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Fig. 1. The BSDF model introduced in this paper addresses the e�icient rendering of layered materials including rough interfaces and arbitrary sca�ering
volumes based upon a transfer matrix approach. This scene depicts the ability of our model to reproduce the variety of appearances resulting from these
material configurations.

A statistical multi-lobe approach was recently introduced in order to e�-
ciently handle layered materials rendering as an alternative to expensive
general-purpose approaches. However, this approach poorly supports scat-
tering volumes as the method does not account for back-scattering and
resorts to single scattering approximations. In this paper, we address these
limitations with an e�cient solution based upon a transfer matrix approach
which leverages the properties of the Henyey-Greenstein phase function.
Under this formalism, each scattering component of the stack is described
through a lightweight matrix, layering operations are reduced to simple
matrix products and the statistics of each BSDF lobe accounting for multiple
scattering e�ects are obtained through matrix operators. Based on this rep-
resentation, we leverage the versatility of the transfer matrix approach to
e�ciently handle forward and backward scattering which occurs in arbitrary
layered materials. The resulting model enables the reproduction of a wide
range of layered structures embedding scattering volumes of arbitrary depth,
in constant computation time and with low variance.
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1 INTRODUCTION
Realistic simulation of light-matter scattering plays a crucial role
in many rendering applications. Whether targeting entertainment
sources such as video games and animation movies, or addressing
industrial needs such as architectural and product prototyping, high-
quality appearance models are core ingredients of successful digital
experiences.

In the realm of surface materials, a wide range of everyday life ob-
jects fall in the category of layered materials. This class of materials
consist of a superposition of one or several layers of varying com-
position on top of a substrate. Typical examples include all various
kinds of surface paints and �nishes applied to human-made ob-
jects (e.g., clear and colored coats, metallic paints, varnished woods,
glazed ceramics). An important subset of layered materials consists
of materials undergoing natural or anthropogenic phenomena re-
ferred to as weathering or aging. For instance, the exposition of
metals to their surrounding environment over a long period of time
usually implies the formation of a patina layer due to corrosion.
Additionally, surface appearances may signi�cantly change within
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short periods of time with the accumulation of dust or atmospheric
pollutants.

In general, such layer combinations give rise to visually rich and
complex appearance characteristics not exhibited by the individual
components when observed separately. Unfortunately, this visual
diversity dramatically increases the di�culty of designing scattering
models that are simultaneously general, accurate, and e�cient.

Researchers generally rely on multiple hypotheses in order to
simplify the derivation of the BSDFs of layered materials. For in-
stance, a common framework is the plane-parallel approximation
which assumes that the material can be locally described as a stack
of layers whose optical properties are independent of the lateral
position. Moreover, the thickness of these layers is usually assumed
to be much larger than the wavelength of light, making it possi-
ble to ignore interference e�ects. In practice, these simpli�cations
are reasonable for a wide range of layered materials and enable a
convincing reproduction of their appearance.

Based on these assumptions, highly accurate solutions have been
proposed in recent years. However, these solutions remain imprac-
tical for low-time budget rendering due to expensive per-material
precomputations [Jakob et al. 2014; Zeltner and Jakob 2018] or be-
cause of their stochastic nature [Guo et al. 2018]. As an alternative,
more e�cient methods usually make a compromise between ac-
curacy and performance to meet these requirements [Elek 2010].
To this date, the most advanced method in this category is the re-
cent multi-lobe approach of Belcour [2018]. This model relies on
a statistical framework to estimate low-order moments, namely
energy, mean, and variance of multiple scattering BSDF lobes, and
extends the well-known adding equations for this framework. His
approach is not only e�cient, but also supports arbitrarily layered
interfaces as well as spatially varying appearances. Unfortunately,
scattering volumes are poorly supported, as the method resorts to a
single scattering approximation. In practice, this approximation in-
curs severe energy loss, resulting in an inconsistent dark appearance
with increasing volume scattering (Fig. 2). This represents a serious
impediment, as many of the aforementioned natural phenomena
involve multiple scattering volume e�ects. Moreover, many weath-
ering e�ects, such as dust accumulation, typically entail signi�cant
back-scattering not accounted for by the methodology.

The work presented in this paper addresses the aforementionned
issues by introducing an e�cient solution based upon a transfer
matrix model. While our approach is inspired by the work of Belcour
[2018], the main di�erence lies in the underlying mathematical
framework: We use the Henyey-Greenstein phase function [1941]
as an intermediate representation to compute the shapes of the
outgoing lobes. This crucial di�erence allows us to compute the
energies and the shapes of multiple scattering lobes within a uni�ed
transfer matrix treatment.

The transfer matrix is widely used in many �elds of physics
involving layered systems [SÆnchez-Soto et al. 2012]. Under this
formalism, the optical properties of the layers are expressed as
lightweight matrices, typically of size 2�2 or 4�4, and layering oper-
ations are reduced to simple matrix products. The key bene�ts of the
transfer matrix are twofold: First, it provides a compact yet versatile
formalism to express and resolve multiple scattering problems as al-
ready demonstrated in the optics literature. Second, resorting to the

Belcour 2018 Reference Ours

Belcour 2018 Reference Ours

Fig. 2. The model of Belcour [2018] su�ers from severe energy loss with
sca�ering volumes due to its single-sca�ering approximation and its lack of
support for back-sca�ering. Our transfer matrix approach overcomes these
issues and provides results close to the ground-truth computed with the
stochastic approach of Guo et al. [2018]. In these examples, a unit depth
non-absorbing medium with sca�ering coe�icient fB = 0.755 lies on top of
a smooth gold substrate. Henyey-Greenstein asymmetry parameters are
respectively set to 6 = 0�9 and 6 = 0 in the top and bo�om row.

linear algebra of the transfer matrix allows getting rid of expensive
doubling operations in favor of e�cient closed-form expressions.
We show how to jointly leverage these bene�cial properties to e�-
ciently approximate the forward and backward light transport of
layered materials through this work. Our approach supports homo-
geneous participating media of arbitrary depth, while also ensuring
energy preservation.

We summarize our contributions as follows:
� We introduce the classical two-�ux transfer matrix as a con-

venient alternative to the adding equations in the context of
smooth parallel interfaces (Section 3). Then, we generalize the
matrix formalism to rough interfaces by revisiting Belcour’s
[2018] statistical approach from a transfer matrix modeling
perspective. To this end, we review some fundamental prop-
erties of the Henyey-Greenstein phase function (Section 4)
and show how to leverage these properties to compute the
energies and the shapes of the BSDF lobes within a uni�ed
transfer matrix formalism (Section 5).

� Then, we leverage the versatility of the transfer matrix ap-
proach in order to e�ciently handle the forward and back-
ward light transport occurring in layered materials with scat-
tering volume layers. To this end, we introduce the six-�ux
transfer matrix and derive its specialized forms for interface
components and homogeneous participating media of arbi-
trary depth (Section 6).

� Finally, we propose an improvement to the BSDF model in-
troduced in the previous work to ensure energy preservation
(Section 6.6).

2 RELATED WORK
2.1 Specialized layered models
The last few decades have seen an important number of scattering
models targeting speci�c layered materials. Examples include the
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model for metallic car paints proposed by Ergun et al. [2016], the
approach of Meneveaux et al. [2017] addressing rough Lambertian
substrates interfaced with a dielectric coat, but also extend to many
organic materials whose internal structures consist of complex strati-
�cations [Baranoski and Rokne 2001; Stam 2001]. Weathering e�ects
are a topic of broad interest in the computer graphics community.
For instance, Dorsey and Hanrahan [1996] address the natural e�ect
of corrosion by modeling the constitutive layers of metallic pati-
nas and resort to the Kubelka-Munk theory [1948] to restitute the
appearance of the layers. The natural e�ect of dust accumulation
has also been addressed in the work of Hsu and Wong [1995], as
well as Guo and Pan [2014], and Gu et al. [2007] proposed an ap-
proach to reproduce the appearance of contaminated transparent
surfaces. Despite their practicality, all these models su�er from an
inherent lack of extensibility since they were tailored for speci�c
layer con�gurations.

