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This study proposes a fractional-order control for the automatic stabilization of the blood glucose level in Diabetes Mellitus Type-1 patients. The control scheme under study, which is applied to a fractional Extended Bergman's minimal model (EBMM), combines the feedback form of backstepping technique with three fractional Takagi-Sugeno fuzzy systems. This allows getting rid of the requirements of the patient parameters knowledge and aims to attenuate the effect of disturbances to the blood glucose level during meal intake. A mathematical analysis has been done to prove the asymptotic stability using a fractional Lyapunov function. To demonstrate the effectiveness of the fractional proposed approach, a comparative study with other methods is presented.

INTRODUCTION

Diabetes is a serious threat to global health which increasing at a very high rate. This metabolic disease, which is characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both, can lead to frequent hospital admissions and premature death [START_REF] Vettoretti | Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments[END_REF], [START_REF] Dimeglio | Type 1 diabetes[END_REF], [START_REF] Association | Diagnosis and classification of diabetes mellitus[END_REF]). According to the current classification there are two major types: type 1 and type 2 diabetes. The distinction between the two types is mainly based, among other symptoms, on degree of loss of β cell function and the degree of insulin resistance [START_REF] Vettoretti | Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments[END_REF], [START_REF] Dimeglio | Type 1 diabetes[END_REF], [START_REF] Association | Diagnosis and classification of diabetes mellitus[END_REF]). Treatment for the first type is focused on infusing insulin to stabilize the blood-glucose level, while the second type is treated via an appropriate medications. Regarding the insulin, it needs to be taken by injection or another delivery means such as by infusion via an insulin pump for which a controller is designed using the measurements from continuous glucose monitoring (CGM). Thus, several methods including the proportional-integral Derivative (PID) controllers [START_REF] Farman | Stability analysis and control of the glucose insulin glucagon system in humans[END_REF], [START_REF] Patra | An automatic insulin infusion system based on lqg control technique[END_REF]), Linear Quadratic Gaussian (LQG) control algorithm [START_REF] Patra | An automatic insulin infusion system based on lqg control technique[END_REF]) and combined PI -Fuzzy techniques [START_REF] Beneyto | Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas[END_REF], [START_REF] Soylu | In silico testing of optimized fuzzy p+ d controller for artificial pancreas[END_REF]) are adopted into the control process. In terms of convergence time and steady state errors in steady, these linear methods uses some simplifying assumptions with partial model approximation supposed to reflect a non-linear glucose-insulin dynamics. Reason why nonlinear approach is more appropriate to deal with complex practical scenarios and reach the needed level of performance. Among them the Sliding Mode Control (SMC) [START_REF] Abu-Rmileh | Internal model sliding mode control approach for glucose regulation in type 1 diabetes[END_REF], [START_REF] Menani | Positive sliding mode control for blood glucose regulation[END_REF]) , super twisting SMC [START_REF] Ahmad | Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients[END_REF], [START_REF] Djouima | Higher order sliding mode control for blood glucose regulation of type 1 diabetic patients[END_REF]) , Terminal fuzzy-SMC [START_REF] Jajarm | Blood glucose regulation using fuzzy recursive fast terminal sliding mode control[END_REF]), H∞ Controller [START_REF] Duangpim | Fuzzy control design for blood glucose and free fatty acid regulation in diabetes patients[END_REF]), and the backstepping approach [START_REF] Babar | Integral backstepping based automated control of blood glucose in diabetes mellitus type 1 patients[END_REF], [START_REF] Ahmad | An adaptive backstepping based non-linear controller for artificial pancreas in type 1 diabetes patients[END_REF]). This latest is a recursive method for designing stabilizing control laws in its strict feedback form. In addition, the fractional calculus deals with differentiation and integration operators in an appropriate order not necessarily integer. Its application in the design of the controllers provides a more accurate description of complex dynamic systems and improves the control performances from different aspects [START_REF] Krishnan | Controllability of fractional dynamical systems with prescribed controls[END_REF], [START_REF] Ortigueira | Fractional calculusfor scientists and engineers[END_REF][START_REF] Delavari | Adaptive fractional-order blood glucose regulator based on high-order sliding mode observer[END_REF]). Thus, the fuzzy logic based backstepping techniques are proved to be successful in controlling various processes: such as wind energy conversion systems. In [START_REF] Aounallah | Algorithm on fuzzy adaptive backstepping control of fractional order for doubly-fed induction generators[END_REF]) , the combination of fractional robust algorithm with the universal approximator for wind generators improves the control performance and overcome the constraint of model parameters knowledge. These facts motivated us to extend and adapt such approach to the medical field requirements and specificities. In this work, we propose a fractional adaptive Takagi-Sugeno fuzzy logic backstepping algorithm for automated control of blood glucose in Type 1 Diabetic Patients. The control scheme is designed for an Extended Bergman's minimal model (EBMM) [START_REF] Bergman | Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose[END_REF]). Fuzzy systems can overcome the constraint of the model parameters knowledge and the adaptive approach allows to attenuate the effect of both fuzzy logic approximation errors and the external disturbances (Essounbouli et al. (2002a)). Adaptive fuzzy systems allow to overcome the constraint of the model parameters knowledge [START_REF] Aounallah | Algorithm on fuzzy adaptive backstepping control of fractional order for doubly-fed induction generators[END_REF], [START_REF] Mendel | Uncertain Rule-Based Fuzzy Logic Systems[END_REF]). The global stability is obtained by a fractional Lyapunov function ( [START_REF] Chen | Fractional order lyapunov stability theorem and its applica-tions in synchronization of complex dynamical networks[END_REF]). Our main objective is to exploit the performance of the fractional-order theory to obtain good stabilization of blood glucose level in presence of external disturbances (meal intake). Simulation results, via matlab /Simulink environment, demonstrate the efficiency of the fractional proposed method. The paper is organised as follows: Section 2 describes the fractional Extended Bergman's minimal model. Section 3 is dedicated to the conventional backstepping control. Section 4 concerns the proposed controller design. Section 5 shows the simulation results and the comparative study. Finally, the conclusion is given in section 6.

