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Fig. 1. The BSDF model introduced in this paper addresses the efficient rendering of layered materials including rough interfaces and arbitrary scattering

volumes based upon a transfer matrix approach. This scene depicts the ability of our model to reproduce the variety of appearances resulting from these

material configurations.

A statistical multi-lobe approach was recently introduced in order to effi-

ciently handle layered materials rendering as an alternative to expensive

general-purpose approaches. However, this approach poorly supports scat-

tering volumes as the method does not account for back-scattering and

resorts to single scattering approximations. In this paper, we address these

limitations with an efficient solution based upon a transfer matrix approach

which leverages the properties of the Henyey-Greenstein phase function.

Under this formalism, each scattering component of the stack is described

through a lightweight matrix, layering operations are reduced to simple

matrix products and the statistics of each BSDF lobe accounting for multiple

scattering effects are obtained through matrix operators. Based on this rep-

resentation, we leverage the versatility of the transfer matrix approach to

efficiently handle forward and backward scattering which occurs in arbitrary

layered materials. The resulting model enables the reproduction of a wide

range of layered structures embedding scattering volumes of arbitrary depth,

in constant computation time and with low variance.
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1 INTRODUCTION

Realistic simulation of light-matter scattering plays a crucial role

in many rendering applications. Whether targeting entertainment

sources such as video games and animation movies, or addressing

industrial needs such as architectural and product prototyping, high-

quality appearance models are core ingredients of successful digital

experiences.

In the realm of surface materials, a wide range of everyday life ob-

jects fall in the category of layered materials. This class of materials

consist of a superposition of one or several layers of varying com-

position on top of a substrate. Typical examples include all various

kinds of surface paints and finishes applied to human-made ob-

jects (e.g., clear and colored coats, metallic paints, varnished woods,

glazed ceramics). An important subset of layered materials consists

of materials undergoing natural or anthropogenic phenomena re-

ferred to as weathering or aging. For instance, the exposition of

metals to their surrounding environment over a long period of time

usually implies the formation of a patina layer due to corrosion.

Additionally, surface appearances may significantly change within
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short periods of time with the accumulation of dust or atmospheric

pollutants.

In general, such layer combinations give rise to visually rich and

complex appearance characteristics not exhibited by the individual

components when observed separately. Unfortunately, this visual

diversity dramatically increases the difficulty of designing scattering

models that are simultaneously general, accurate, and efficient.

Researchers generally rely on multiple hypotheses in order to

simplify the derivation of the BSDFs of layered materials. For in-

stance, a common framework is the plane-parallel approximation
which assumes that the material can be locally described as a stack

of layers whose optical properties are independent of the lateral

position. Moreover, the thickness of these layers is usually assumed

to be much larger than the wavelength of light, making it possi-

ble to ignore interference effects. In practice, these simplifications

are reasonable for a wide range of layered materials and enable a

convincing reproduction of their appearance.

Based on these assumptions, highly accurate solutions have been

proposed in recent years. However, these solutions remain imprac-

tical for low-time budget rendering due to expensive per-material

precomputations [Jakob et al. 2014; Zeltner and Jakob 2018] or be-

cause of their stochastic nature [Guo et al. 2018]. As an alternative,

more efficient methods usually make a compromise between ac-

curacy and performance to meet these requirements [Elek 2010].

To this date, the most advanced method in this category is the re-

cent multi-lobe approach of Belcour [2018]. This model relies on

a statistical framework to estimate low-order moments, namely

energy, mean, and variance of multiple scattering BSDF lobes, and

extends the well-known adding equations for this framework. His

approach is not only efficient, but also supports arbitrarily layered

interfaces as well as spatially varying appearances. Unfortunately,

scattering volumes are poorly supported, as the method resorts to a

single scattering approximation. In practice, this approximation in-

curs severe energy loss, resulting in an inconsistent dark appearance

with increasing volume scattering (Fig. 2). This represents a serious

impediment, as many of the aforementioned natural phenomena

involve multiple scattering volume effects. Moreover, many weath-

ering effects, such as dust accumulation, typically entail significant

back-scattering not accounted for by the methodology.

The work presented in this paper addresses the aforementionned

issues by introducing an efficient solution based upon a transfer
matrix model. While our approach is inspired by the work of Belcour

[2018], the main difference lies in the underlying mathematical

framework: We use the Henyey-Greenstein phase function [1941]

as an intermediate representation to compute the shapes of the

outgoing lobes. This crucial difference allows us to compute the

energies and the shapes of multiple scattering lobes within a unified

transfer matrix treatment.

The transfer matrix is widely used in many fields of physics

involving layered systems [Sánchez-Soto et al. 2012]. Under this

formalism, the optical properties of the layers are expressed as

lightweight matrices, typically of size 2×2 or 4×4, and layering oper-
ations are reduced to simple matrix products. The key benefits of the

transfer matrix are twofold: First, it provides a compact yet versatile

formalism to express and resolve multiple scattering problems as al-

ready demonstrated in the optics literature. Second, resorting to the

Belcour 2018 Reference Ours

Belcour 2018 Reference Ours

Fig. 2. The model of Belcour [2018] suffers from severe energy loss with

scattering volumes due to its single-scattering approximation and its lack of

support for back-scattering. Our transfer matrix approach overcomes these

issues and provides results close to the ground-truth computed with the

stochastic approach of Guo et al. [2018]. In these examples, a unit depth

non-absorbing medium with scattering coefficient 𝜎𝑠 = 0.755 lies on top of

a smooth gold substrate. Henyey-Greenstein asymmetry parameters are

respectively set to 𝑔 = 0.9 and 𝑔 = 0 in the top and bottom row.

linear algebra of the transfer matrix allows getting rid of expensive

doubling operations in favor of efficient closed-form expressions.

We show how to jointly leverage these beneficial properties to effi-

ciently approximate the forward and backward light transport of

layered materials through this work. Our approach supports homo-

geneous participating media of arbitrary depth, while also ensuring

energy preservation.

We summarize our contributions as follows:

• We introduce the classical two-flux transfer matrix as a con-

venient alternative to the adding equations in the context of

smooth parallel interfaces (Section 3). Then, we generalize the

matrix formalism to rough interfaces by revisiting Belcour’s

[2018] statistical approach from a transfer matrix modeling

perspective. To this end, we review some fundamental prop-

erties of the Henyey-Greenstein phase function (Section 4)

and show how to leverage these properties to compute the

energies and the shapes of the BSDF lobes within a unified

transfer matrix formalism (Section 5).

• Then, we leverage the versatility of the transfer matrix ap-

proach in order to efficiently handle the forward and back-

ward light transport occurring in layered materials with scat-

tering volume layers. To this end, we introduce the six-flux

transfer matrix and derive its specialized forms for interface

components and homogeneous participating media of arbi-

trary depth (Section 6).

• Finally, we propose an improvement to the BSDF model in-

troduced in the previous work to ensure energy preservation

(Section 6.6).

2 RELATED WORK

2.1 Specialized layered models

The last few decades have seen an important number of scattering

models targeting specific layered materials. Examples include the
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model for metallic car paints proposed by Ergun et al. [2016], the

approach of Meneveaux et al. [2017] addressing rough Lambertian

substrates interfaced with a dielectric coat, but also extend to many

organicmaterials whose internal structures consist of complex strati-

fications [Baranoski and Rokne 2001; Stam 2001]. Weathering effects

are a topic of broad interest in the computer graphics community.

For instance, Dorsey and Hanrahan [1996] address the natural effect

of corrosion by modeling the constitutive layers of metallic pati-

nas and resort to the Kubelka-Munk theory [1948] to restitute the

appearance of the layers. The natural effect of dust accumulation

has also been addressed in the work of Hsu and Wong [1995], as

well as Guo and Pan [2014], and Gu et al. [2007] proposed an ap-

proach to reproduce the appearance of contaminated transparent

surfaces. Despite their practicality, all these models suffer from an

inherent lack of extensibility since they were tailored for specific

layer configurations.

2.2 General layered models

Jakob et al. [2014] introduced the first general solution for arbitrarily

layered materials, supporting interfaces of arbitrary roughness and

scattering volumes. Their work was extended by Zeltner and Jakob

[2018] to handle anisotropic interfaces. The framework of their work

relies on zenithal discretizations of the radiance field combined with

azimuthal frequency mode expansions. Based on this representation,

the approach computes the light transport due to multiple scattering

via the adding-doubling method [Van de Hulst 1980]. While this

approach supports a rich diversity of layered material and provides

high levels of accuracy, it suffers from expensive per-material pre-

computation. Typically, hundreds to thousands of frequency modes

might be required to capture all appearance features. Consequently,

this model remains impractical for spatially varying structures such

as weathered surfaces. Recently, Guo et al. [2018] proposed a general

solution based on a Monte Carlo approach, free from per-material

pre-computation, and supporting rough anisotropic interfaces. To

achieve this, the authors use a path integral formulation explicitly

designed for the plane-parallel approximation along with efficient

estimators. Their work was recently extended by Xia et al. [2019]

and Gamboa et al. [2020], who propose new variance reduction

techniques. Unfortunately, the application of these methods in the

context of low-budget rendering remains difficult on account of

their stochastic nature.

