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Direct and Indirect Robust Adaptive Fuzzy Controllers 

for a Class of Nonlinear Systems 
 

Najib Essounbouli and Abdelaziz Hamzaoui 
 

Abstract: In this paper, we propose direct and indirect adaptive fuzzy sliding mode control 
approaches for a class of nonaffine nonlinear systems. In the direct case, we use the implicit 
function theory to prove the existence of an ideal implicit feedback linearization controller, and 
hence approximate it to attain the desired performances. In the indirect case, we exploit the 
linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to establish an 
affine-in-control model, and therefore design an indirect adaptive fuzzy controller. In both 
cases, the adaptation laws of the adjustable parameters are deduced from the stability analysis, 
in the sense of Lyapunov, to get a more accurate approximation level. In addition to their 
robustness, the design of the proposed approaches does not require the upper bounds of both 
external disturbances and approximation errors. To show the efficiency of the proposed 
controllers, a simulation example is presented. 
 
Keywords: Adaptive fuzzy control, nonaffine systems, nonlinear systems, sliding mode control. 
 

1. INTRODUCTION 
 
Adaptive control schemes for nonlinear systems via 

feedback linearization concept have been widely 
employed for decades. The idea of feedback 
linearization approaches is to transform a nonlinear 
dynamic system into a linear system through state 
feedback mechanisms. With such transformations, 
those well-explored linear controllers can then be 
applied to meet desired control specifications. Several 
results and parameter adaptive control schemes have 
been reported in [1-3]. However, the performances of 
these approaches are directly relied to the exact 
cancellation of nonlinear terms. If these nonlinear 
terms are uncertain or unknown, the performances can 
be deteriorated due to non-exact cancellation. 

As a model free design method, fuzzy systems have 
been successfully applied to control complex or ill-
defined processes whose mathematical models are 
difficult to obtain [4-5]. The ability of converting 
linguistic descriptions into automatic control strategy 
makes it a practical and promising alternative to the 
classical control scheme for achieving control of 
complex nonlinear systems. A major drawback of 
fuzzy control systems is that the fuzzy rules must be 
previously tuned by trial and error procedures. To 

overcome this problem, some research has been 
focused on the Lyapunov synthesis approach to 
construct stable adaptive fuzzy controllers [6-10]. The 
basic idea of most of these works is that with the 
universal approximation ability of fuzzy systems [11], 
the plant model is approximated by two adaptive 
fuzzy systems to construct the control law. To make 
more accurate the approximation level and hence to 
improve the tracking performances, the adaptation 
laws of the adjustable parameters are synthesised from 
the stability analysis in the sense of Lyapunov. To 
maintain the performance of fuzzy adaptive control in 
the presence of external disturbances, some robust 
schemes based on sliding mode control or H∞ 
technique are presented in the literature [12-24]. 
However, these approaches are restricted to affine in 
control plants. To overcome this restriction, some 
works treating the extension of adaptive control to 
nonaffine systems have been developed in the 
literature. Concerning the indirect adaptive control 
scheme, there are two techniques where the main idea 
is to synthesise an affine-in-control model of the plant 
to design the controller. Indeed in [25] and [26], the 
authors exploit the linear structure of the Takagi-
Sugeno systems with triangular membership functions 
for inputs and constant conclusion, to establish an 
affine-in-control fuzzy model to describe the dynamic 
behaviour of the plant. In [27], the Taylor series 
expansion is used to obtain an affine in a control 
model of the plant. Concerning the direct control 
scheme presented in [28,29], the authors used the 
implicit theorem and variable structure control to 
prove the existence of feedback control, which has 
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been approximated using neural networks. To improve 
the approximation level and hence the tracking 
performances, an adaptation law is derived from the 
stability analysis. However, to ensure the stability and 
the robustness of the closed loop system in these 
works, an additional control signal is needed to 
compensate the approximation errors and the external 
disturbances. The design of this signal depends on the 
well-known upper bounds of both the approximation 
errors and the external disturbances, which is a 
restrictive assumption due to the fact that these 
bounds are generally unknown. 

In this work, we propose direct and indirect 
adaptive fuzzy controllers for a class of non-affine 
systems subject to external disturbances. In the direct 
case, we use an adaptive fuzzy system to approximate 
the implicit desired feedback control whose existence 
is proven by the implicit theorem. In the indirect case, 
we exploit the linear structure of a Takagi-Sugeno 
fuzzy system to generate a fuzzy affine-in-control 
model to approximate the dynamic behaviour of the 
plant. In both cases, we utilize the modified sliding 
mode control to ensure the robustness of the closed 
loop system. Indeed, the approaching phase is assured 
by an attenuation term that allows the chattering 
phenomenon to be eliminated and the constraint on 
the knowledge of the upper bounds of both external 
disturbances and approximation errors to be overcome. 
To improve the approximation level, the adaptation 
laws are derived from the stability analysis in the 
sense of Lyapunov. To show the efficiency of the 
proposed approaches, an illustration example is 
presented. 