2.2 General layered models
Jakob et al. [2014] introduced the �rst general solution for arbitrarily
layered materials, supporting interfaces of arbitrary roughness and
scattering volumes. Their work was extended by Zeltner and Jakob
[2018] to handle anisotropic interfaces. The framework of their work
relies on zenithal discretizations of the radiance �eld combined with
azimuthal frequency mode expansions. Based on this representation,
the approach computes the light transport due to multiple scattering
via the adding-doubling method [Van de Hulst 1980]. While this
approach supports a rich diversity of layered material and provides
high levels of accuracy, it su�ers from expensive per-material pre-
computation. Typically, hundreds to thousands of frequency modes
might be required to capture all appearance features. Consequently,
this model remains impractical for spatially varying structures such
as weathered surfaces. Recently, Guo et al. [2018] proposed a general
solution based on a Monte Carlo approach, free from per-material
pre-computation, and supporting rough anisotropic interfaces. To
achieve this, the authors use a path integral formulation explicitly
designed for the plane-parallel approximation along with e�cient
estimators. Their work was recently extended by Xia et al. [2019]
and Gamboa et al. [2020], who propose new variance reduction
techniques. Unfortunately, the application of these methods in the
context of low-budget rendering remains di�cult on account of
their stochastic nature.

2.3 E�icient layered models
When the rendering time is a strong constraint, approximate mod-
els making a compromise between accuracy and computing times
are usually preferred. For instance, Hanrahan and Krueger [1993]
proposed to approximate the e�ects of internal volume layers based
on single scattering approximations. Weidlich and Wilkie [2007]
introduced a solution for layered rough interfaces based on multiple
assumptions about the layer structure. Elek [2010] subsequently
adapted their work for real-time needs. Guo et al. [2016] proposed
to use the von Mises-Fisher (vMF) distribution as a microfacet nor-
mal distribution function to approximate light-matter interactions
with vMF convolution products. These approaches are computation-
ally e�cient but, unfortunately, lack support for volume scattering.

The closest work to our method is due to Belcour [2018], who in-
troduced an e�cient multi-lobe approach accounting for multiple
scattering between rough interfaces. Detailed analysis of the models
proposed by Belcour [2018] and Weidlich and Wilkie [2007] have
been recently carried by Bati et al. [2019]. Extensions of Belcour’s
framework have been recently proposed by Yamaguchi et al. [2019]
and Weier and Belcour [2020] for anisotropic interfaces.

Our work extends the multi-lobe approach of Belcour [2018] in
order to provide an e�cient support for volume layers. We introduce
an e�cient transfer matrix-based approach, handling backward and
forward scattering in homogeneous volume layers of arbitrary depth,
at constant cost. The framework introduced in this paper can be seen
as an approximate version of Jakob et al. [2014] designed to track
arbitrary appearance features, which we summarize as lightweight
Henyey-Greenstein lobes, in contrast to their expensive angular /
Fourier mode matrix representation.

2.4 The transfer matrix
The transfer matrix �nds its roots in the pioneering work of AbelŁs
[1948]. It has since been successfully used in various �elds including
quantum mechanics, acoustics, geometrical optics [SÆnchez-Soto
et al. 2012] and color reproduction applications [Mazauric et al. 2014].
In their most popular form, transfer matrices are 2�2 matrices in
so-called two-�ux transfer models and rely on strong assumptions
about the geometry of the radiation traveling through the system.
For instance, AbelŁs [1948] assumed the collimated propagation of
electromagnetic waves between smooth parallel interfaces to obtain
re�ection and transmission coe�cients accounting for interference
e�ects. The matrix formalism introduced by AbelŁs has been used
in computer graphics to reproduce the visual e�ects of interferences
by Icart and Arques [2000] and more recently by Benamira and
Pattanaik [2020] to simulate anti-re�ective coatings.

As another remarkable result, a transfer matrix calculus directly
leads to the Kubelka-Munk equations [1948]. In this case, the system
is modeled as a homogeneous scattering volume of arbitrary depth,
and the light distribution is assumed to be perfectly di�use every-
where in the layer. This model is especially e�cient with highly
scattering media, which explains its wide adoption in the pigment
and printing industries, computer graphics [Callet 1996; Dorsey and
Hanrahan 1996], and material synthesis applications [Ha†an et al.
2010]. Alternatively, three-�ux and four-�ux models decompose
the total �ux into collimated and di�use components. For instance,
four-�ux models have been proposed to address layered systems
mixing smooth interfaces and scattering volumes [Gali et al. 2017;
Slovick et al. 2017], and stacks mixing smooth and rough interfaces
on top of a substrate [Simonot et al. 2016]. However, considering
only di�use and/or collimated �ux represents a serious limitation,
as virtually all materials entail light distributions falling somewhere
between these two limiting cases. As a consequence, these models
fail to capture important features such as blurring e�ects due to
subsurface scattering.

In contrast, our transfer matrix approach avoids these rigid separa-
tions and enables arbitrary changes of the angular �ux distributions.
As a result, our approach subsumes the previous ideal models and
enables a wide range of layer con�gurations mixing smooth and
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Fig. 3. Light transport of a collimated beam between two smooth parallel
interfaces.

rough interfaces, and volumes with arbitrary scattering properties,
in a uni�ed treatment.

3 BACKGROUND
This section reviews the light transport of a ray of light illuminating
a glass plate, as introduced in the pioneering work of Stokes [1860].
We introduce the transfer matrix formalism, then we move to the
more complicated case of rough stacks. In this context, we review the
statistical approach of Belcour [2018]. We discuss the applicability
limitation of this framework to scattering volumes and we explain
our motivation for reformulating it in a transfer matrix compliant
form.

3.1 The glass plate problem
Each medium is labeled with index < = 0, 1, ... according to its
depth in the stack and is assigned a real refractive index [< . A ray
of light arriving from medium 0 impinges on the upper interface
and gives rise to a re�ected ray and a transmitted ray inside the
dielectric medium. Due to the same mechanism, this refracted ray
may in turn trigger a sequence of internal bounces inside the plate,
letting each time a fraction of energy escape from either side of the
medium (Fig. 3). In this simplest case, all the rays traveling in the
structure are governed by Snell’s laws, and the fraction of re�ected
and transmitted energies between media 8and 9directly relate to
Fresnel equations. We respectively denote these quantities r8 9 and
t8 9 and refer to them as transfer factors. Given a unit amount of
incident illumination, the transfer factors r02 and t02 from the slab
are obtained by summing the contributions from either side of the
medium:

r02 = r01 ‚
1Õ

:=0
t01r12 „r10r12”: t10 = r01 ‚

t01r12t10
1 � r10r12

(1)

t02 =
1Õ

:=0
t01 „r12r10”: t12 =

t01t12
1 � r10r12

” (2)

A similar calculus leads to the transfer factors r20 and t20 of the
slab in the opposite case of a ray arriving from medium 2. These
equations have been known for a while in the optics community
and form the building blocks of the adding equations in the radiative
transfer �eld [Van de Hulst 1980].