2.3 Efficient layered models

When the rendering time is a strong constraint, approximate mod-

els making a compromise between accuracy and computing times

are usually preferred. For instance, Hanrahan and Krueger [1993]

proposed to approximate the effects of internal volume layers based

on single scattering approximations. Weidlich and Wilkie [2007]

introduced a solution for layered rough interfaces based on multiple

assumptions about the layer structure. Elek [2010] subsequently

adapted their work for real-time needs. Guo et al. [2016] proposed

to use the von Mises-Fisher (vMF) distribution as a microfacet nor-

mal distribution function to approximate light-matter interactions

with vMF convolution products. These approaches are computation-

ally efficient but, unfortunately, lack support for volume scattering.

The closest work to our method is due to Belcour [2018], who in-

troduced an efficient multi-lobe approach accounting for multiple

scattering between rough interfaces. Detailed analysis of the models

proposed by Belcour [2018] and Weidlich and Wilkie [2007] have

been recently carried by Bati et al. [2019]. Extensions of Belcour’s

framework have been recently proposed by Yamaguchi et al. [2019]

and Weier and Belcour [2020] for anisotropic interfaces.

Our work extends the multi-lobe approach of Belcour [2018] in

order to provide an efficient support for volume layers. We introduce

an efficient transfer matrix-based approach, handling backward and

forward scattering in homogeneous volume layers of arbitrary depth,

at constant cost. The framework introduced in this paper can be seen

as an approximate version of Jakob et al. [2014] designed to track

arbitrary appearance features, which we summarize as lightweight

Henyey-Greenstein lobes, in contrast to their expensive angular /

Fourier mode matrix representation.

2.4 The transfer matrix

The transfer matrix finds its roots in the pioneering work of Abelès

[1948]. It has since been successfully used in various fields including

quantum mechanics, acoustics, geometrical optics [Sánchez-Soto

et al. 2012] and color reproduction applications [Mazauric et al. 2014].

In their most popular form, transfer matrices are 2×2 matrices in

so-called two-flux transfer models and rely on strong assumptions

about the geometry of the radiation traveling through the system.

For instance, Abelès [1948] assumed the collimated propagation of

electromagnetic waves between smooth parallel interfaces to obtain

reflection and transmission coefficients accounting for interference

effects. The matrix formalism introduced by Abelès has been used

in computer graphics to reproduce the visual effects of interferences

by Icart and Arques [2000] and more recently by Benamira and

Pattanaik [2020] to simulate anti-reflective coatings.

As another remarkable result, a transfer matrix calculus directly

leads to the Kubelka-Munk equations [1948]. In this case, the system

is modeled as a homogeneous scattering volume of arbitrary depth,

and the light distribution is assumed to be perfectly diffuse every-

where in the layer. This model is especially efficient with highly

scattering media, which explains its wide adoption in the pigment

and printing industries, computer graphics [Callet 1996; Dorsey and

Hanrahan 1996], and material synthesis applications [Hašan et al.

2010]. Alternatively, three-flux and four-flux models decompose

the total flux into collimated and diffuse components. For instance,

four-flux models have been proposed to address layered systems

mixing smooth interfaces and scattering volumes [Gali et al. 2017;

Slovick et al. 2017], and stacks mixing smooth and rough interfaces

on top of a substrate [Simonot et al. 2016]. However, considering

only diffuse and/or collimated flux represents a serious limitation,

as virtually all materials entail light distributions falling somewhere

between these two limiting cases. As a consequence, these models

fail to capture important features such as blurring effects due to

subsurface scattering.

In contrast, our transfermatrix approach avoids these rigid separa-

tions and enables arbitrary changes of the angular flux distributions.

As a result, our approach subsumes the previous ideal models and

enables a wide range of layer configurations mixing smooth and
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Fig. 3. Light transport of a collimated beam between two smooth parallel

interfaces.

rough interfaces, and volumes with arbitrary scattering properties,

in a unified treatment.

3 BACKGROUND

This section reviews the light transport of a ray of light illuminating

a glass plate, as introduced in the pioneering work of Stokes [1860].

We introduce the transfer matrix formalism, then we move to the

more complicated case of rough stacks. In this context, we review the

statistical approach of Belcour [2018]. We discuss the applicability

limitation of this framework to scattering volumes and we explain

our motivation for reformulating it in a transfer matrix compliant

form.

3.1 The glass plate problem

Each medium is labeled with index 𝑚 = 0, 1, ... according to its

depth in the stack and is assigned a real refractive index 𝜂𝑚 . A ray

of light arriving from medium 0 impinges on the upper interface

and gives rise to a reflected ray and a transmitted ray inside the

dielectric medium. Due to the same mechanism, this refracted ray

may in turn trigger a sequence of internal bounces inside the plate,

letting each time a fraction of energy escape from either side of the

medium (Fig. 3). In this simplest case, all the rays traveling in the

structure are governed by Snell’s laws, and the fraction of reflected

and transmitted energies between media 𝑖 and 𝑗 directly relate to

Fresnel equations. We respectively denote these quantities r𝑖 𝑗 and
t𝑖 𝑗 and refer to them as transfer factors. Given a unit amount of

incident illumination, the transfer factors r02 and t02 from the slab

are obtained by summing the contributions from either side of the

medium:

r02 = r01 +
∞∑
𝑘=0

t01r12 (r10r12)𝑘 t10 = r01 +
t01r12t10
1 − r10r12

(1)

t02 =
∞∑
𝑘=0

t01 (r12r10)𝑘 t12 =
t01t12

1 − r10r12
. (2)

A similar calculus leads to the transfer factors r20 and t20 of the

slab in the opposite case of a ray arriving from medium 2. These

equations have been known for a while in the optics community

and form the building blocks of the adding equations in the radiative

transfer field [Van de Hulst 1980].

In essence, the previous approach can be seen as a chronological

treatment of the events that light undergoes in the structure. From

the transfer matrix perspective, each scattering component of the

𝜂0

𝜂1

𝑖+
0

𝑖−
0

r01

r10

𝑖−
1

𝑖+
1

t01

t10

Fig. 4. The transfer matrix of a component relates the total upwelling and

downwelling fluxes sitting on each side of the component.

system is regarded as a linear system relating the total incoming

and outgoing flux located on a given side of the component to the

total incoming and outgoing flux sitting at the opposite side. In

our study case, the scattering components reduce to the interfaces

between the different media and we denote 𝑖+
𝑘
(resp. 𝑖−

𝑘
) the total

downward (resp. upward) flux traveling in the medium 𝑘 (Fig. 4).

The flux balance at the boundaries of the first interface is given as:

𝑖+
1
= t01𝑖+0 + r10𝑖

−
1
, 𝑖−

0
= r01𝑖+0 + t10𝑖

−
1

(3)

which can equivalently be written under the matrix notation

𝐼0︷︸︸︷[
𝑖+
0

𝑖−
0

]
=

𝑀01︷                                ︸︸                                ︷
1

t01

[
1 −r10
r01 t01t10 − r01r10

] 𝐼1︷︸︸︷[
𝑖+
1

𝑖−
1

]
(4)

with 𝑀01 denoting the transfer matrix of the interface separating

media 0 and 1. By transitivity and assuming no volume effects in

medium 1, it directly follows that 𝐼0 = 𝑀01𝑀12 𝐼2 = 𝑀02 𝐼2 with

𝑀02 denoting the transfer matrix resulting from the ordered super-

position of the two interfaces. Obviously, this relation also holds

for any ordered sequence of scattering components, i.e. 𝐼𝑖 = 𝑀𝑖 𝑗 𝐼 𝑗
with𝑀𝑖 𝑗 = 𝑀𝑖𝑖+1𝑀𝑖+1𝑖+2 . . . 𝑀𝑗−1𝑗 . Thus, complex layered systems

can be easily modeled through straight matrix products from the

knowledge of the transfer matrices of the individual components.

Note that any transfer matrix has a structure similar to the matrix

of Equation (4).

Given a transfer matrix 𝑀𝑖 𝑗 , the downward r𝑖 𝑗 and t𝑖 𝑗 transfer
factors of the corresponding component (or stack of components)

can be obtained via the matrix operators

r𝑖 𝑗 = 𝑅(𝑀𝑖 𝑗 ) =
(𝑀𝑖 𝑗 )21
(𝑀𝑖 𝑗 )11

(5)

and

t𝑖 𝑗 = 𝑇 (𝑀𝑖 𝑗 ) =
1

(𝑀𝑖 𝑗 )11
(6)

where (𝑀𝑖 𝑗 )𝑥𝑦 denotes the entry located at the 𝑥 th row and 𝑦th

column of the transfer matrix of the interface separating media 𝑖

and 𝑗 . Analogous operators exist for the upward r𝑗𝑖 and t𝑗𝑖 transfer
factors. Also, one can easily verify that applying operators (5) and (6)

to the transfer matrix𝑀02 yields relations similar to the summation

treatment (Equations (1) and (2)).
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𝜂0

𝜂1

𝜂2

𝜔𝑖

𝜔𝑖

(a)

(b)

n
n

Fig. 5. In the case of rough interfaces, each light-matter interaction gives rise

to complex angular light distributions in the structure (a). With Belcour’s

[2018] statistical approach, the BSDF of the stack is approximated as a

mixture of GGX lobes approximating the effects of each interface (b).

