
which means reduced CPU temperature and energy consumption, as well as
fairer sharing of resources with other services in the same node.

This effect is even more perceptible when we increase the charge on a
node. Figure 19 illustrates a third experiment in which the charge of nodes
m3 and m4 was artificially improved up to 90% using stress-ng. We may
observe that, in this case, these nodes very often abdicate to execute our tasks
because of their overcharged execution context. Of course, this behavior has
an impact on the total execution time, but all nodes have globally respected
their overall charge, which is not the case in the first experiment (Figure
17). As the solid red line in Figure 17, representing the CPU average load,
demonstrates, these nodes (m3 and m4 ) spend more time above the CPU
threshold (represented by the dashed black line), while in Figures 18 and 19
this threshold is better respected.

Finally, we proceed to the last experiment focusing on the network par-
tition problem. In this scenario, a node is disconnected from its neighbors,
simulating a disconnection or a network partition. This is a common problem
in dynamic environments such as edge environments, in which nodes may lose
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Figure 18: Distributed computing scheduling with context awareness

m4

m3

m2

m1

 0  50000  100000  150000  200000  250000  300000

no
de

time (ms)

30 38 17 16 25 3 48 11 27 7 24 4 19 12 49 43 32 37 46 39 29

28 44 2 10 36 20 40 15 13 5 8 26 18 6 31 9 35 47 1 14 42 34

41 23 33

21 0 22 45

Figure 19: Context-aware scheduling applied to nodes with up to 90% of charge.
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Figure 20: Partitioned environment in which node m2 is isolated from the other nodes.

contact with other nodes at any moment, for many different reasons. The
decentralized scheduling algorithm we use has the advantage of ensuring that
tasks will be completed despite network connection problems. However, since
nodes can become unreachable, a phenomenon of ”multiple executions of the
same task” may happen. Figure 20 represents the execution of this scenario,
in which node m2 has been disconnected from the community and stop re-
ceiving information from the other nodes. Without information from the
other nodes, the disconnected node does not know that tasks were finished
elsewhere, so it tries to complete the remaining tasks. Although this has no
impact on the consistency of the results, this represents a waste of energy
that can be critical for low-end devices running on batteries.

Multiple executions can also happen when many nodes have available
resources and a limited list of remaining tasks. In this example, both nodes
m3 and m4 execute task 15 at the end of their runs. This happens because
the distributed scheduler applies a ”speculative execution” strategy for tasks
that have been running for some time but not yet finished. Also present in
Apache Hadoop, this strategy helps to complete tasks that otherwise would
run too slowly or even hang the application completion due to a failing node.
Just like in the case of network partition, the consistency of the results is not
at risk, as any duplicate result will be ignored by the application.

Many other metrics can be used as context information, allowing fine-
tuning of requirements/constraints in a distributed computing platform. Some
metrics such as resource capacity and computing power can be easily ac-
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quired, while other metrics such as link availability, latency, and bandwidth
require active probing of the network (unless the developers chose to use
static parameters for standard configurations). In the case of platforms with
heterogeneous resources such as edge platforms, context awareness allows de-
velopers to set rules for better resource usage and to deploy tasks according
to other metrics such as proximity to the end-users or Quality of Service
(QoS) and resiliency requirements.

6. Conclusion

This work focused on the experimental evaluation of an edge computing
platform to address two main concerns when deploying applications in het-
erogeneous environments: the impact of unbalanced communications, which
affect data transmission, and the impact of heterogeneous (and sometimes
dynamic) resources, which affect the applications’ performance. Through
the observation of the behavior from applications and devices, we identified
several performance bottlenecks that may hinder an edge application: the
difficulty to place the data where it needs to be, the need for awareness
about data locality, and the node runtime context during the application
deployment. Also, the asymmetrical performances of the network on low-
end nodes may present interesting challenges for the optimization of edge
services. We also propose some strategies to deal with data locality and
context-awareness, highlighting the interest of controlling data locality as
well as the characteristics of the resources in edge environments.

The experimental benchmarks have considered scenarios involving both
real cloud and edge devices. This close relation between cloud and edge
computing is also perceptible on numerous definitions from the literature.
These results let us foresee possibilities for combining both cloud and edge
environments, according to the capabilities and context of involved devices.
We hope the bottlenecks identified here may help designers to better prepare
their solutions. Also, the techniques we proposed may help improve the
scalability of data-intensive applications deployed on the edge, as we try
to embrace the decentralization and heterogeneity that characterizes edge
computing.

While the next step in our work leads towards a comparison with other
edge platforms, many other challenges that remain open. Among them,
energy consumption must be addressed, especially if it diverts devices from
their original purpose (as in the case of using mobile devices as computing
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relays). Extending context-awareness to energy management is probably the
next milestone for edge scheduling, together with task migration and the
definition of metrics and heuristics to decide whether to deploy a service in
the edge or the cloud.
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[34] M. Breitbach, D. Schäfer, J. Edinger, C. Becker, Context-aware data
and task placement in edge computing environments, in: 2019 IEEE
International Conference on Pervasive Computing and Communications
(PerCom, 2019, pp. 1–10. doi:10.1109/PERCOM.2019.8767386.

[35] L. A. Steffenel, M. Kirsch Pinheiro, Leveraging data intensive applica-
tions on a pervasive computing platform: The case of mapreduce, in:
The 6th International Conference on Ambient Systems, Networks and
Technologies (ANT-2015), Vol. 52 of Procedia Computer Science, Else-
vier, 2015, pp. 1034 – 1039. doi:10.1016/j.procs.2015.05.102.
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