In essence, the previous approach can be seen as a chronological
treatment of the events that light undergoes in the structure. From
the transfer matrix perspective, each scattering component of the
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8‚0 8�0

r01

r10

8�1 8‚1

t01
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Fig. 4. The transfer matrix of a component relates the total upwelling and
downwelling fluxes si�ing on each side of the component.

system is regarded as a linear system relating the total incoming
and outgoing �ux located on a given side of the component to the
total incoming and outgoing �ux sitting at the opposite side. In
our study case, the scattering components reduce to the interfaces
between the di�erent media and we denote 8‚: (resp. 8�: ) the total
downward (resp. upward) �ux traveling in the medium : (Fig. 4).
The �ux balance at the boundaries of the �rst interface is given as:

8‚1 = t018‚0 ‚ r108�1 • 8�0 = r018‚0 ‚ t108�1 (3)

which can equivalently be written under the matrix notation
�0

z}|{
�
8‚0
8�0

�
=

"01
z                                }|                                 {
1

t01

�
1 �r10

r01 t01t10 � r01r10

�
�1

z}|{
�
8‚1
8�1

�
(4)

with " 01 denoting the transfer matrix of the interface separating
media 0 and 1. By transitivity and assuming no volume e�ects in
medium 1, it directly follows that �0 = " 01 " 12 �2 = " 02 �2 with
" 02 denoting the transfer matrix resulting from the ordered super-
position of the two interfaces. Obviously, this relation also holds
for any ordered sequence of scattering components, i.e. �8 = " 8 9 � 9
with " 8 9 = " 88‚1 " 8‚18‚2 ” ” ” " 9�19 . Thus, complex layered systems
can be easily modeled through straight matrix products from the
knowledge of the transfer matrices of the individual components.
Note that any transfer matrix has a structure similar to the matrix
of Equation (4).

Given a transfer matrix " 8 9 , the downward r8 9 and t8 9 transfer
factors of the corresponding component (or stack of components)
can be obtained via the matrix operators

r8 9 = ' „" 8 9 ” =
„" 8 9 ”21

„" 8 9 ”11
(5)

and
t8 9 = ) „" 8 9 ” =

1
„" 8 9 ”11

(6)

where „" 8 9 ”G~ denotes the entry located at the Gth row and ~th

column of the transfer matrix of the interface separating media 8
and 9. Analogous operators exist for the upward r 98 and t 98 transfer
factors. Also, one can easily verify that applying operators (5) and (6)
to the transfer matrix " 02 yields relations similar to the summation
treatment (Equations (1) and (2)).
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Fig. 5. In the case of rough interfaces, each light-ma�er interaction gives rise
to complex angular light distributions in the structure (a). With Belcour’s
[2018] statistical approach, the BSDF of the stack is approximated as a
mixture of GGX lobes approximating the e�ects of each interface (b).

3.2 Rough stacks treatment with Belcour’s statistical
framework

The main di�culty with rough interfaces is that each light-matter
interaction gives rise to complex angular light distributions in the
layered structure (Fig. 5(a)). The core idea of Belcour [2018] is to ap-
proximate complex light distributions due to interactions between
rough interfaces with simpler ones with equivalent low-order sta-
tistical moments. To this end, the author introduces a set of atomic
operators simulating the statistical e�ects of individual layer interac-
tions, namely, re�ection and refraction, on incoming light distribu-
tions. In practice, the approach focuses on the GGX microfacet based
model [Walter et al. 2007] and only accounts for the three lowest
order moments corresponding to the energy 4 of the distribution, its
mean direction ` , and its variance f 2 (denoted as f for convenience).
Moreover, the mean directions of the light distributions are assumed
to obey Snell’s laws to simplify the analysis further.

Denoting q8 = „48• `8• f 8 ” the statistics of an incoming light dis-
tribution, the statistics q’ of the re�ected distribution are approxi-
mated as

4’ = 48 � FGD• `’ = re�ect„` 8 ”• f ’ = f 8 ‚ 5„U” (7)

where Udenotes the roughness of the interface and 5„U” maps GGX
roughnesses to a space where light variance behaves additively
between each light bounce. The total amount of re�ected energy is
approximated with the directional albedo of the surface evaluated
at incident mean direction and is encoded in the FGD term:

FGD„l 8• U• [• ”̂ =
¹


 ‚

� „l 8•h• [• ^” � „l 8• l >• U” � „h• U”
4 „l 8 � n”

3l > (8)

with n the geometric normal, h the halfway vector of l 8 and l > ,
e= = [ ‚ î the complex refractive index of the interface, � the Fresnel
term, � the shadowing-masking term, U the roughness parameter,
and � the GGX normal distribution function. As no closed-form
solution exists for this integral, the FGD term is precomputed in a 4D
table over a prede�ned range of incidence elevations, roughnesses,
and refractive indices.

For transmission, Belcour [2018] proposes to mimic a rough re-
fraction with a mirrored rough re�ection occurring at the opposite
side of the interface. Following this methodology, the statistics q)

of the transmitted distribution are obtained as

4) = 48 � „1 � FGD”• `) = refract„` 8• [ ”• f) =
f 8
[
‚ 5„B�U” (9)

with B=
1
2

�
1 ‚ [

cos \ 8
cos \ C

�

where Bis a roughness scaling factor used to match the shape of the
real transmitted lobe with the fake mirror re�ection.

Outgoing light statistics resulting from arbitrary sequences of
interactions in the structure are afterward approximated by succes-
sively applying these operators. For a ray of light impinging on a
material consisting of two interfaces, the total amount of re�ected
energy can be obtained via the geometric series

4’02 = r01 ‚
1Õ

:=0
t01r12 „r10r12”: t10 = r01 ‚

t01r12t10
1 � r10r12

(10)

with r8 9 = FGD and t8 9 = „1 � FGD”. In this form, the r8 9 and
t8 9 terms do not account for total internal re�ections between the
media. The author corrects this behavior by introducing a TIR term
depending on the incident elevation, the relative index of the two
media, and the adjacent interface’s roughness. As this factor does
not admit a closed-form solution, the latter is pre-computed and
stored in a 3D LUT interpolated during the rendering to correct the
re�ectance and transmission terms as r8 9 ! r8 9 ‚ „1 � TIR” � t8 9
and t8 9 ! t8 9 � TIR.

The variance of the distribution is obtained by computing the
weighted sum of the individual series terms variances. The unnor-
malized variance ~f ’02 of the re�ected light can then be expressed as
an arithmetico-geometric series whose analytic solution is given as

~f ’02 = r01f ’01 ‚
�

t01r12t10
1 � r10r12

�

�
�
f )10 ‚ �10

�
f )01 ‚ f ’12 ‚

�
f ’12 ‚ f ’10

� �
r10r12

1 � r10r12

� � �
(11)

where �8 9 denotes a variance scaling factor due to transmission. An
analogous relation is obtained for the unnormalized variance ~f )02 of
the light transmitted through the two interfaces.

Based on these results, the BSDF of a stack composed of an arbi-
trary number of interfaces is modeled as a mixture of GGX lobes
approximating the re�ection due to each interface (the ) ' ‚) paths)
and a single lobe for transmission (Fig. 5(b)). The resulting BSDF is
formally given as

d„l 8• l > ” =
Õ

:
4:d„l :• l >• f: ” (12)

with

l : = re�ect„`: ”

d„l :• l >• f: ” =
� „l :• l >• U: ” � „h• U: ”

4 „l : � n” „l > � n”
U: = 5�1 „f : ””

We refer the reader to the original paper of Belcour [2018] for further
details.
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3.3 Motivation
While the statistical framework proposed by Belcour [2018] remains
simple yet powerful, extending this approach to scattering volume
layers remains very challenging. One of the main di�culties is that
volume scattering generally involves both forward and backward
�ux and continuous interactions between them in the overall struc-
ture. In Belcour’s terminology, this entails tracking at least two sets
of statistics, formulating the associated multi-�ux atomic opera-
tors, and deriving the corresponding energy and variance multi-�ux
adding equations. Another critical di�culty lies in the treatment
of volumes of arbitrary depth. Scattering in volumes of arbitrary
depth is typically achieved by repeating the adding equations start-
ing from a very thin layer. This process is referred to as doubling
and may incur expensive and non-constant computation costs as
volume layer thicknesses generally vary on surfaces. Unfortunately,
the statistical framework of Belcour [2018] is neither well suited to
multi-�ux treatment nor derivation of e�cient methods for volumes
of arbitrary depth.