3.2 Rough stacks treatment with Belcour’s statistical

framework

The main difficulty with rough interfaces is that each light-matter

interaction gives rise to complex angular light distributions in the

layered structure (Fig. 5(a)). The core idea of Belcour [2018] is to ap-

proximate complex light distributions due to interactions between

rough interfaces with simpler ones with equivalent low-order sta-

tistical moments. To this end, the author introduces a set of atomic
operators simulating the statistical effects of individual layer interac-

tions, namely, reflection and refraction, on incoming light distribu-

tions. In practice, the approach focuses on the GGXmicrofacet based

model [Walter et al. 2007] and only accounts for the three lowest

order moments corresponding to the energy 𝑒 of the distribution, its

mean direction 𝜇, and its variance 𝜎2 (denoted as 𝜎 for convenience).

Moreover, the mean directions of the light distributions are assumed

to obey Snell’s laws to simplify the analysis further.

Denoting 𝜙𝑖 = (𝑒𝑖 , 𝜇𝑖 , 𝜎𝑖 ) the statistics of an incoming light dis-

tribution, the statistics 𝜙𝑅 of the reflected distribution are approxi-

mated as

𝑒𝑅 = 𝑒𝑖 × FGD, 𝜇𝑅 = reflect(𝜇𝑖 ), 𝜎𝑅 = 𝜎𝑖 + 𝑓 (𝛼) (7)

where 𝛼 denotes the roughness of the interface and 𝑓 (𝛼) maps GGX

roughnesses to a space where light variance behaves additively

between each light bounce. The total amount of reflected energy is

approximated with the directional albedo of the surface evaluated

at incident mean direction and is encoded in the FGD term:

FGD(𝜔𝑖 , 𝛼, 𝜂, 𝜅) =
∫
Ω+

𝐹 (𝜔𝑖 , h, 𝜂, 𝜅)𝐺 (𝜔𝑖 , 𝜔𝑜 , 𝛼) 𝐷 (h, 𝛼)
4 (𝜔𝑖 · n)

𝑑𝜔𝑜 (8)

with n the geometric normal, h the halfway vector of 𝜔𝑖 and 𝜔𝑜 ,

𝑛 = 𝜂+ i𝜅 the complex refractive index of the interface, 𝐹 the Fresnel

term, 𝐺 the shadowing-masking term, 𝛼 the roughness parameter,

and 𝐷 the GGX normal distribution function. As no closed-form

solution exists for this integral, the FGD term is precomputed in a 4D

table over a predefined range of incidence elevations, roughnesses,

and refractive indices.

For transmission, Belcour [2018] proposes to mimic a rough re-

fraction with a mirrored rough reflection occurring at the opposite

side of the interface. Following this methodology, the statistics 𝜙𝑇

of the transmitted distribution are obtained as

𝑒𝑇 = 𝑒𝑖 × (1 − FGD), 𝜇𝑇 = refract(𝜇𝑖 , 𝜂), 𝜎𝑇 =
𝜎𝑖

𝜂
+ 𝑓 (𝑠 × 𝛼) (9)

with 𝑠 =
1

2

[
1 + 𝜂 cos𝜃𝑖

cos𝜃𝑡

]
where 𝑠 is a roughness scaling factor used to match the shape of the

real transmitted lobe with the fake mirror reflection.

Outgoing light statistics resulting from arbitrary sequences of

interactions in the structure are afterward approximated by succes-

sively applying these operators. For a ray of light impinging on a

material consisting of two interfaces, the total amount of reflected

energy can be obtained via the geometric series

𝑒𝑅
02

= r01 +
∞∑
𝑘=0

t01r12 (r10r12)𝑘 t10 = r01 +
t01r12t10
1 − r10r12

(10)

with r𝑖 𝑗 = FGD and t𝑖 𝑗 = (1 − FGD). In this form, the r𝑖 𝑗 and
t𝑖 𝑗 terms do not account for total internal reflections between the

media. The author corrects this behavior by introducing a TIR term

depending on the incident elevation, the relative index of the two

media, and the adjacent interface’s roughness. As this factor does

not admit a closed-form solution, the latter is pre-computed and

stored in a 3D LUT interpolated during the rendering to correct the

reflectance and transmission terms as r𝑖 𝑗 → r𝑖 𝑗 + (1 − TIR) × t𝑖 𝑗
and t𝑖 𝑗 → t𝑖 𝑗 × TIR.
The variance of the distribution is obtained by computing the

weighted sum of the individual series terms variances. The unnor-

malized variance 𝜎̃𝑅
02

of the reflected light can then be expressed as

an arithmetico-geometric series whose analytic solution is given as

𝜎̃𝑅
02

= r01𝜎𝑅01 +
[
t01r12t10
1 − r10r12

]
×
[
𝜎𝑇
10
+ 𝐽10

(
𝜎𝑇
01
+ 𝜎𝑅

12
+
(
𝜎𝑅
12
+ 𝜎𝑅

10

) ( r10r12
1 − r10r12

))]
(11)

where 𝐽𝑖 𝑗 denotes a variance scaling factor due to transmission. An

analogous relation is obtained for the unnormalized variance 𝜎̃𝑇
02

of

the light transmitted through the two interfaces.

Based on these results, the BSDF of a stack composed of an arbi-

trary number of interfaces is modeled as a mixture of GGX lobes

approximating the reflection due to each interface (the 𝑇𝑅+𝑇 paths)

and a single lobe for transmission (Fig. 5(b)). The resulting BSDF is

formally given as

𝜌 (𝜔𝑖 , 𝜔𝑜 ) =
∑
𝑘

𝑒𝑘𝜌 (𝜔𝑘 , 𝜔𝑜 , 𝜎𝑘 ) (12)

with

𝜔𝑘 = reflect(𝜇𝑘 )

𝜌 (𝜔𝑘 , 𝜔𝑜 , 𝜎𝑘 ) =
𝐺 (𝜔𝑘 , 𝜔𝑜 , 𝛼𝑘 ) 𝐷 (h, 𝛼𝑘 )

4 (𝜔𝑘 · n) (𝜔𝑜 · n)
𝛼𝑘 = 𝑓 −1 (𝜎𝑘 ).

We refer the reader to the original paper of Belcour [2018] for further

details.
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3.3 Motivation

While the statistical framework proposed by Belcour [2018] remains

simple yet powerful, extending this approach to scattering volume

layers remains very challenging. One of the main difficulties is that

volume scattering generally involves both forward and backward

flux and continuous interactions between them in the overall struc-

ture. In Belcour’s terminology, this entails tracking at least two sets

of statistics, formulating the associated multi-flux atomic opera-

tors, and deriving the corresponding energy and variance multi-flux

adding equations. Another critical difficulty lies in the treatment

of volumes of arbitrary depth. Scattering in volumes of arbitrary

depth is typically achieved by repeating the adding equations start-

ing from a very thin layer. This process is referred to as doubling

and may incur expensive and non-constant computation costs as

volume layer thicknesses generally vary on surfaces. Unfortunately,

the statistical framework of Belcour [2018] is neither well suited to

multi-flux treatment nor derivation of efficient methods for volumes

of arbitrary depth.

On the other hand, the transfer matrix offers an ideal framework

for multi-flux treatment as its compact formalism allows straightfor-

ward extensions [Hébert and Emmel 2015] and multiple scattering

operator derivations. Furthermore, the underlying linear algebra is

particularly well suited for volume layers and allows the derivation

of efficient closed-form transfer matrices [Kubelka 1948]. Inspection

of Belcour’s [2018] statistical framework suggests partial compli-

ance with the transfer matrix formalism as energy statistics obey

the classical adding equations. Unfortunately, as suggested by the

form of Equation (11), variance statistics can not be computed using

transfer matrices. Therefore, we propose to overcome this limitation

by switching to a representation better suited to a transfer matrix

modeling.

4 HENYEY-GREENSTEIN REPRESENTATION

The Henyey-Greenstein (HG) phase function [1941] is widely used

in computer graphics to describe the scattering properties of par-

ticipating media. This function is controlled by a single parameter

𝑔 ∈ [−1, 1] called the asymmetry parameter and is defined as

𝑝 (𝜃 ;𝑔) = 1

4𝜋

1 − 𝑔2

(1 + 𝑔2 − 2𝑔 cos𝜃 )
3

2

(13)

with 𝜃 denoting the deviation angle from the forward direction. As it

depends only on a deviation angle, this function is axially symmetric

around the forward direction. When 𝑔 = 0, the resulting function is

uniform, while it degenerates to a forward (resp. backward) delta

function when 𝑔 = 1 (resp. 𝑔 = −1).
An important property of this phase function is its stability un-

der convolution [Davis 2006]: Convolving two arbitrary HG phase

functions 𝑝 (𝑔1) and 𝑝 (𝑔2) yields another HG phase function such

that

(𝑝 (𝑔1) ∗ 𝑝 (𝑔2)) (𝜃 ) = 𝑝 (𝜃 ;𝑔1 × 𝑔2). (14)

where ∗ denotes the spherical convolution product. Note that the

vMF distribution also known as Spherical Gaussian used in many

previous works does not, strictly speaking, possess this stability

[Mardia and Jupp 2009].