 
2. PROBLEM STATEMENT 

 
Consider a single-input single-output (SISO) 

nonlinear system described by the following 
differential equation: 

( ) ( )( )1, ,..., ,n ny f y y y u d−= + ,              (1) 

where y∈ℜ  is the measured output, u∈ℜ  the 

control input, ( )iy , 1,...,i n= , is the ith time 
derivative of y, ( ).f  is an unknown nonlinear 
continuous function, and d is the external disturbances 
assumed to be unknown but bounded. Without loss of 
generality, we assume that all the state variables 

[ ] ( )1
1,..., ,...,

TT n
nx x x y y −⎡ ⎤= = ⎢ ⎥⎣ ⎦

 are available to the 

measurement. 
The objective is to develop a control law using 

sliding mode control to ensure the tracking 
performances and the robustness of the closed loop 
system. So, forcing the system to track a reference 

trajectory is equivalent to forcing the plant to attain a 
sliding surface and to maintain it on it. The 
Hurwitzian structure of this surface allows the 
convergence of the plant to the phase plan origin. 

 
3. DIRECT ADAPTIVE FUZZY 

CONTROLLER 
 
In this section our task is to synthesise a direct 

adaptive fuzzy controller for the system (1). For this, 
we assume the following: 

Assumption A1: 
( )

0
,

0u
f x u

b b
u

∂ ⎡ ⎤⎣ ⎦= > ≠
∂

 

Assumption A2: There exists a smooth function 

( ) 0xβ >  such that ( )/u u
u

u u

b b t
b x

b b
β

∂ ∂
= ≤ . 

To attain the desired tracking performances, let’s 
consider the sliding surface S or the filtered error 
given as follows [3]: 

( ) ( )

( ) ( )

1 2
1 1

1
1 1

1

...

   ,

n n
n

n
n i

i
i

S e k e k e

e k e

− −
−
−

− −

=

= − − − −

= − −∑
            (2) 

where re y y= −  denotes the tracking error and ry  
is a bounded reference trajectory. The gains ik , 

1,...,i n= , are chosen such that the corresponding 
polynomial is Hurwitzian. 
Using (1) and (2), the time derivative of the switching 
surface S can be written as: 

( ) ( )

( ) ( ) ( )

1

1
1

1
  , .

n
n i

i
i

n
n i

r i
i

S e k e

f x u d y k e

−

=
−

=

= − −

= + − −

∑

∑
            (3) 

Lemma 1 [29]: For the system (1) free of external 
disturbances (d=0) satisfying A1 and A2, there exists 
a compact set uΦ  and an unique ideal input *u such 
that all ( )0 ux ∈Φ , the equation (3) can be expressed 
as the following form: 

( )S x Sβ= − ,                           (4) 

which allows to obtain lim 0r
x

y y
→∞

− = .         � 

The previous lemma guarantees only the existence 
of a control law guaranteeing the convergence of the 
tracking error toward zero and does not provide the 
method of constructing it [29]. Based on the fact that a 
fuzzy system is an universal approximator [11], we 
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use a fuzzy Takagi-Sugeno system to approximate the 
ideal law *u . To guarantee the stability of the closed 
loop system, we add a supplementary signal su . 
Hence, the proposed control law is given by: 

fuzzy su u u= + ,                          (5) 

( )T
fuzzyu xθ= Ψ ,                        (6) 

2s
Su
ρ

= − ,                             (7) 

where θ  is the vector of the adjustable parameters, 
( )xΨ  the regressive vector, and ρ  is a positive 

constant representing the attenuation level of the 
effects of both the approximation error and the 
external disturbances. Note that *u  is written as 

( )* *Tu xθ δ= Ψ + , where *θ  is the optimal value of 
θ  and δ  is the approximation error. 

Using the Mean Value Theory [30], there exists a 
positive constant ] [0 , 1λ ∈  such that: 

( ) ( ) ( )* *, , uf x u f x u b u uλ= + − ,           (8) 

where
( ),

u
u u

f x u
b

u
λ

λ
=

∂ ⎡ ⎤⎣ ⎦=
∂

and ( ) *1u u uλ λ λ= + − . 