FRACTIONAL EXTENDED BERGMAN'S MINIMAL MODEL (FEBMM)

Fractional method

The mathematical expression of the fractional-order differential integral operator is given as follows:

t0 D m t =                d m dt m (m) > 0 1 (m) = 0 t t0 (dt) -m (m) < 0 (1) 
Whith:

• m C :is a fractional order.

• R(m) : is the real part of m.

• t 0 and t : is the fractional operator domain limits.

The mathematical Riemann-liouville definitions of fractional derivatives and integrals are given by the following equations:

a) Fractional-order integral:

RL t0 I m t f (t) = 1 Γ(m) t t0 (t -τ ) m-1 f (τ )dτ (2)
With Γ(.) : is the Euler's gamma function.

Γ(x) = ∞ 0 y X-1 e -y dy , x > 0 (3) b) Fractional-order derivative: RL t0 D m t f (t) = 1 Γ(n -m) d n dt n t t0 (t -τ ) n-m-1 f (τ )dτ (4)
Where n is an the integer number such that : (n -1) < m < n.

FEBMM description

The non-linear extended model for type 1 diabetic patients has been proposed in [START_REF] Bergman | Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose[END_REF]). Meal disturbance to the blood glucose level which was considered as fixed value in BMM are defined as a fourth state of the system given as:

     D m x 1 = -p 1 (x 1 -G b ) -x 1 .x 2 + x 4 D m x 2 = -p 2 x 2 + p 3 (x 3 -I b ) D m x 3 = -p 4 (x 3 -I b ) + U (t) D m x 4 = -p 5 x 4
(5)

where:

-x1, x2 , x3 and x4 : are glucose concentration, remote insulin concentration , plasma insulin concentration and Fisher's Meal disturbance respectively.

-G b : is the basal plasma glucose .

-I b : is the basal plasma insulin .

-p 1 : is the glucose effectiveness factor .

-p 2 : is the delay in insulin action .

-p 3 : is the patient parametter .

-p 4 : is the insulin degradation rate .

-p 5 : is the meal disturbance . 

FRACTIONAL BACKSTEPPING CONTROL METHOD FOR EBMM

This section aims to find the appropriate external insulin infusion rate U(t), which can guarantee the asymptotic tracking of the desired blood glucose level. The proposed approach is based on a fractional order mathematical model where the control laws are deduced from the fractional Lyapunov stability analysis. The mathematical demonstration of the proposed control method is given according to the following steps.

First virtual control law

The synthesis of the first virtual control law is obtained via the expression of the following error:

e 1 = x 1 -Y ref (6)
The Lyapunov function used for stability analysis is given by:

V 1 = 1 2 e T 1 e 1 (7)
Its fractional time derivative is :

D m V 1 = e T 1 D m e 1 (8) 
The virtual control law based on the desired state values is written as follows:

x 2d = x -1 1 (-p 1 (x 1 -G b ) -D m Y ref +c 1 e 1 + k 1 sign(e 1 )) (9) 
A second tracking error, resulting from the expression of the first virtual control law, is added to the control process:

x 2 = x 2d + e 2 (10) 
Thus, the new fractional time derivative of the Lyapunov function is taken as:

D m V 1 = -c 1 e T 1 e 1 -e T 1 x 1 e 2 -e T 1 (k 1 sign (e 1 ) -x 4 ) (11)
The stability condition D m V 1 < 0 is ensured as long as c 1 > 0 and |x 4 | < k 1 , with the residual term e T 1 x 1 e 2 , must be compensated in the second step.