We build upon this property to approximate light-matter interac-

tions in participating media and scattering due to GGX based rough

surfaces. To this end, we propose to approximate hemispherical light

distributions with HG lobes, respectively defined with an energy, a

mean direction, and an asymmetry parameter.

In practice, our approach is similar to the work of Belcour [2018]

except that we summarize the statistics of each lobe with sets of

the form 𝜙 = (𝑒, 𝜇, 𝑔) where asymmetry parameters 𝑔 are used in

place of variance descriptors 𝜎 . Similarly to the prior work, we

also always assume that the mean directions of the HG lobes obey

Snell’s laws which considerably simplifies the derivations. Based

on this representation, we leverage HG convolution property to

compute the statistics of the outgoing HG lobes. Finally, we map

back the outgoing HG lobes to GGX lobes with equivalent perceived

roughnesses since HG lobes cannot reproduce the light distributions

resulting from microfacet surface scattering.

In contrast to the prior work, tracking HG asymmetry parameters

presents two core benefits. First, this representation provides native

support for participating media as they are commonly described

with this phase function. Most importantly, its multiplicative con-

volution property allows the resolution of layer multiple scattering

with the transfer matrix formalism, which enables efficient support

for scattering volume layers.

5 A TWO-FLUX MODEL FOR ROUGH INTERFACES

This section consists of a transfer matrix compliant reformulation of

Belcour’s [2018] statistical framework. We start by approximating

rough reflections and transmissions by HG convolution products

and show how to compute multiple-layer light transport statistics

with transfer matrices.

5.1 Rough reflection and transmission HG representations

We obtained the equivalent asymmetry parameter of a GGX based

microfacet BRDF with roughness 𝛼 ∈ ] 0, 1] by adapting the 𝐿3 opti-

mization method provided by Heitz et al. [2016]. Figure 6 outlines

some fitting results for varying incidence and GGX roughness. In

general, the equivalent asymmetry parameter does not remain con-

stant with respect to incident elevation due to the deformation that

microfacet-based lobes undergo toward grazing angles. In practice,

we restrict our fit to normal incidences for which we were able to

find the analytic approximation

𝑔(𝛼) = −0.085 + 1.085

1 +
(
𝛼
0.5

)
1.3

. (15)

The accuracy level of this approximation is reported in the supple-

mentary document. Thus, given an incoming light distribution with

asymmetry parameter𝑔𝑖 , we approximate the asymmetry parameter

of the reflected distribution following HG convolution property (14)

as

𝑔𝑅 = 𝑔𝑖 × 𝑔(𝛼) . (16)

When crossing a dielectric interface, light distributions undergo

expansion or contraction due to the index change. In the case of

Henyey-Greenstein, this additionally translates as a loss of the axial

symmetry due to Snell’s refraction law. However, while these de-

formations increase with the incident elevation, we observed that
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Fig. 6. We approximate a GGX BRDF model with an Henyey-Greenstein

lobe to compute subsurface transport. GGX roughness is𝛼 = 0.1 for columns

(a) and (b), and 𝛼 = 0.2 for columns (c) and (d). Incident elevation angle is

set to 𝜃𝑖 = 0
◦
for columns (a) and (c), and 𝜃𝑖 = 60

◦
for columns (b) and (d).
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Fig. 7. At moderate incidences, the distribution transmitted through a

smooth interface (middle column) due to an incident HG lobe (left col-

umn) can be approximated by another HG lobe. The right column shows the

results obtained with our approximation. In the first row, the incident and

transmitted media’s indices are respectively set to 𝜂𝑖 = 1 and 𝜂𝑡 = 1.5, and

the incident elevation to 𝜃𝑖 = 30
◦
. The second row depicts a transmission

with 𝜂𝑖 = 1.5 and 𝜂𝑡 = 1 and an incident elevation defined to 𝜃𝑖 = 15
◦
. The

incident asymmetry parameters used in the two rows respectively corre-

spond to microfacet-based reflected lobes with GGX roughnesses 𝛼 = 0.1

and 𝛼 = 0.2.

the transmitted distribution of an incident HG lobe could be ap-

proximated by another HG lobe for moderate elevations. Based on

this observation, we approximate the transmitted lobe’s asymmetry

parameter due to a smooth interface with the operator

ℎ(𝑔) =
√
1 −max (0,min (𝑡, 1)) with 𝑡 =

(
1 − 𝑔2

) (𝜂𝑖
𝜂𝑡

) 3

4

(17)

where 𝜂𝑖 and 𝜂𝑡 respectively denote the refractive indices of the

incident and transmitted media. Figure 7 depicts some results ob-

tained thanks to this approximation. Additional validation plots are

available in the supplementary document. In the general case of a

rough interface, the transmitted distribution additionally undergoes

blurring effects due to the interface’s micro-geometry. Leveraging

Henyey-Greenstein’s convolution property, we compute the asym-

metry parameter of a transmitted distribution as

𝑔𝑇 = ℎ(𝑔𝑖 ) × 𝑔(𝑠 × 𝛼) (18)

where 𝑠 is Belcour’s [2018] fake rough transmission scaling factor

defined in Equation (9).

5.2 Transfer matrix formulation

In the case of two rough interfaces, an incident ray of light gives

rise to an infinite sequence of reflected lobes which we summarize

as a single HG lobe with energy 𝑒𝑅
02

and asymmetry parameter 𝑔𝑅
02
.

The core idea of this paper is to compute these quantities based

on transfer matrices of the form

𝑀𝑖 𝑗 =
1

𝜏𝑖 𝑗

[
1 −𝜌 𝑗𝑖
𝜌𝑖 𝑗 𝜏𝑖 𝑗𝜏 𝑗𝑖 − 𝜌𝑖 𝑗𝜌 𝑗𝑖

]
. (19)

As studied in Section 3.2, the total amount of reflected energy is

given as the geometric series

𝑒𝑅
02

= r01 + t01r12t10 + ... (20)

Similarly, the asymmetry parameter of the reflected lobe can be

expressed as the weighted sum

𝑔𝑅
02

𝑒𝑅
02

with 𝑔𝑅
02

= r01 𝑔𝑅01 + t01 𝑔
𝑇
01
r12 𝑔𝑅12 t10 𝑔

𝑇
10
+ ... (21)

where 𝑔𝑅
𝑖 𝑗
and 𝑔𝑇

𝑖 𝑗
respectively denote constant asymmetry parame-

ters approximating the effects of rough reflections and transmissions

between media 𝑖 and 𝑗 . While the constant asymmetry parameter

terms for reflections are directly given as 𝑔𝑅
𝑖 𝑗

= 𝑔(𝛼𝑖 𝑗 ), special care
must be given to the 𝑔𝑇

𝑖 𝑗
transmission terms due to the non-linearity

of operator (17). We address this limitation by linearizing the effects

of rough transmissions on incident asymmetry parameters as

𝑔𝑇𝑖 𝑗 =
𝑔
(1)
𝑗

𝑔
(1)
𝑖

with 𝑔
(1)
𝑗

= ℎ
𝑖 𝑗
(𝑔 (1)
𝑖
) × 𝑔(𝑠

𝑖 𝑗
× 𝛼) (22)

where 𝑔
(1)
𝑖

is a first-order asymmetry parameter not accounting for

multiple bounces between interfaces which we iteratively track in

each medium thanks to the operators studied in Section 5.1. We

compute the opposite transmission’s transfer factor𝑔𝑇
𝑗𝑖
following the

same methodology except that we account for the next interface’s

roughness when computing the first-order asymmetry parameters

terms.

The main result of this construction is that the statistics of the

reflected lobe can now be computed using transfer matrices since

energy and unnormalized asymmetry parameter take the form of

geometric series. More precisely, we compute these quantities with

specialized forms of the matrix (19) which we refer to as energy and

asymmetry transfer matrices. We respectively denote these matrices

as 𝐸 and 𝐺 .

For two interfaces, the total amount of reflected energy is given

as 𝑒𝑅
02

= 𝑅(𝐸01𝐸12), where 𝐸𝑖 𝑗 denote instances of the transfer ma-

trix (19) with transfer factors 𝜌𝑖 𝑗 = r𝑖 𝑗 and 𝜏𝑖 𝑗 = t𝑖 𝑗 , and 𝑅 is the re-

flectionmatrix operator (5). Similarly, we compute the unnormalized

asymmetry parameter 𝑔𝑅
02

of the reflected lobe as 𝑔𝑅
02

= 𝑅(𝐺01𝐺12)
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where𝐺𝑖 𝑗 denote instances of the transfer matrix (19) with transfer

factors 𝜌𝑖 𝑗 = r𝑖 𝑗 𝑔𝑅𝑖 𝑗 and 𝜏𝑖 𝑗 = t𝑖 𝑗 𝑔𝑇𝑖 𝑗 .