On the other hand, the transfer matrix o�ers an ideal framework
for multi-�ux treatment as its compact formalism allows straightfor-
ward extensions [HØbert and Emmel 2015] and multiple scattering
operator derivations. Furthermore, the underlying linear algebra is
particularly well suited for volume layers and allows the derivation
of e�cient closed-form transfer matrices [Kubelka 1948]. Inspection
of Belcour’s [2018] statistical framework suggests partial compli-
ance with the transfer matrix formalism as energy statistics obey
the classical adding equations. Unfortunately, as suggested by the
form of Equation (11), variance statistics can not be computed using
transfer matrices. Therefore, we propose to overcome this limitation
by switching to a representation better suited to a transfer matrix
modeling.

4 HENYEY-GREENSTEIN REPRESENTATION
The Henyey-Greenstein (HG) phase function [1941] is widely used
in computer graphics to describe the scattering properties of par-
ticipating media. This function is controlled by a single parameter
6 2 »�1•1… called the asymmetry parameter and is de�ned as

?„\ ;6” =
1

4c
1 � 62

„1 ‚ 62 � 26 cos \ ”
3
2

(13)

with \ denoting the deviation angle from the forward direction. As it
depends only on a deviation angle, this function is axially symmetric
around the forward direction. When 6 = 0, the resulting function is
uniform, while it degenerates to a forward (resp. backward) delta
function when 6 = 1 (resp. 6 = �1).

An important property of this phase function is its stability un-
der convolution [Davis 2006]: Convolving two arbitrary HG phase
functions ?„61” and ?„62” yields another HG phase function such
that

„?„61” � ?„62”” „\ ” = ?„\ ;61 � 62”” (14)

where � denotes the spherical convolution product. Note that the
vMF distribution also known as Spherical Gaussian used in many
previous works does not, strictly speaking, possess this stability
[Mardia and Jupp 2009].

We build upon this property to approximate light-matter interac-
tions in participating media and scattering due to GGX based rough
surfaces. To this end, we propose to approximate hemispherical light
distributions with HG lobes, respectively de�ned with an energy, a
mean direction, and an asymmetry parameter.

In practice, our approach is similar to the work of Belcour [2018]
except that we summarize the statistics of each lobe with sets of
the form q = „4• `•6” where asymmetry parameters 6 are used in
place of variance descriptors f . Similarly to the prior work, we
also always assume that the mean directions of the HG lobes obey
Snell’s laws which considerably simpli�es the derivations. Based
on this representation, we leverage HG convolution property to
compute the statistics of the outgoing HG lobes. Finally, we map
back the outgoing HG lobes to GGX lobes with equivalent perceived
roughnesses since HG lobes cannot reproduce the light distributions
resulting from microfacet surface scattering.

In contrast to the prior work, tracking HG asymmetry parameters
presents two core bene�ts. First, this representation provides native
support for participating media as they are commonly described
with this phase function. Most importantly, its multiplicative con-
volution property allows the resolution of layer multiple scattering
with the transfer matrix formalism, which enables e�cient support
for scattering volume layers.

5 A TWO-FLUX MODEL FOR ROUGH INTERFACES
This section consists of a transfer matrix compliant reformulation of
Belcour’s [2018] statistical framework. We start by approximating
rough re�ections and transmissions by HG convolution products
and show how to compute multiple-layer light transport statistics
with transfer matrices.

5.1 Rough reflection and transmission HG representations
We obtained the equivalent asymmetry parameter of a GGX based
microfacet BRDF with roughness U 2 … 0•1… by adapting the ! 3 opti-
mization method provided by Heitz et al. [2016]. Figure 6 outlines
some �tting results for varying incidence and GGX roughness. In
general, the equivalent asymmetry parameter does not remain con-
stant with respect to incident elevation due to the deformation that
microfacet-based lobes undergo toward grazing angles. In practice,
we restrict our �t to normal incidences for which we were able to
�nd the analytic approximation

6„U” = �0”085 ‚
1”085

1 ‚
� U
0�5

� 1�3 ” (15)

The accuracy level of this approximation is reported in the supple-
mentary document. Thus, given an incoming light distribution with
asymmetry parameter 68 , we approximate the asymmetry parameter
of the re�ected distribution following HG convolution property (14)
as

6’ = 68 � 6„U”” (16)

When crossing a dielectric interface, light distributions undergo
expansion or contraction due to the index change. In the case of
Henyey-Greenstein, this additionally translates as a loss of the axial
symmetry due to Snell’s refraction law. However, while these de-
formations increase with the incident elevation, we observed that
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Fig. 6. We approximate a GGX BRDF model with an Henyey-Greenstein
lobe to compute subsurface transport. GGX roughness isU = 0�1 for columns
(a) and (b), and U = 0�2 for columns (c) and (d). Incident elevation angle is
set to \8 = 0� for columns (a) and (c), and \8 = 60� for columns (b) and (d).
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Fig. 7. At moderate incidences, the distribution transmi�ed through a
smooth interface (middle column) due to an incident HG lobe (le� col-
umn) can be approximated by another HG lobe. The right column shows the
results obtained with our approximation. In the first row, the incident and
transmi�ed media’s indices are respectively set to [8 = 1 and [C = 1�5, and
the incident elevation to \8 = 30�. The second row depicts a transmission
with [8 = 1�5 and [C = 1 and an incident elevation defined to \8 = 15�. The
incident asymmetry parameters used in the two rows respectively corre-
spond to microfacet-based reflected lobes with GGX roughnesses U = 0�1
and U = 0�2.

the transmitted distribution of an incident HG lobe could be ap-
proximated by another HG lobe for moderate elevations. Based on
this observation, we approximate the transmitted lobe’s asymmetry
parameter due to a smooth interface with the operator

� „6” =
p

1 �max „0•min „C•1”” with C=
�
1 � 62

� �
[ 8
[ C

� 3
4

(17)

where [ 8 and [ C respectively denote the refractive indices of the
incident and transmitted media. Figure 7 depicts some results ob-
tained thanks to this approximation. Additional validation plots are
available in the supplementary document. In the general case of a
rough interface, the transmitted distribution additionally undergoes
blurring e�ects due to the interface’s micro-geometry. Leveraging

Henyey-Greenstein’s convolution property, we compute the asym-
metry parameter of a transmitted distribution as

6) = � „68 ” � 6„B�U” (18)

where Bis Belcour’s [2018] fake rough transmission scaling factor
de�ned in Equation (9).

5.2 Transfer matrix formulation
In the case of two rough interfaces, an incident ray of light gives
rise to an in�nite sequence of re�ected lobes which we summarize
as a single HG lobe with energy 4’02 and asymmetry parameter 6’02.

The core idea of this paper is to compute these quantities based
on transfer matrices of the form

" 8 9 =
1

g8 9

�
1 �d98

d8 9 g8 9g98 � d8 9d98

�
” (19)

As studied in Section 3.2, the total amount of re�ected energy is
given as the geometric series

4’02 = r01 ‚ t01r12t10 ‚ ””” (20)

Similarly, the asymmetry parameter of the re�ected lobe can be
expressed as the weighted sum

~6’02
4’02

with ~6’02 = r01 6’01 ‚ t01 6)01 r12 6’12 t10 6)10 ‚ ””” (21)

where 6’8 9 and 6)8 9 respectively denote constant asymmetry parame-
ters approximating the e�ects of rough re�ections and transmissions
between media 8and 9. While the constant asymmetry parameter
terms for re�ections are directly given as 6’8 9 = 6„U8 9 ”, special care
must be given to the 6)8 9 transmission terms due to the non-linearity
of operator (17). We address this limitation by linearizing the e�ects
of rough transmissions on incident asymmetry parameters as

6)8 9 =
6„1”9

6„1”8
with 6„1”9 = � 8 9 „6

„1”
8 ” � 6„B8 9 �U” (22)

where 6„1”8 is a �rst-order asymmetry parameter not accounting for
multiple bounces between interfaces which we iteratively track in
each medium thanks to the operators studied in Section 5.1. We
compute the opposite transmission’s transfer factor6)98 following the
same methodology except that we account for the next interface’s
roughness when computing the �rst-order asymmetry parameters
terms.