Second virtual control law

The first intermediate control law introduces a second error e 2 whose the fractional derivative is given as follows:

D m e 2 = D m x 2 -D m x 2d (12) 
The fractional derivative of the new Lyapunov function is defined by:

D m V 2 = e T 1 D m e 1 + e T 2 D m e 2 (13) 
The second virtual control law is taken as:

x 3d = p -1 3 (p 2 x 2 + p 3 I b + D m x 2d +x 1 .e 1 -c 2 .e 2 -k 2 sign (e 2 )) (14) 
Therefore, a third error term is introduced:

x 3 = x 3d + e 3 (15) 
based on the third error term and using ( 14), the time derivative of D m V 2 can be written as:

D m V 2 = -c 1 e T 1 .e 1 -e T 1 (k 1 sign(e 1 ) -x 4 ) -c 2 e T 2 .e 2 -e T 2 (k 2 .sign (e 2 )) + e T 2 p 3 .e 3 (16) 
Thus, the expression D m V 2 is negative as long as |x 4 | < k 1 , k 1 > 0, k 2 > 0 , c 1 > 0 and c 2 > 0, the residual term must be compensated in the third step.

Global control law

The design of the fractional feedback control U(t) results from ( 15)

D m e 3 = D m x 3 -D m 3d (17) 
The time derivative of the Lyapunov candidate function, which check the convergence of three errors e 1 , e 2 and e 3 to zero, is :

D m V 3 = e T 1 D m e 1 + e T 2 D m e 2 + e T 3 D m e 3 (18) 
The control law which can ensure the asymptotic stability of the system, can be taken as:

U (t) = p 4 (x 3 -I b ) + D m x 3d -p 3 .e 2 -c 3 .e 3 -k 3 .sign(e 3 ) (19) 
Thus, the final expression of the Lyapunov candidate function is given as:

D m V 3 = -c 1 e T 1 e 1 -e T 1 (k 1 sign(e 1 ) -x 4 ) -c 2 e T 2 e 2 -e T 2 .k 2 .
sign(e 2 )c 3 .e T 3 .e 3 -e T 3 .k 3 .sign(e 3 ) (20)

Finally, the control laws ensure the asymptotic stability of the system via a judicious choice of the parameters k 1 , k 2 , k 3 ,c 1 , c 2 and c 3 .

FRACTIONAL ADAPTIVE FUZZY BACKSTEPPING CONTROL METHOD FOR FEBMM

To overcome the problem of patient parameter knowledge, we propose to use adaptive fuzzy systems in the form ξ T 1 θ to calculate the control signal [START_REF] Essounbouli | A supervisory robust adaptive fuzzy controller[END_REF]). To design the new control laws, we will follow the same previous steps.

First virtual control law

The control law (9) becomes can be rewritten as:

x 2d = x 2eq + x -1 1 (c 1 .e 1 + k 1 .sign(e 1 )) (21) 
where:

x 2eq = x -1 1 (-p 1 (x 1 -G b ) -D m Y ref )
, which will be approximated by the fuzzy system: x2eq = ξ T 1 θ 1 .

ξ T 1 represents the regressive vector and θ 1 the adjustable parameter vector.

The new mathematical expression of the Lyapunov function is as follows:

V 1 = 1 2 e T 1 .e 1 + 1 2γ 1 θT 1 θ1 (22)
Where γ 1 is the learning rate, θ1 = θ 1 -θ * 1 is the estimation error and θ * 1 is the optimal value of θ 1 . Applying the fractional derivative to (22), we get the following expression:

D m V 1 = e T 1 -c 1 e 1 -f e1 + x 1 e 2 + w 1 -ξ T 1 θ1 + 1 γ1 θT 1 D m θ1 ( 23 
)
Where f e1 = k 1 sign(e 1 ) + ∆ 1 and w 1 = x * 2d -x 2d is the minimum approximation error.. Taking the following adaptation law:

D m θ 1 = γ 1 ξ 1 e 1 (24)
Thus, an appropriate choice of c 1 allows to rearrange the equation ( 23) as follows:

D m V 1 ≤ -c 1 e T 1 e 1 + e T 1 x 1 e 2 (25) 
This mathematical equation includes a residual term e T 1 x 1 e 2 , which will be compensated in the next step.