5.3 Multiple-layers statistics

We iteratively compute the statistics of the light transport due to

an arbitrary number of interfaces based on the matrix formulation

introduced in Section 5.2. The iterative approach is described in

Algorithm 1.

Algorithm 1:Multi-lobe BSDF transfer matrix algorithm

Input: Incident direction 𝜔𝑖 and properties of the 𝑛 stack

components ordered by increasing depth in the stack

Output: Outgoing lobes energies, means and roughnesses
begin

𝜇𝑖 ← −𝜔𝑖 // Mean direction

𝑔
(1)
𝑖
← 1 // First-order asymmetry parameter term

𝐸0𝑖 ← 𝐼 // Accumulated energy transfer matrix

𝐺0𝑖 ← 𝐼 // Accumulated asymmetry transfer matrix

// Stack components traversal
for j in 1 .. n do

1) Compute transmission’s mean direction 𝜇 𝑗 and

first-order asymmetry parameter term 𝑔
(1)
𝑗

2) Instantiate component’s 𝐸𝑖 𝑗 and 𝐺𝑖 𝑗 transfer

matrices

3) Compute 𝐸0𝑗 and 𝐺0𝑗 transfer matrices including

top components

4) Compute the energy, the mean and the roughness
of the component’s reflection lobe

// Update iteration variables

𝜇𝑖 ← 𝜇 𝑗 , 𝑔
(1)
𝑖
← 𝑔

(1)
𝑗

, 𝐸0𝑖 ← 𝐸0𝑗 , 𝐺0𝑖 ← 𝐺0𝑗

5) Compute the energy, the mean and the roughness of
the lobe transmitted through the stack

In the case of a stack only composed of interfaces, the proper-

ties of the scattering components reduce to the refractive index

and the roughness of each interface. For each interface (Step 1),

we compute the mean transmission direction based on Snell’s re-

fraction law and the first-order transmission asymmetry parameter

according to Equation (22). We use the latter to instantiate the en-

ergy and asymmetry transfer matrices 𝐸𝑖 𝑗 and 𝐺𝑖 𝑗 of the interface

(Step 2) according to the methodology studied in Section 5.2, and

we compute the transfer matrices accounting for top components as

𝐸0𝑗 = 𝐸0𝑖𝐸𝑖 𝑗 and 𝐺0𝑗 = 𝐺0𝑖𝐺𝑖 𝑗 (Step 3). Then, we extract the 𝑇𝑅+𝑇
paths statistics due to the interface (Step 4) as

𝑒𝑇𝑅𝑇
0𝑗 = 𝑅(𝐸0𝑗 ) − 𝑅(𝐸0𝑖 )

𝜇𝑇𝑅𝑇
0𝑗 = reflect(𝜔𝑖 )

𝑔𝑇𝑅𝑇
0𝑗 = 𝑅(𝐺0𝑗 ) − 𝑅(𝐺0𝑖 ) .

(23)

𝑖𝑗𝑏 𝑗 𝑓

(a)

(b)

(c)

(d)

Fig. 8. When traveling in a medium, a photon may cross the volume without

suffering any interaction (a), it may be absorbed (b), or it may be scattered

(c). To make the problem more tractable without sacrificing important

appearance features, we isolate unscattered light from forward- and back-

scattered light. We respectively denote the corresponding fluxes as 𝑖 , 𝑗 𝑓 ,

and 𝑗𝑏 (d).

Note that for a conducting base, the transfer matrices are undefined

due to the zero transmission factors. In this case, we compute the

reflected lobe’s statistics using the explicit reflectance operator

𝑅(𝑀, 𝜌) = 𝑀21 +𝑀22𝜌

𝑀11 +𝑀12𝜌
(24)

where 𝑀 and 𝜌 respectively denote the transfer matrices of the

upper layers and the reflectance transfer factors of the conducting

base. Derivation of this operator is given in the supplementary

document.

For a transmissive substrate, we compute the statistics of the light

transmitted through the stack (Step 5) as

𝑒𝑇 = 𝑇 (𝐸0𝑛), 𝜇𝑇 = refract(𝜔𝑖 , 𝜂0𝑛), 𝑔𝑇 = 𝑇 (𝐺0𝑛) (25)

where 𝑇 is the transmission matrix operator (6).

Finally, we compute the equivalent GGX roughness of each out-

going lobe by applying the inverse HG fit to the normalized lobes

asymmetry parameters.

6 A SIX-FLUX MODEL FOR SCATTERING VOLUMES

LAYERS

In this section, we introduce the six-flux approach which extends

the two-flux model studied in Section 5 to account for scattering

volumes effects. We start by introducing the general approach in

Section 6.1, and we present the general form of the six-flux transfer

matrix and its associated multiple-scattering operators in Section 6.2.

Then, we derive specialized forms of the six-flux transfer matrix

for homogeneous participating media and interface components in

Sections 6.3 and 6.4. Finally, we show how to compute the statistics

of the outgoing lobes with the six-flux approach in Section 6.5, and

we introduce an improvement to the resulting BSDF in Section 6.6.

6.1 The six-flux approach

Three outcomes are possible for a photon, i.e., a light particle carry-

ing a finite amount of energy, when traveling in a scattering volume:

It may cross the entire volume without undergoing any interaction

(Fig. 8(a)), it may be absorbed (Fig. 8(b)), or its direction of flight

may change due to scattering by particles in the medium (Fig. 8(c)).
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Fig. 9. With the six-flux approach, we isolate light having undergone one or more scattering events in a medium (secondary 𝑗 fluxes depicted as orange

arrows) from light not scattered by any medium (primary 𝑖 fluxes depicted in black). We additionally split the scattered light part into forward and backward

contributions denoted as 𝑗 𝑓 and 𝑗𝑏 . The left inset depicts the primary-to-primary and primary-to-secondary flux transfers occurring between depths 𝑧 = 0

and 𝑧 = 1 of a generic scattering component (or stack of components). The right inset focuses on secondary-to-secondary flux transfers.

Determining the escape probability of a photon in an arbitrary di-

rection given its incoming direction falls into the radiative transfer

realm and, in general, does not admit closed-form solutions.

To simplify the problem without sacrificing important appear-

ance features, we propose to isolate the unscattered light part from

light having undergone one or more scattering events in a medium.

We respectively denote the corresponding fluxes 𝑖 and 𝑗 and refer

to them as primary and secondary fluxes. Moreover, a significant

amount of light might be scattered back with participating media

layers. Thus, we propose to split the scattered light part into forward

and backward contributions, which we respectively denote as 𝑗 𝑓

and 𝑗𝑏 (Fig. 8(d)).

In terms of our HG representation, we express these light distri-

butions as hemispherical HG lobes. Also, we recall that according

to the assumptions made in Section 4, we always assume that the

mean directions of the HG lobes obey Snell’s laws. We only make a

distinction for secondary backward lobes whose mean directions

are oriented in the opposite direction of light travel.

Accounting for the vertical direction of propagation in the struc-

ture, we thus describe the light distribution at any depth 𝑧 of the

layered structure as a six-flux vector 𝐼𝑧 = [𝑖+𝑧 𝑖−𝑧 𝑗
𝑓 +
𝑧 𝑗

𝑓 −
𝑧 𝑗𝑏+𝑧 𝑗𝑏−𝑧 ]⊤.

6.2 The six-flux transfer matrix

Under the six flux approach, each component of the stack may give

rise to primary-to-primary, primary-to-secondary, and secondary-

to-secondary flux transfers. We respectively denote the correspond-

ing reflection and transmission transfer factors as 𝜌 |𝜏 , 𝜌 |𝜏𝑥 , and
𝜌 |𝜏𝑥𝑦 , where the superscripts specify the lateral directions of the

interacting secondary fluxes. For instance, we denote primary-to-

secondary back reflection as 𝜌𝑏 , secondary-to-secondary forward

transmission as 𝜏 𝑓 𝑓 , and so on. Figure 9 depicts the possible flux

transfers occurring between depths 𝑧 = 0 and 𝑧 = 1 of a generic

stack component, may it be an interface, a scattering volume, or

any combination of them.

As in the two-flux case, the flux balance between the boundaries

of the component can be compactly written as

𝐼0 = 𝑀01𝐼1 with 𝑀01 =


𝑀𝑝𝑝 0 0

𝑀𝑝𝑓 𝑀𝑓 𝑓 𝑀𝑏𝑓

𝑀𝑝𝑏 𝑀𝑓 𝑏 𝑀𝑏𝑏

 (26)

where each𝑀01 sub-block is a 2x2 matrix. In this form, primary-to-

primary, primary-to-secondary, and secondary-to-secondary flux

transfers are respectively expressed through the 𝑀𝑝𝑝 , 𝑀𝑝𝑥 , and

𝑀𝑥𝑦 matrix blocks.