The main result of this construction is that the statistics of the
re�ected lobe can now be computed using transfer matrices since
energy and unnormalized asymmetry parameter take the form of
geometric series. More precisely, we compute these quantities with
specialized forms of the matrix (19) which we refer to as energy and
asymmetry transfer matrices. We respectively denote these matrices
as � and � .

For two interfaces, the total amount of re�ected energy is given
as 4’02 = ' „� 01� 12”, where � 8 9 denote instances of the transfer ma-
trix (19) with transfer factors d8 9 = r8 9 and g8 9 = t8 9 , and ' is the re-
�ection matrix operator (5). Similarly, we compute the unnormalized
asymmetry parameter ~6’02 of the re�ected lobe as ~6’02 = ' „� 01� 12”

ACM Trans. Graph., Vol. 40, No. 4, Article 177. Publication date: August 2021.



177:8 � Joºl Randrianandrasana, Laurent Lucas and Patrick Callet

where � 8 9 denote instances of the transfer matrix (19) with transfer
factors d8 9 = r8 9 6’8 9 and g8 9 = t8 9 6)8 9 .

5.3 Multiple-layers statistics
We iteratively compute the statistics of the light transport due to
an arbitrary number of interfaces based on the matrix formulation
introduced in Section 5.2. The iterative approach is described in
Algorithm 1.

Algorithm 1: Multi-lobe BSDF transfer matrix algorithm
Input: Incident direction l 8 and properties of the = stack

components ordered by increasing depth in the stack
Output: Outgoing lobes energies, means and roughnesses
begin

` 8  �l 8 // Mean direction

6„1”8  1 // First-order asymmetry parameter term
� 08  � // Accumulated energy transfer matrix
� 08  � // Accumulated asymmetry transfer matrix

// Stack components traversal
for j in 1 .. n do

1) Compute transmission’s mean direction ` 9 and
�rst-order asymmetry parameter term 6„1”9

2) Instantiate component’s � 8 9 and � 8 9 transfer
matrices

3) Compute � 09 and � 09 transfer matrices including
top components

4) Compute the energy, the mean and the roughness
of the component’s re�ection lobe

// Update iteration variables
` 8  ` 9 • 6„1”8  6„1”9 • � 08  � 09 • � 08  � 09

5) Compute the energy, the mean and the roughness of
the lobe transmitted through the stack

In the case of a stack only composed of interfaces, the proper-
ties of the scattering components reduce to the refractive index
and the roughness of each interface. For each interface (Step 1),
we compute the mean transmission direction based on Snell’s re-
fraction law and the �rst-order transmission asymmetry parameter
according to Equation (22). We use the latter to instantiate the en-
ergy and asymmetry transfer matrices � 8 9 and � 8 9 of the interface
(Step 2) according to the methodology studied in Section 5.2, and
we compute the transfer matrices accounting for top components as
� 09 = � 08 � 8 9 and � 09 = � 08� 8 9 (Step 3). Then, we extract the ) ' ‚)
paths statistics due to the interface (Step 4) as

4)’)09 = ' „� 09 ” � ' „� 08 ”

`)’)09 = re�ect„l 8 ”

~6)’)09 = ' „� 09 ” � ' „� 08 ””

(23)

891 95

(a)

(b)

(c)

(d)

Fig. 8. When traveling in a medium, a photon may cross the volume without
su�ering any interaction (a), it may be absorbed (b), or it may be sca�ered
(c). To make the problem more tractable without sacrificing important
appearance features, we isolate unsca�ered light from forward- and back-
sca�ered light. We respectively denote the corresponding fluxes as 8 , 9 5 ,
and 91 (d).

Note that for a conducting base, the transfer matrices are unde�ned
due to the zero transmission factors. In this case, we compute the
re�ected lobe’s statistics using the explicit re�ectance operator

' „"• d ” =
" 21 ‚ " 22d
" 11 ‚ " 12d

(24)

where " and d respectively denote the transfer matrices of the
upper layers and the re�ectance transfer factors of the conducting
base. Derivation of this operator is given in the supplementary
document.

For a transmissive substrate, we compute the statistics of the light
transmitted through the stack (Step 5) as

4) = ) „� 0=”• `) = refract„l 8• [ 0=”• ~6) = ) „� 0=” (25)

where ) is the transmission matrix operator (6).
Finally, we compute the equivalent GGX roughness of each out-

going lobe by applying the inverse HG �t to the normalized lobes
asymmetry parameters.

6 A SIX-FLUX MODEL FOR SCATTERING VOLUMES
LAYERS

In this section, we introduce the six-�ux approach which extends
the two-�ux model studied in Section 5 to account for scattering
volumes e�ects. We start by introducing the general approach in
Section 6.1, and we present the general form of the six-�ux transfer
matrix and its associated multiple-scattering operators in Section 6.2.
Then, we derive specialized forms of the six-�ux transfer matrix
for homogeneous participating media and interface components in
Sections 6.3 and 6.4. Finally, we show how to compute the statistics
of the outgoing lobes with the six-�ux approach in Section 6.5, and
we introduce an improvement to the resulting BSDF in Section 6.6.

6.1 The six-flux approach
Three outcomes are possible for a photon, i.e., a light particle carry-
ing a �nite amount of energy, when traveling in a scattering volume:
It may cross the entire volume without undergoing any interaction
(Fig. 8(a)), it may be absorbed (Fig. 8(b)), or its direction of �ight
may change due to scattering by particles in the medium (Fig. 8(c)).
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Fig. 9. With the six-flux approach, we isolate light having undergone one or more sca�ering events in a medium (secondary 9 fluxes depicted as orange
arrows) from light not sca�ered by any medium (primary 8 fluxes depicted in black). We additionally split the sca�ered light part into forward and backward
contributions denoted as 9 5 and 91 . The le� inset depicts the primary-to-primary and primary-to-secondary flux transfers occurring between depths I = 0
and I = 1 of a generic sca�ering component (or stack of components). The right inset focuses on secondary-to-secondary flux transfers.

Determining the escape probability of a photon in an arbitrary di-
rection given its incoming direction falls into the radiative transfer
realm and, in general, does not admit closed-form solutions.

To simplify the problem without sacri�cing important appear-
ance features, we propose to isolate the unscattered light part from
light having undergone one or more scattering events in a medium.
We respectively denote the corresponding �uxes 8and 9and refer
to them as primary and secondary �uxes. Moreover, a signi�cant
amount of light might be scattered back with participating media
layers. Thus, we propose to split the scattered light part into forward
and backward contributions, which we respectively denote as 95

and 91 (Fig. 8(d)).
In terms of our HG representation, we express these light distri-

butions as hemispherical HG lobes. Also, we recall that according
to the assumptions made in Section 4, we always assume that the
mean directions of the HG lobes obey Snell’s laws. We only make a
distinction for secondary backward lobes whose mean directions
are oriented in the opposite direction of light travel.

Accounting for the vertical direction of propagation in the struc-
ture, we thus describe the light distribution at any depth I of the
layered structure as a six-�ux vector �I = »8‚I 8�I 95 ‚I 95 �I 91‚I 91�I …>.

6.2 The six-flux transfer matrix
Under the six �ux approach, each component of the stack may give
rise to primary-to-primary, primary-to-secondary, and secondary-
to-secondary �ux transfers. We respectively denote the correspond-
ing re�ection and transmission transfer factors as djg, djgG , and
djgG~ , where the superscripts specify the lateral directions of the
interacting secondary �uxes. For instance, we denote primary-to-
secondary back re�ection as d1 , secondary-to-secondary forward
transmission as g5 5 , and so on. Figure 9 depicts the possible �ux
transfers occurring between depths I = 0 and I = 1 of a generic
stack component, may it be an interface, a scattering volume, or
any combination of them.