Second virtual control law

As indicated previously, a second adaptive fuzzy system is introduced:

x 3d = p -1 3 (p 2 x 2 + p 3 I b + D m x 2d + x 1 e 1 -c 2 e 2 -k 2 sign(e 2 ))
x 3d = x 3eq + p 1 3 (c 2 e 2 + k 2 sign(e 2 ))

x3eq eq = ξ T 2 θ 2 (26)
By performing a mathematical transformation similar to that of the previous step, the fractional derivative of the global Lyapunov function is given by:

D m V 2 = D m V 1 + e T 2 D m e 2 + 1 γ 2 θT 2 D m θ2 ( 27 
)
In order to guarantee the asymptotic stability condition D m V 2 < 0, we have:

D m θ 2 = γ 2 ξ 2 e 2 (28) 
and choosing an appropriate scalar value c 2 , equation ( 27) becomes:

D m V 2 < -c 1 e T 1 e 1 -c 2 e T 2 e 2 -p 3 e 2 (29) 
Thus, the subsystem stability depends on the parameter p 3 e 2 , which will be in next step.

Global control law

In accordance with the stability conditions of the feedback system and the approximation of the unknown parameters, the expression of the final control law is:

U (t) = p 4 (x 3 -I b ) + D m x 3d +p 3 e 2 -c 3 e 3 -k 3 sign(e 3 ) = U eq -c 3 e 3 -k 3 sign(e 3 ) Ûeq = ξ T 2 θ 3 (30) 
Proceeding as before , the fractional derivative of the global Lyapunov function is:

D m V 3 = D m V 1 + D m 2 + e T 3 D m e 3 + 1 γ3 θT 3 D m θ3 (31) 
where w 3 = Û * eq -U eq .

To guarantee the stability that involves D m V 3 < 0, we us the following adaptive law:

D m θ 3 = γ 3 ξ 3 e 3 (32) 
After some mathematical transformations and with an adequate selection of the parameters c 1 , c 2 and c 3 , we get this inequality:

D m V 3 < -c 1 e T 1 e 1 -c 2 e T 2 e 2 -c 3 e T 3 e 3 (33) 
This mathematical approach of adaptation laws, deduced in the sense of Lyapunov, provides a demonstration of the global stability system.

SIMULATION AND RESULTS

In this section, we propose to evaluate the proposed approach via MATLAB/Simulink environment. These stimulation tests are based on a complete comparison between integer and fractional-order control schemes. Noted that the selected reference level for blood glucose is (80 mg/dl), reflecting an optimal value of blood glucose level. The model parameters are the same those given by [START_REF] Ahmad | An adaptive backstepping based non-linear controller for artificial pancreas in type 1 diabetes patients[END_REF], [START_REF] Nath | Observer based nonlinear control design for glucose regulation in type 1 diabetic patients: An lmi approach[END_REF]). Analysis of system response is obtained during meal intake assuming that the patient is initially in the state of hyperglycemia. The results highlighted the improvements in the considered control system (see Fig. 2). These enhancements concern the convergence time (from 0 to 50%), oscillatory response and steady state error (Table 1). The generated control signals are shown in Figure 3. The algorithm calculates the quantity of insulin required to avoid oscillations in the system response and reaches a maximum value that causes an instant decrease in glucose level. The improvement of the proposed control performance are also validated via a comparison with SMC which is another nonlinear method (see Figs. 4 and5). Finally, the proposed control method presents better performances not only in terms of blood glucose regulation and insulin infusion rate, but also concerning the computation times online (see Fig. 6) which decreases by 68 %in this approach compared to its integer analog approach. This paper proposes a non-linear control approach based on a fractional order adaptive fuzzy-backstepping controller using FEBMM for an automatic blood glucose regulation in Diabetes Type 1 patients. Adaptive Takagi-Sugeno fuzzy logic systems aim to get rid of the constraint related to the requirement of patients parameters knowledge. The fractional calculus leads to more accurateness in the control law. Lyapunov's theorem has been used to prove the asymptotic stability of the system. Simulation results have been performed, via MATLAB/Simulink, to illustrate the efficiency of fractional method during meal intake (faster convergence time, reduced steady state error and overshoots/undershoots) compared to integer 
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 1 Fig. 1. Overall scheme of Automated Blood Glucose Control.

  Fig. 2. Blood glucose response analysis with backstepping based approaches

Table 1 .

 1 Performance criteria values for the proposed controllers

	Blood Glucose