Given a transfer matrix 𝑀𝑖 𝑗 , the primary reflectance transfer

factor 𝜌𝑖 𝑗 of the corresponding component (or stack of components)

can be obtained as 𝜌𝑖 𝑗 = 𝑅(𝑀𝑖 𝑗 ) where 𝑅 is the matrix operator (5).

The primary-to-secondary forward and backward reflectances 𝜌
𝑓

𝑖 𝑗

and 𝜌𝑏
𝑖 𝑗

accounting for internal multiple-scattering can respectively

be obtained with the matrix operators 𝑅 𝑓
and 𝑅𝑏 , defined as

𝑅 𝑓 (𝑀) = 𝑀41

𝑀11

+
𝑀45 |𝑀 |31,53 −𝑀43 |𝑀 |31,55

𝑀11 |𝑀 |33,55
(27)

and

𝑅𝑏 (𝑀) = 𝑀61

𝑀11

+
𝑀65 |𝑀 |31,53 −𝑀63 |𝑀 |31,55

𝑀11 |𝑀 |33,55
(28)

where |𝑀 |
kl,mn

= 𝑀
kl
𝑀mn − 𝑀

ml
𝑀
kn

denotes the 2×2 matrix de-

terminant operator. Similarly, the primary transmittance can be

evaluated as 𝜏𝑖 𝑗 = 𝑇 (𝑀𝑖 𝑗 ) where 𝑇 is the matrix operator (6), and

the primary-to-secondary forward transmission is obtained with

the matrix operator 𝑇 𝑓
defined as

𝑇 𝑓 (𝑀) =
−|𝑀 |31,55
𝑀11 |𝑀 |33,55

. (29)

Derivation of these operators is given in the supplementary docu-

ment.
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6.3 Homogeneous participating media

In this section, we derive the transfer matrix of a scattering volume

of arbitrary thickness. To this end, we start by modeling the flux

transfers occurring in a thin volume slab, and we derive the transfer

matrix for an arbitrary depth thanks to a matrix exponentiation. We

restrict our study to homogeneous participating media and respec-

tively denote 𝜎𝑡 and 𝜎𝑠 , the extinction and scattering cross-sections

per unit length traveled in the medium. We also assume Henyey-

Greenstein with asymmetry parameter 𝑔 as the phase function of

the medium.

When propagating in the medium, each flux decreases due to

volume extinction, while each secondary flux also undergoes an

increase due to primary and secondary flux in-scattering. Assuming

that the mean direction of each flux obeys Snell’s laws, the flux

transfers are moreover independent of the vertical and lateral di-

rections of propagation. Consequently, under these simplifications,

five transfer factors 𝜏 , 𝜏 𝑓 , 𝜏 𝑓 𝑓 , 𝜌𝑏 , and 𝜌 𝑓 𝑏 are required to describe

a homogeneous participating medium. Figure 10 depicts the flux

transfers occurring in a thin volume slab of height Δ𝑧.

𝜌 𝑓 𝑏 𝜌 𝑓 𝑏

𝜌 𝑓 𝑏 𝜌 𝑓 𝑏

𝜏 𝑓 𝑓 𝜏 𝑓 𝑓

𝜏 𝑓 𝑓

𝜏 𝑓 𝑓

𝑗
𝑓 +
𝑧1 𝑗𝑏−𝑧1 𝑗𝑏+𝑧1 𝑗

𝑓 −
𝑧1

𝑗𝑏+𝑧2 𝑗
𝑓 −
𝑧2 𝑗

𝑓 +
𝑧2 𝑗𝑏−𝑧2

𝜌𝑏

𝜌𝑏

𝜏

𝜏

𝑖+𝑧1 𝑗𝑏−𝑧1 𝑖−𝑧1 𝑗
𝑓 −
𝑧1

𝑖−𝑧2 𝑗𝑏+𝑧2 𝑖+𝑧2 𝑗
𝑓 +
𝑧2

𝜏 𝑓

𝜏 𝑓

Δ𝑧

Fig. 10. Six-flux transfers occurring in a thin homogeneous volume slab of

height Δ𝑧 resulting from our simplifications.

We can express the back-scattering probability per unit length

traveled of a photon propagating in the medium, with respect to

its flight direction, as the back-scattering cross-section 𝜎𝑠𝑏 defined

with respect to the phase function’s lower hemisphere integral as

𝜎𝑠𝑏 = 𝜎𝑠 × 𝑝− (𝑔) with 𝑝− (𝑔) = 2𝜋

∫
0

−1
𝑝 (cos𝜃 ;𝑔) 𝑑 cos𝜃 . (30)

This integral can be accurately approximated as

𝑝− (𝑔) =
{
𝑄 ( |𝑔|) if 𝑔 ≥ 0

1 −𝑄 ( |𝑔|) otherwise

(31)

with

𝑄 (𝑢) = 0.5039 − 0.8254𝑢 + 0.3226𝑢2 .
The accuracy level of this approximation is reported in the supple-

mentary document. We analogously define the forward scattering

𝜎𝑠 𝑓 cross-section as 𝜎𝑠 𝑓 = 𝜎𝑠 − 𝜎𝑠𝑏 , and we approximate the ex-

tinction and the forward- and back-scattering of each flux with

cross-sections 𝜎𝑡 , 𝜎𝑠 𝑓 , and 𝜎𝑠𝑏 evaluated at mean directions. In prac-

tice, we find that these simplifications turn out to be acceptable

compromises, as shown in Section 7.2.

Passing down to the limit Δ𝑧 → 0, we can express the energy

change rate of each flux as the differential system

𝑑𝐼𝑧

𝑑𝑧
=

𝐴

cos𝜃𝑖
𝐼𝑧 (32)

with

𝐴 =


−𝜎𝑡 0 0 0 0 0

0 𝜎𝑡 0 0 0 0

𝜏 𝑓 0 −𝜎𝑡+𝜏 𝑓 𝑓 0 0 𝜌 𝑓 𝑏

0 −𝜏 𝑓 0 𝜎𝑡−𝜏 𝑓 𝑓 −𝜌 𝑓 𝑏
0

0 𝜌𝑏 0 𝜌 𝑓 𝑏 −𝜎𝑡+𝜏 𝑓 𝑓 0

−𝜌𝑏 0 −𝜌 𝑓 𝑏
0 0 𝜎𝑡−𝜏 𝑓 𝑓


where

𝜌𝑏 = 𝜌 𝑓 𝑏 = 𝜎𝑠𝑏 and 𝜏 𝑓 = 𝜏 𝑓 𝑓 = 𝜎𝑠 𝑓 . (33)

Similarly, we can express the change rates of the unnormalized

asymmetry parameters of the light distributions as an instance of

the differential system (32) with transfer factors defined as

𝜌𝑏 = 𝜌 𝑓 𝑏 = −𝜎𝑠𝑏 𝑔 and 𝜏 𝑓 = 𝜏 𝑓 𝑓 = 𝜎𝑠 𝑓 𝑔 (34)

where the negated asymmetry parameter accounts for the reversal

of back-scattered light propagation directions.

As a first-order ordinary differential system, Equation (32) admits

general solutions of the form 𝐼𝑧 = exp(𝐴 (𝑧 − 𝑧0)/cos𝜃𝑖 ) 𝐼𝑧0 . In
particular, with 𝑧 = 0 and 𝑧0 = ℎ, we have 𝐼0 = 𝑀𝐼ℎ where 𝑀

denotes the transfer matrix of the medium of depth ℎ defined as

𝑀 = 𝑒−ℎ
′𝐴 =

1

𝛾


𝑀𝑝𝑝 0 0

𝑀𝑝𝑓 𝑀𝑓 𝑓 𝑀𝑓 𝑏

𝑀𝑓 𝑏 𝑀𝑓 𝑏 𝑀𝑓 𝑓

 (35)

with

𝑀𝑝𝑝 =

[
𝛾𝑒𝜎𝑡ℎ

′
0

0 𝛾𝑒−𝜎𝑡ℎ
′

]
𝑀𝑓 𝑓 =

[
𝐶𝛾+𝑆𝛼 0

0 𝐶𝛾−𝑆𝛼

]
𝑀𝑓 𝑏 =

[
0 −𝑆𝛽
𝑆𝛽 0

]
𝑀𝑝𝑓 =

[
𝐶𝛾+𝑆𝛼−𝛾𝑒𝜎𝑡ℎ′ 0

0 𝐶𝛾−𝑆𝛼−𝛾𝑒−𝜎𝑡ℎ′

]
where ℎ′ = ℎ/cos𝜃𝑖 , 𝛼 = 𝜎𝑡 − 𝜏 𝑓 , 𝛽 = 𝜌𝑏 , 𝛾 =

√
𝛼2 − 𝛽2, 𝑆 =

sinh (𝛾ℎ′), and𝐶 = cosh (𝛾ℎ′). While the𝑀𝑝𝑝 block directly follows

from Beer-Lambert’s law, it is worth noting that the𝑀𝑓 𝑓 and𝑀𝑓 𝑏

blocks take a form analogous to the Kubelka-Munk [1948] solutions

for the case of two-flux diffuse transfer.