As in the two-�ux case, the �ux balance between the boundaries
of the component can be compactly written as

�0 = " 01�1 with " 01 =
2
6
6
6
6
4

" ?? 0 0
" ?5 " 5 5 " 15
" ?1 " 5 1 " 11

3
7
7
7
7
5

(26)

where each " 01 sub-block is a 2x2 matrix. In this form, primary-to-
primary, primary-to-secondary, and secondary-to-secondary �ux
transfers are respectively expressed through the " ?? , " ?G , and
" G~ matrix blocks.

Given a transfer matrix " 8 9 , the primary re�ectance transfer
factor d8 9 of the corresponding component (or stack of components)
can be obtained as d8 9 = ' „" 8 9 ” where ' is the matrix operator (5).
The primary-to-secondary forward and backward re�ectances d58 9
and d18 9 accounting for internal multiple-scattering can respectively
be obtained with the matrix operators ' 5 and ' 1 , de�ned as

' 5 „" ” =
" 41
" 11
‚

" 45 j" j31�53 � " 43 j" j31�55
" 11 j" j33�55

(27)

and

' 1 „" ” =
" 61
" 11
‚

" 65 j" j31�53 � " 63 j" j31�55
" 11 j" j33�55

(28)

where j" jkl�mn = " kl" mn � " ml" kn denotes the 2�2 matrix de-
terminant operator. Similarly, the primary transmittance can be
evaluated as g8 9 = ) „" 8 9 ” where ) is the matrix operator (6), and
the primary-to-secondary forward transmission is obtained with
the matrix operator ) 5 de�ned as

) 5 „" ” =
�j" j31�55

" 11 j" j33�55
” (29)

Derivation of these operators is given in the supplementary docu-
ment.
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6.3 Homogeneous participating media
In this section, we derive the transfer matrix of a scattering volume
of arbitrary thickness. To this end, we start by modeling the �ux
transfers occurring in a thin volume slab, and we derive the transfer
matrix for an arbitrary depth thanks to a matrix exponentiation. We
restrict our study to homogeneous participating media and respec-
tively denote f C and f B , the extinction and scattering cross-sections
per unit length traveled in the medium. We also assume Henyey-
Greenstein with asymmetry parameter 6 as the phase function of
the medium.

When propagating in the medium, each �ux decreases due to
volume extinction, while each secondary �ux also undergoes an
increase due to primary and secondary �ux in-scattering. Assuming
that the mean direction of each �ux obeys Snell’s laws, the �ux
transfers are moreover independent of the vertical and lateral di-
rections of propagation. Consequently, under these simpli�cations,
�ve transfer factors g, g5 , g5 5 , d1 , and d5 1 are required to describe
a homogeneous participating medium. Figure 10 depicts the �ux
transfers occurring in a thin volume slab of height � I .

d5 1 d5 1

d5 1 d5 1

g5 5 g5 5

g5 5

g5 5

95 ‚I1 91�I1 91‚I1 95 �I1

91‚I2 95 �I2 95 ‚I2 91�I2

d1

d1

g

g

8‚I1 91�I1 8�I1 95 �I1

8�I2 91‚I2 8‚I2 95 ‚I2

g5

g5

� I

Fig. 10. Six-flux transfers occurring in a thin homogeneous volume slab of
height � I resulting from our simplifications.

We can express the back-scattering probability per unit length
traveled of a photon propagating in the medium, with respect to
its �ight direction, as the back-scattering cross-section f B1 de�ned
with respect to the phase function’s lower hemisphere integral as

f B1 = f B � ?� „6” with ?� „6” = 2c
¹ 0

�1
?„cos \ ;6”3 cos \ ” (30)

This integral can be accurately approximated as

?� „6” =

(
& „ j6j” if 6 � 0
1 �& „ j6j” otherwise

(31)

with
& „D” = 0”5039 � 0”8254D‚ 0”3226D2”

The accuracy level of this approximation is reported in the supple-
mentary document. We analogously de�ne the forward scattering
f B 5 cross-section as f B 5 = f B � f B1 , and we approximate the ex-
tinction and the forward- and back-scattering of each �ux with
cross-sections f C , f B 5 , and f B1 evaluated at mean directions. In prac-
tice, we �nd that these simpli�cations turn out to be acceptable
compromises, as shown in Section 7.2.

Passing down to the limit � I ! 0, we can express the energy
change rate of each �ux as the di�erential system

3�I
3I

=
�

cos \ 8
�I (32)

with

� =

2
6
6
6
6
6
6
6
4

�fC 0 0 0 0 0
0 fC 0 0 0 0
g 5 0 �fC‚g 5 5 0 0 d 5 1

0 �g 5 0 fC�g 5 5 �d 5 1 0
0 d1 0 d 5 1 �fC‚g 5 5 0
�d1 0 �d 5 1 0 0 fC�g 5 5

3
7
7
7
7
7
7
7
5

where
d1 = d5 1 = f B1 and g5 = g5 5 = f B 5 ” (33)

Similarly, we can express the change rates of the unnormalized
asymmetry parameters of the light distributions as an instance of
the di�erential system (32) with transfer factors de�ned as

d1 = d5 1 = �f B1 6 and g5 = g5 5 = f B 5 6 (34)

where the negated asymmetry parameter accounts for the reversal
of back-scattered light propagation directions.

As a �rst-order ordinary di�erential system, Equation (32) admits
general solutions of the form �I = exp„� „I � I 0”�cos \ 8 ” �I0 . In
particular, with I = 0 and I 0 = � , we have �0 = "� � where "
denotes the transfer matrix of the medium of depth � de�ned as

" = 4��
0� =

1
W

2
6
6
6
6
4

" ?? 0 0
" ?5 " 5 5 " 5 1
" 5 1 " 5 1 " 5 5

3
7
7
7
7
5

(35)

with

" ?? =
�
W4fC�0 0

0 W4�fC�0

�
" 5 5 =

h
�W‚(U 0

0 �W�(U

i

" 5 1 =
h

0 �(V
(V 0

i
" ?5 =

�
�W‚(U�W4fC�0 0

0 �W�(U�W4�fC�0

�

where � 0 = � �cos \ 8 , U = f C � g5 , V = d1 , W=
p

U2 � V2, ( =
sinh „W�0”, and � = cosh „W�0”. While the " ?? block directly follows
from Beer-Lambert’s law, it is worth noting that the " 5 5 and " 5 1
blocks take a form analogous to the Kubelka-Munk [1948] solutions
for the case of two-�ux di�use transfer.

Based on this result, we respectively obtain the energy and asym-
metry transfer matrices � and � of an arbitrary depth homogeneous
volume as instances of matrix (35) with respective transfer factors
(33) and (34).

6.4 Interface components
In the case of an interface component, no transfer occurs between
primary and secondary �uxes. Assuming that most light is for-
wardly re�ected and transmitted at the interface, we express the
corresponding transfer matrix as

" =
2
6
6
6
6
4

" ?? 0 0
0 " 5 5 0
0 0 " 11

3
7
7
7
7
5

(36)

where each " sub-block takes the form of a two-�ux transfer ma-
trix (19). As a result, we compute the energy and asymmetry transfer
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Fig. 11. With the six-flux approach, we approximate the BSDF of the stack
as a mixture of forward and backward microfacet lobes sharing the same
mean directions.

matrices � and � of an interface by instantiating their respective
2x2 sub-blocks following the two-�ux methodology studied in Sec-
tion 5.2.

6.5 Multiple-layers statistics
We compute the light transport statistics due to each layer following
the iterative approach described in Algorithm 1, except that scatter-
ing components now consist of interfaces and participating media.
With the six-�ux approach, we summarize the light transport due to
each component with two additional sets of statistics corresponding
to back-scattered and forward-scattered secondary �uxes. As a re-
sult, we approximate the BSDF of the stack as a mixture of forward
and backward microfacet lobes sharing the same mean directions
(Fig. 11).