Based on this result, we respectively obtain the energy and asym-

metry transfer matrices 𝐸 and𝐺 of an arbitrary depth homogeneous

volume as instances of matrix (35) with respective transfer factors

(33) and (34).

6.4 Interface components

In the case of an interface component, no transfer occurs between

primary and secondary fluxes. Assuming that most light is for-

wardly reflected and transmitted at the interface, we express the

corresponding transfer matrix as

𝑀 =


𝑀𝑝𝑝 0 0

0 𝑀𝑓 𝑓 0

0 0 𝑀𝑏𝑏

 (36)

where each𝑀 sub-block takes the form of a two-flux transfer ma-

trix (19). As a result, we compute the energy and asymmetry transfer
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Fig. 11. With the six-flux approach, we approximate the BSDF of the stack

as a mixture of forward and backward microfacet lobes sharing the same

mean directions.

matrices 𝐸 and 𝐺 of an interface by instantiating their respective

2x2 sub-blocks following the two-flux methodology studied in Sec-

tion 5.2.

6.5 Multiple-layers statistics

We compute the light transport statistics due to each layer following

the iterative approach described in Algorithm 1, except that scatter-

ing components now consist of interfaces and participating media.

With the six-flux approach, we summarize the light transport due to

each component with two additional sets of statistics corresponding

to back-scattered and forward-scattered secondary fluxes. As a re-

sult, we approximate the BSDF of the stack as a mixture of forward

and backward microfacet lobes sharing the same mean directions

(Fig. 11).

When iterating through the stack, we instantiate the energy and

asymmetry transfer matrices 𝐸𝑖 𝑗 and𝐺𝑖 𝑗 of each component (Step 2)

based on the definitions given in Sections 6.3 and 6.4. Furthermore,

we specialize the matrix product operations depending on the trans-

fer matrix of the scattering component being multiplied when com-

puting 𝐸0𝑗 and𝐺0𝑗 transfer matrices accounting for top components

(Step 3). This significantly decreases the rendering time as the spe-

cialized transfer matrices contain large numbers of zero entries. In

addition to the primary reflected lobes statistics (Step 4), we com-

pute the energies of the secondary lobes and their roughnesses,

by sequentially evaluating the intermediate transfer matrices (23)

with the 𝑅 𝑓
and 𝑅𝑏 operators defined in Section 6.2. For backward

reflection statistics, we define the mean directions of the lobes as

the incident direction.

Note that for an interface, computing the secondary lobes is

necessary only if the upper components contain a scattering volume

layer. Additionally, we compute primary and secondary forward

reflected lobes only if the components include an interface.

As for the two-flux case, explicit reflectance operators must be

used for conducting bases as their transfer matrices can not be

instantiated. In this case, we evaluate the primary reflectance with

the 𝑅(𝑀, 𝜌) operator defined in Section 5.3, and we provide the

explicit 𝑅 𝑓 (𝑀, 𝜌) and 𝑅𝑏 (𝑀, 𝜌) operators for conductors secondary
reflectances in the supplementary document.

No normalization GD normalization

Fig. 12. In its original form [Belcour 2018], the BSDF is not energy preserving

as it relies on single-scattering microfacet lobes (left inset). We restore this

property by normalizing each lobe with a pre-integrated GD term (right

inset). Here, a non-absorbing scattering volume with parameters 𝜎𝑠=0.755,

HG 𝑔=0 and depth 𝑑=4 lies on top of an ideally reflecting conductor with

roughness 𝛼=0.1.

6.6 BSDF normalization

It is important to note that in its original form (Equation (12)), the re-

sulting BSDF is not energy preserving as it relies on single-scattering

microfacet-based lobes. While this does not significantly affect the

appearance of stacks of moderately rough interfaces, this may have

a considerable impact on participating media as their equivalent

roughnesses can be arbitrarily high. As a consequence, a substantial

amount of energy may be lost in the presence of scattering media,

leading to inconsistent dark appearances. We correct this misbehav-

ior by normalizing each lobe of the BSDF (Fig. 12): Letting 𝑒𝑘 , 𝜇𝑘 ,

and 𝛼𝑘 = 𝑔−1 (𝑔𝑘 ) denote the 𝑘th lobe’s energy, mean, and perceived

roughness, we instantiate the corresponding BSDF lobe as

𝑒𝑘
𝜌 (𝜔𝑘 , 𝜔𝑜 , 𝛼𝑘 )
GD(𝜔𝑘 , 𝛼𝑘 )

with 𝜔𝑘 = reflect(𝜇𝑘 ), (37)

and

GD(𝜔𝑘 , 𝛼𝑘 ) =
∫
Ω+

𝜌 (𝜔𝑘 , 𝜔𝑜 , 𝛼𝑘 ) cos𝜃𝑜 𝑑𝜔𝑜 . (38)

As no closed-form exists for this integral, we precompute it in a 2D

LUT indexed over a predefined range of incidence elevations and

roughnesses. Finally, we sample the BSDF according to the balance

MIS scheme introduced in the previous work (see [Belcour 2018]

for details).

7 RESULTS

The results shown in this section are computed using the path

integrator of the Mitsuba rendering engine [Jakob 2010] for which

we provide implementations of the two- and six-flux approaches.

We use a pre-computed GGX TIR LUT of resolution 64
3
occupying

1MB of RAM and a GGX FGD LUT of resolution 64
4
occupying

64MB RAM. For the sake of reproducibility, we do not account

for multiple bounces in the micro-geometry when computing the

FGD LUT. All the results were generated on an Intel
©
i7-8750H

Core
™

processor with 16 GB of RAM, and the images used for

reference were computed using the stochastic approach of Guo et al.

[2018]. The quality of the results is evaluated using aΔE00 perceptual
difference with respect to the reference method. We respectively

label TM2 and TM6 the results obtained with the two- and six-flux

approaches in the figures. Sections 7.1 and 7.2 respectively present

the results of the two- and six-flux approaches, and limitations as

well as future work are discussed in Section 7.3.
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Fig. 13. We reproduced the Frosted Metal and Gold Coated examples

from Belcour [2018] involving a clear coat with𝜂1=1.5 and 𝛼1 = 0.1 on top of

a conducting base. The roughnesses of the conducting bases are respectively

set to 𝛼2=0.01 and 𝛼1=0.1. The results were obtained using 128 samples per

pixel.

𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.1

TM2Guo 2018 Guo 2018 TM2 Guo 2018 TM2

4.8 mn 1.8 mn 3.7 mn 2 mn 3.4 mn 2 mn

Fig. 14. In the above scenes, the glass plate is modeled as a single quad

surface. The slab has a refractive index 𝜂=1.5 and the two sides of the plate

share the same roughness 𝛼 . The results were obtained using 128 samples

per pixel.

7.1 Two-flux model

Figure 13 reproduces Belcour’s Frosted Metal and Gold Coated

scenes involving a dielectric coat lying on top of a conducting base.

Except for differences at grazing angles, the results obtainedwith the

two approaches remain close to each other. For these incidences, the

approach of Belcour [2018] provides a perceived roughness in better

agreement with the ground truth. We attribute these differences to

the linear space introduced by the author to compute the variance

statistics. The latter is explicitly designed to approximate the vari-

ance due to multiple reflections between two interfaces yielding

better results at high incidences as the number of bounces tends to

increase in these configurations. Additional clear coat examples with

varying roughness are available in the supplementary document.

Figure 14 illustrates the ability of our two-flux model to simulate

transmission through dielectric stacks of varying roughness with

results close to the stochastic ground truth.

7.2 Six-flux model

All the results introduced in this section have been produced using

a pre-computed GGX GD LUT of resolution 64
2
occupying 16KB

of RAM, used at runtime to normalize the BSDF (Section 6.6). For

a fair comparison, we adapted Belcour’s [2018] Mitsuba plugin to

account for this normalization.

Figures 15 and 16 depict a non-absorbing participating medium

lying on top of a smooth golden base (𝛼 = 0.02). Figure 15 analyzes

the influence of the thickness of the volume on the appearances

produced by the two approaches. In this example, the scattering

is strongly forward-oriented (𝑔 = 0.9), and the thickness of the

volume varies between 𝑑 = 0.1 and 𝑑 = 4. Belcour’s approach

undergoes severe energy loss increasingwith the optical thickness of

the medium. The overly dark appearances produced by the approach

are due to the underlying single-scattering approximation and its

lack of back-scattering support. Note that the GD normalization

does not help to recover the missing energy. Moreover, as can be

seen on the top row, the approach results in inconsistent perceived

roughness even in the case of thin volume layers. In contrast, the six-

flux approach produces perceived roughnesses close to the ground

truth for all volume depths. Figure 16 analyzes the influence of the

scattering profile of the medium. In this example, the thickness of

the volume is set to 𝑑 = 1, while the scattering varies from a uniform

(𝑔 = 0) to a forward-oriented profile (𝑔 = 0.7). Note how the six-flux

model well reproduces the complex combinations of specular and

diffuse components due to strong back-scattering. Further examples

with varying depths and scattering profiles are available in the

supplementary document.

Figure 17 illustrates the rendering of materials including a scat-

tering volume in a dielectric layer on top of a conducting base.

These configurations are particularly challenging as they lead to

complex combinations of specular, directional-diffuse, and diffuse

features evolving with the optical thickness of the medium. While

some differences with the ground-truth can be observed, the six-flux

model yields substantial improvement compared to previous approx-

imations. Additional examples with varying depths and scattering

profiles are available in the supplementary document.

The six-flux model entails additional computational costs: Using

6×6 matrices involves higher memory register consumption, addi-

tional arithmetic operations, and the evaluation of the secondary

lobes incurs additional GD, FGD and TIR LUTs lookups. Therefore,

it would be relevant to derive efficient analytical approximations

for these integrals in subsequent work to minimize the rendering

times. These additional costs are nevertheless amortized against

stochastic approaches: Figure 18 illustrates the rendering of a ma-

terial involving a absorbing scattering volume trapped between

two interfaces. While stochastic approaches introduce significant

variance, the six-flux approach provides low-variance results even

with restricted sample budgets. Also, it is worth noting that the ren-

dering time of the stochastic approach significantly increases with

the optical depth of the medium due to the increasing amount of

internal samples. In contrast, the computational cost of the six-flux

model remains insensitive to the optical properties of the media

(Fig. 18, bottom row).
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Fig. 15. In the above scene, a non-absorbing scattering medium lies on top

of a smooth golden material (𝛼 = 0.02). The asymmetry parameter and the

scattering cross-section of the medium are respectively set to 𝑔 = 0.9 and

𝜎𝑠 = 0.5, and the thickness of the volume varies from 𝑑 = 0.1 to 𝑑 = 4. Note

how the six-flux approach correctly reproduces the apparent roughness

which increases with the thickness of the medium. The results were obtained

using 1024 samples per pixel.

7.3 Limitations and future work

External absorbing media. Darkening toward grazing angles can be

observed with the six-flux model in the case of external absorbing

media when the phase function is forward-oriented (Fig. 19). These

configurations are poorly supported as our approach assumes that

light propagating in the forward direction must reflect off the lower

interface before emerging. Consequently, most of the light under-

goes extinction as the mean distance traveled through the medium

increases toward large values in these configurations.

Back-scattering. As illustrated in Figure 20, departures from the

ground truth can be observed with scattering media of increasing op-

tical depth. These divergences are due to our HG back-scattering ap-

proximation (Equation 30) which approximates the back-scattering

around the mean direction but does not account for multiple scatter-

ing events in the volumes. Consequently, our approximation tends

to underestimate the back-scattered energy due to thick volumes,

which explains the more apparent goldish look of our renderings

in Figure 20. As another limitation, our implementation tends to

produce brighter appearances near normal incidences in the case

of scattering dielectric layers (Fig. 21). This limitation is due to our

current implementation, which does not consider total internal re-

flections for back-scattered light in the volumes. This is a design

choice made for simplicity purposes, and we believe that signifi-

cant improvements could be made in this direction by adequately

accounting for HG total internal reflections with a dedicated HG

TIR LUT.

Belcour 2018 Guo et al. 2018 TM6
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4.6 mn Reference 7.47 mn
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Fig. 16. In this example, a non-absorbing scattering medium is placed on

top of a smooth golden material (𝛼 = 0.02). The thickness of the medium is

set to 𝑑 = 1, the scattering cross-section is defined to 𝜎𝑠 = 0.755, and the

asymmetry parameter of the phase function varies from 𝑔 = 0 to 𝑔 = 0.7.

Note the drastic energy loss endured by the previous approach [Belcour

2018]. In contrast, the six-flux approach provides results close to the ground

truth, even in the presence of strongly back-scattering media. The results

were obtained using 1024 samples per pixel.

Reference

Reference

Guo et al. 2018

1.72 mn

1.72 mn

Belcour 2018

𝑑
=
0
.1

𝑑
=
2

5.87 mn

5.35 mn
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Fig. 17. This example depicts the complex case of a scattering volume

trapped in a smooth dielectric layer of index 𝜂 = 1.5 sitting on top of

a rough conducting substrate (𝛼 = 0.1). The scattering cross-section and

the asymmetry parameter of the medium are respectively set to 𝜎𝑠 = 0.5,

𝑔 = 0.3, and the thickness 𝑑 of the medium varies from 0.1 to 2. The results

were obtained using 128 samples per pixel.

GGX lobe mixtures. Similarly to previous work, our model is not

suited to Lambertian substrates as the resulting BSDFs cannot be
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Fig. 18. This example illustrates the low-variance results obtained with the

six-flux model with respect to the stochastic approach, using 32 samples

per pixel. In this scene, an absorbing scattering dielectric layer lies on top

of a conducting base. The absorption and scattering cross-sections of the

medium are respectively set to 𝜎𝑘 = (1, 0.2, 1) and 𝜎𝑠 = 0.7, the asymmetry

parameter is set to 𝑔 = 0.9, and the thickness 𝑑 varies between 1 and 6.

While the rendering time of the stochastic approach significantly increases

with the optical depth of the medium, the computational cost of the six-flux

model remains constant (bottom row).

reproduced with GGX lobe mixtures. Also, it is worth emphasizing

that this limitation also applies to HG back-scattering which cannot

be approximated with GGX lobes.

Multiple bounces between interfaces. As shown in Figures 13 and

22, Belcour’s approach provides perceived roughnesses in better

agreement with the ground truth than our approaches at grazing

angles, where the number of light bounces tends to increase. This is

expected as the method directly accounts for the effects of multiple

bounces in its linear variance representation. With this in mind, we

believe that accounting for multiple light bounces between inter-

faces when fitting HG to GGX could be an interesting avenue for

future work.

Anisotropic interfaces. Finally, anisotropic interfaces are currently
not supported due to the axial symmetry of the Henyey-Greenstein

phase function. We believe that an in-depth study of the anisotropic

directional distributions existing in the literature, of their properties

and associated operators, could inspire future work [Mardia and

Jupp 2009; Xu et al. 2013].

8 CONCLUSION

Rendering of layered materials involving arbitrary combinations

of rough layers and scattering volumes is a challenging problem.

While the community has already proposed reference approaches,

the efficient simulation of this class of materials in reasonable and

controlled time budgets remains an open problem of broad interest.

𝑑 = 1 𝑑 = 2 𝑑 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 19. In the case of external absorbing media, darkening can be observed

toward high elevations with the six-flux approach when the phase function

is forward-oriented. In these examples, an absorbing medium with 𝜎𝑘 = 0.1,

𝜎𝑠 = 0.5, 𝑔 = 0.9 and thickness 𝑑 lies on top of a smooth conducting base.

𝑑 = 0.5 𝑑 = 1 𝑑 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 20. Our approach tends to underestimate the back-scattered energy due

to thick volumes, as our HG back-scattering cross-section approximation

does not account for multiple scattering events in the volumes. In these

examples, a non-absorbing scattering medium with asymmetry parameter

𝑔 = 0.5 and scattering cross-section 𝜎𝑠 = 0.755 lies on top of a golden

material.

𝑑 = 0.5 𝑑 = 1 𝑑 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 21. In the case of scattering dielectric layers, our implementation tends

to produce brighter appearances near normal incidences as we do not con-

sider total internal reflections for back-scattered light in the volumes. In

the above scenes, a colored scattering dielectric layer with refractive index

𝜂 = 1.5, scattering cross-section 𝜎𝑠 = 0.7 and asymmetry parameter 𝑔 = 0.9,

lies on top of a conducting base.

To address these efficiency problems, we introduced an original

approach based on a flux transfer model leveraging key proper-

ties of the Henyey-Greenstein phase function to solve the complex

light transport occurring in these materials. We demonstrated that

our approach produces results comparable to the state-of-the-art

in the case of rough isotropic interfaces. Our approach unveils its

strength in the presence of scattering volumes with efficient sup-

port of forward- and back-scattering involved in these media and

multiple scattering occurring in the overall layered structure. While

the previous method fails to reproduce the appearance of these
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Fig. 22. The model of Belcour provides perceived roughnesses in better

agreement with the ground truth than our approach at grazing angles, where

the number of light bounces tends to increase. In this scene, the material is

composed of three dielectric layers with refractive indices 𝜂1 = 1.4, 𝜂2 = 1,

𝜂3 = 1.4 and roughnesses 𝛼1 = 0.1, 𝛼2 = 0.01, 𝛼3 = 0.1, on top of a smooth

conductor.

materials, the six-flux approach provides better support for these

configurations, with a computational cost both lower than the exist-

ing reference approaches and independent of the optical properties

of the volumes considered. Moreover, the approach should be well

suited to volume layers whose optical properties vary as a con-

tinuous function of depth in the structure, in which case efficient

closed-form transfer matrices might be derived. Also, it is worth

mentioning that this framework could find interesting reverse en-

gineering applications as layer removals are simply expressed as

lightweight inverse matrix products. It would be interesting to in-

vestigate whether the approach is suitable for interactive rendering

on the GPU with additional simplifications.
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