When iterating through the stack, we instantiate the energy and
asymmetry transfer matrices � 8 9 and � 8 9 of each component (Step 2)
based on the de�nitions given in Sections 6.3 and 6.4. Furthermore,
we specialize the matrix product operations depending on the trans-
fer matrix of the scattering component being multiplied when com-
puting � 09 and � 09 transfer matrices accounting for top components
(Step 3). This signi�cantly decreases the rendering time as the spe-
cialized transfer matrices contain large numbers of zero entries. In
addition to the primary re�ected lobes statistics (Step 4), we com-
pute the energies of the secondary lobes and their roughnesses,
by sequentially evaluating the intermediate transfer matrices (23)
with the ' 5 and ' 1 operators de�ned in Section 6.2. For backward
re�ection statistics, we de�ne the mean directions of the lobes as
the incident direction.

Note that for an interface, computing the secondary lobes is
necessary only if the upper components contain a scattering volume
layer. Additionally, we compute primary and secondary forward
re�ected lobes only if the components include an interface.

As for the two-�ux case, explicit re�ectance operators must be
used for conducting bases as their transfer matrices can not be
instantiated. In this case, we evaluate the primary re�ectance with
the ' „"• d ” operator de�ned in Section 5.3, and we provide the
explicit ' 5 „"• d ” and ' 1 „"• d ” operators for conductors secondary
re�ectances in the supplementary document.

No normalization GD normalization

Fig. 12. In its original form [Belcour 2018], the BSDF is not energy preserving
as it relies on single-sca�ering microfacet lobes (le� inset). We restore this
property by normalizing each lobe with a pre-integrated GD term (right
inset). Here, a non-absorbing sca�ering volume with parameters fB=0.755,
HG 6=0 and depth 3=4 lies on top of an ideally reflecting conductor with
roughness U=0.1.

6.6 BSDF normalization
It is important to note that in its original form (Equation (12)), the re-
sulting BSDF is not energy preserving as it relies on single-scattering
microfacet-based lobes. While this does not signi�cantly a�ect the
appearance of stacks of moderately rough interfaces, this may have
a considerable impact on participating media as their equivalent
roughnesses can be arbitrarily high. As a consequence, a substantial
amount of energy may be lost in the presence of scattering media,
leading to inconsistent dark appearances. We correct this misbehav-
ior by normalizing each lobe of the BSDF (Fig. 12): Letting 4: , `: ,
and U: = 6�1 „6: ” denote the : th lobe’s energy, mean, and perceived
roughness, we instantiate the corresponding BSDF lobe as

4:
d„l :• l >• U: ”
GD„l :• U: ”

with l : = re�ect„`: ”• (37)

and
GD„l :• U: ” =

¹


 ‚
d„l :• l >• U: ” cos \ > 3l > ” (38)

As no closed-form exists for this integral, we precompute it in a 2D
LUT indexed over a prede�ned range of incidence elevations and
roughnesses. Finally, we sample the BSDF according to the balance
MIS scheme introduced in the previous work (see [Belcour 2018]
for details).

7 RESULTS
The results shown in this section are computed using the path
integrator of the Mitsuba rendering engine [Jakob 2010] for which
we provide implementations of the two- and six-�ux approaches.
We use a pre-computed GGX TIR LUT of resolution 643 occupying
1MB of RAM and a GGX FGD LUT of resolution 644 occupying
64MB RAM. For the sake of reproducibility, we do not account
for multiple bounces in the micro-geometry when computing the
FGD LUT. All the results were generated on an Intel' i7-8750H
Core� processor with 16 GB of RAM, and the images used for
reference were computed using the stochastic approach of Guo et al.
[2018]. The quality of the results is evaluated using a � E00 perceptual
di�erence with respect to the reference method. We respectively
label TM2 and TM6 the results obtained with the two- and six-�ux
approaches in the �gures. Sections 7.1 and 7.2 respectively present
the results of the two- and six-�ux approaches, and limitations as
well as future work are discussed in Section 7.3.
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Fig. 13. We reproduced the Frosted Metal and Gold Coated examples
from Belcour [2018] involving a clear coat with[1=1.5 and U1 = 0�1 on top of
a conducting base. The roughnesses of the conducting bases are respectively
set to U2=0.01 and U1=0.1. The results were obtained using 128 samples per
pixel.
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Fig. 14. In the above scenes, the glass plate is modeled as a single quad
surface. The slab has a refractive index [=1.5 and the two sides of the plate
share the same roughness U . The results were obtained using 128 samples
per pixel.

7.1 Two-flux model
Figure 13 reproduces Belcour’s Frosted Metal and Gold Coated
scenes involving a dielectric coat lying on top of a conducting base.
Except for di�erences at grazing angles, the results obtained with the
two approaches remain close to each other. For these incidences, the
approach of Belcour [2018] provides a perceived roughness in better
agreement with the ground truth. We attribute these di�erences to
the linear space introduced by the author to compute the variance
statistics. The latter is explicitly designed to approximate the vari-
ance due to multiple re�ections between two interfaces yielding
better results at high incidences as the number of bounces tends to
increase in these con�gurations. Additional clear coat examples with
varying roughness are available in the supplementary document.
Figure 14 illustrates the ability of our two-�ux model to simulate
transmission through dielectric stacks of varying roughness with
results close to the stochastic ground truth.

7.2 Six-flux model
All the results introduced in this section have been produced using
a pre-computed GGX GD LUT of resolution 642 occupying 16KB
of RAM, used at runtime to normalize the BSDF (Section 6.6). For
a fair comparison, we adapted Belcour’s [2018] Mitsuba plugin to
account for this normalization.

Figures 15 and 16 depict a non-absorbing participating medium
lying on top of a smooth golden base (U = 0”02). Figure 15 analyzes
the in�uence of the thickness of the volume on the appearances
produced by the two approaches. In this example, the scattering
is strongly forward-oriented (6 = 0”9), and the thickness of the
volume varies between 3 = 0”1 and 3 = 4. Belcour’s approach
undergoes severe energy loss increasing with the optical thickness of
the medium. The overly dark appearances produced by the approach
are due to the underlying single-scattering approximation and its
lack of back-scattering support. Note that the GD normalization
does not help to recover the missing energy. Moreover, as can be
seen on the top row, the approach results in inconsistent perceived
roughness even in the case of thin volume layers. In contrast, the six-
�ux approach produces perceived roughnesses close to the ground
truth for all volume depths. Figure 16 analyzes the in�uence of the
scattering pro�le of the medium. In this example, the thickness of
the volume is set to 3 = 1, while the scattering varies from a uniform
(6 = 0) to a forward-oriented pro�le (6 = 0”7). Note how the six-�ux
model well reproduces the complex combinations of specular and
di�use components due to strong back-scattering. Further examples
with varying depths and scattering pro�les are available in the
supplementary document.

Figure 17 illustrates the rendering of materials including a scat-
tering volume in a dielectric layer on top of a conducting base.
These con�gurations are particularly challenging as they lead to
complex combinations of specular, directional-di�use, and di�use
features evolving with the optical thickness of the medium. While
some di�erences with the ground-truth can be observed, the six-�ux
model yields substantial improvement compared to previous approx-
imations. Additional examples with varying depths and scattering
pro�les are available in the supplementary document.

The six-�ux model entails additional computational costs: Using
6�6 matrices involves higher memory register consumption, addi-
tional arithmetic operations, and the evaluation of the secondary
lobes incurs additional GD, FGD and TIR LUTs lookups. Therefore,
it would be relevant to derive e�cient analytical approximations
for these integrals in subsequent work to minimize the rendering
times. These additional costs are nevertheless amortized against
stochastic approaches: Figure 18 illustrates the rendering of a ma-
terial involving a absorbing scattering volume trapped between
two interfaces. While stochastic approaches introduce signi�cant
variance, the six-�ux approach provides low-variance results even
with restricted sample budgets. Also, it is worth noting that the ren-
dering time of the stochastic approach signi�cantly increases with
the optical depth of the medium due to the increasing amount of
internal samples. In contrast, the computational cost of the six-�ux
model remains insensitive to the optical properties of the media
(Fig. 18, bottom row).
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Fig. 15. In the above scene, a non-absorbing sca�ering medium lies on top
of a smooth golden material (U = 0�02). The asymmetry parameter and the
sca�ering cross-section of the medium are respectively set to 6 = 0�9 and
fB = 0�5, and the thickness of the volume varies from 3 = 0�1 to 3 = 4. Note
how the six-flux approach correctly reproduces the apparent roughness
which increases with the thickness of the medium. The results were obtained
using 1024 samples per pixel.

7.3 Limitations and future work
External absorbing media.Darkening toward grazing angles can be
observed with the six-�ux model in the case of external absorbing
media when the phase function is forward-oriented (Fig. 19). These
con�gurations are poorly supported as our approach assumes that
light propagating in the forward direction must re�ect o� the lower
interface before emerging. Consequently, most of the light under-
goes extinction as the mean distance traveled through the medium
increases toward large values in these con�gurations.

Back-sca�ering.As illustrated in Figure 20, departures from the
ground truth can be observed with scattering media of increasing op-
tical depth. These divergences are due to our HG back-scattering ap-
proximation (Equation 30) which approximates the back-scattering
around the mean direction but does not account for multiple scatter-
ing events in the volumes. Consequently, our approximation tends
to underestimate the back-scattered energy due to thick volumes,
which explains the more apparent goldish look of our renderings
in Figure 20. As another limitation, our implementation tends to
produce brighter appearances near normal incidences in the case
of scattering dielectric layers (Fig. 21). This limitation is due to our
current implementation, which does not consider total internal re-
�ections for back-scattered light in the volumes. This is a design
choice made for simplicity purposes, and we believe that signi�-
cant improvements could be made in this direction by adequately
accounting for HG total internal re�ections with a dedicated HG
TIR LUT.

Belcour 2018 Guo et al. 2018 TM6
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Fig. 16. In this example, a non-absorbing sca�ering medium is placed on
top of a smooth golden material (U = 0�02). The thickness of the medium is
set to 3 = 1, the sca�ering cross-section is defined to fB = 0�755, and the
asymmetry parameter of the phase function varies from 6 = 0 to 6 = 0�7.
Note the drastic energy loss endured by the previous approach [Belcour
2018]. In contrast, the six-flux approach provides results close to the ground
truth, even in the presence of strongly back-sca�ering media. The results
were obtained using 1024 samples per pixel.
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Fig. 17. This example depicts the complex case of a sca�ering volume
trapped in a smooth dielectric layer of index [ = 1�5 si�ing on top of
a rough conducting substrate (U = 0�1). The sca�ering cross-section and
the asymmetry parameter of the medium are respectively set to fB = 0�5,
6 = 0�3, and the thickness 3 of the medium varies from 0.1 to 2. The results
were obtained using 128 samples per pixel.

GGX lobe mixtures.Similarly to previous work, our model is not
suited to Lambertian substrates as the resulting BSDFs cannot be

ACM Trans. Graph., Vol. 40, No. 4, Article 177. Publication date: August 2021.



177:14 � Joºl Randrianandrasana, Laurent Lucas and Patrick Callet

Guo et al. 2018TM6

3
=

1
3

=
6

37 s17 s

17 s 304 s

Fig. 18. This example illustrates the low-variance results obtained with the
six-flux model with respect to the stochastic approach, using 32 samples
per pixel. In this scene, an absorbing sca�ering dielectric layer lies on top
of a conducting base. The absorption and sca�ering cross-sections of the
medium are respectively set to f: = „1� 0�2� 1” and fB = 0�7, the asymmetry
parameter is set to 6 = 0�9, and the thickness 3 varies between 1 and 6.
While the rendering time of the stochastic approach significantly increases
with the optical depth of the medium, the computational cost of the six-flux
model remains constant (bo�om row).

reproduced with GGX lobe mixtures. Also, it is worth emphasizing
that this limitation also applies to HG back-scattering which cannot
be approximated with GGX lobes.

Multiple bounces between interfaces.As shown in Figures 13 and
22, Belcour’s approach provides perceived roughnesses in better
agreement with the ground truth than our approaches at grazing
angles, where the number of light bounces tends to increase. This is
expected as the method directly accounts for the e�ects of multiple
bounces in its linear variance representation. With this in mind, we
believe that accounting for multiple light bounces between inter-
faces when �tting HG to GGX could be an interesting avenue for
future work.

Anisotropic interfaces.Finally, anisotropic interfaces are currently
not supported due to the axial symmetry of the Henyey-Greenstein
phase function. We believe that an in-depth study of the anisotropic
directional distributions existing in the literature, of their properties
and associated operators, could inspire future work [Mardia and
Jupp 2009; Xu et al. 2013].

8 CONCLUSION
Rendering of layered materials involving arbitrary combinations
of rough layers and scattering volumes is a challenging problem.
While the community has already proposed reference approaches,
the e�cient simulation of this class of materials in reasonable and
controlled time budgets remains an open problem of broad interest.

3 = 1 3 = 2 3 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 19. In the case of external absorbing media, darkening can be observed
toward high elevations with the six-flux approach when the phase function
is forward-oriented. In these examples, an absorbing medium with f: = 0�1,
fB = 0�5, 6 = 0�9 and thickness 3 lies on top of a smooth conducting base.

3 = 0”5 3 = 1 3 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 20. Our approach tends to underestimate the back-sca�ered energy due
to thick volumes, as our HG back-sca�ering cross-section approximation
does not account for multiple sca�ering events in the volumes. In these
examples, a non-absorbing sca�ering medium with asymmetry parameter
6 = 0�5 and sca�ering cross-section fB = 0�755 lies on top of a golden
material.

3 = 0”5 3 = 1 3 = 4

TM6Guo 2018 Guo 2018 TM6 Guo 2018 TM6

Fig. 21. In the case of sca�ering dielectric layers, our implementation tends
to produce brighter appearances near normal incidences as we do not con-
sider total internal reflections for back-sca�ered light in the volumes. In
the above scenes, a colored sca�ering dielectric layer with refractive index
[ = 1�5, sca�ering cross-section fB = 0�7 and asymmetry parameter 6 = 0�9,
lies on top of a conducting base.

To address these e�ciency problems, we introduced an original
approach based on a �ux transfer model leveraging key proper-
ties of the Henyey-Greenstein phase function to solve the complex
light transport occurring in these materials. We demonstrated that
our approach produces results comparable to the state-of-the-art
in the case of rough isotropic interfaces. Our approach unveils its
strength in the presence of scattering volumes with e�cient sup-
port of forward- and back-scattering involved in these media and
multiple scattering occurring in the overall layered structure. While
the previous method fails to reproduce the appearance of these
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Fig. 22. The model of Belcour provides perceived roughnesses in be�er
agreement with the ground truth than our approach at grazing angles, where
the number of light bounces tends to increase. In this scene, the material is
composed of three dielectric layers with refractive indices [1 = 1�4, [2 = 1,
[3 = 1�4 and roughnesses U1 = 0�1, U2 = 0�01, U3 = 0�1, on top of a smooth
conductor.

materials, the six-�ux approach provides better support for these
con�gurations, with a computational cost both lower than the exist-
ing reference approaches and independent of the optical properties
of the volumes considered. Moreover, the approach should be well
suited to volume layers whose optical properties vary as a con-
tinuous function of depth in the structure, in which case e�cient
closed-form transfer matrices might be derived. Also, it is worth
mentioning that this framework could �nd interesting reverse en-
gineering applications as layer removals are simply expressed as
lightweight inverse matrix products. It would be interesting to in-
vestigate whether the approach is suitable for interactive rendering
on the GPU with additional simpli�cations.
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