According to the implicit theorem [31, there exists a 
*u  such that ( )*, 0v f x u+ =  where ( )v x Sβ=  

( ) ( )1

1

n
n i

r i
i

y k e
−

=
− −∑ . So, (8) can be written as: 

( ) ( )
( ) ( ) ( ) ( )

*

1
*

1

,

            .

u

n
n i

r i u
i

f x u v b u u

x S y k e b u u

λ

λβ
−

=

= − + −

= − + + + −∑
(9) 

From (3) and (9), we can obtain: 

( ) ( )*
uS x S b u u dλβ= − + − + .            (10) 

Using (5), equation (10) becomes: 

( )
( )*     

u fuzzy u s

T
u u

S x S b u b u

b x b d

λ λ

λ λ

β

θ δ

= − + +

− Ψ − +
           (11) 

or 

( ) ( ) ( )*

2 ,

T T
u u

u u

S x S b x b x
Sb b d

λ λ

λ λ

β θ θ

δ
ρ

= − + Ψ − Ψ

− − +
   (12) 

( ) ( ) 2 T
u u u

SS x S b x b b dλ λ λβ θ δ
ρ

= − + Ψ − − + ,(13) 

which gives  

( ) ( )1 1 1
2 T

u u u
Sb S b x S x b dλ λ λβ θ δ
ρ

− − −= − + Ψ − − + ,(14) 

where *θ θ θ= − . 
Consider the following Lyapunov function: 

1 21 1
2 2

T
uV b Sλ θ θ

η
−= + .                  (15) 

Differentiating (15) along (12) yields: 

1 11 1 1 1
2 2 2 2

T T
u uV Sb S Sb Sλ λ θ θ θ θ

η η
− −= + + + .  (16) 

Using the fact that *θ θ θ θ= − =  and since the 
elements of V  are scalars, the equation (16) can be 
rewritten as: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

1

1 1
2

2
1 2 1

2

2
1 2 1

2

2
1

2

1

1   S  

1    

1   

1   .

T
u

T T
u u u

T T
u u

T
u u

T
u

V Sb S

Sb x S x b b d

Sb x S S x S b d

Sb x S S b d S x

S S b d S x

λ

λ λ λ

λ λ

λ λ

λ

θ θ
η

β θ δ θ θ
ηρ

β θ δ θ θ
ηρ

β δ θ θ η
ηρ

δ θ θ η
ηρ

−

− −

− −

− −

−

= +

⎛ ⎞
= − + Ψ − − + +⎜ ⎟⎜ ⎟

⎝ ⎠

= − + Ψ − − − +

= − − − − + + Ψ

≤− − − + + Ψ

(17) 
Choosing the following adaptation law: 

( )S xθ η= − Ψ                           (18) 

gives: 

( )

( )

( ) ( )

2
1

2

2 2
1

2 2

2 2 21 2 1
2 2

 

   
2 2

1   2
22

u

u

u u

SV S b d

S S S b d

S S S b d b d

λ

λ

λ λ

δ
ρ

δ
ρ ρ

δ ρ δ
ρ ρ

−

−

− −

≤ − − −

≤ − − − −

⎡ ⎤
≤ − − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦

( )

( )

2 21

2 2 21
2

   
2

 .
22

u

u

b d

S b d

λ

λ

ρ δ

ρ δ
ρ

−

−

+ −

≤ − + −
                (19) 
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Integrating the above inequality from 0t =  and T , 
we have: 

( ) ( ) ( )
2 2 21
20 0

 0  
22

T T
u

S V T V dt b d dtλ
ρ δ

ρ
−− ≤ − + −∫ ∫ ,(20) 

( ) ( ) ( )
2 2 21
20 0

 0  
22

T T
u

S dt V V T b d dtλ
ρ δ

ρ
−≤ − + −∫ ∫ .(21) 

Using the fact that ( ) 0V T ≥ , the above inequality 
can be simplified as: 

( ) ( )
2 2 21
20 0

 0  
22

T T
u

S dt V b d dtλ
ρ δ

ρ
−≤ + −∫ ∫ , (22) 

(22) guarantees that S L∞∈ . Because all the 
variables in the right-hand side of (14) are bounded, 
i.e., S L∞∈ . Since the right side of (22) are also 
bounded, 2S L∈  [28,29]. Using Barbalat Lemma, 
we have 0S →  when t →∞  [29].  
Therefore, the tracking error converges to the origin, 
i.e., lim 0

x
e

→∞
=  [3]. 

To ensure the convergence of the adaptive 
algorithm, we introduce the projection algorithm 
defined by (23). 

( )
( )

( ) ( )
( )

max

max

max
2

: [ ]

[

0]

: [

0]

T

if u

S x or u

and S x

if u
S x S x

and S x

θ

η θ

θ

θθθη
θ

⎧ ≤
⎪

− Ψ =⎪
⎪⎪ Ψ ≥= ⎨
⎪ ⎡ ⎤ =⎪ ⎢ ⎥− Ψ + Ψ⎪ Ψ <⎢ ⎥⎪ ⎣ ⎦⎩

(23) 
 

4. INDIRECT ADAPTIVE FUZZY 
CONTROLLER 

 
In the case where Assumptions A1 and A2 are 

restrictive, and we cannot satisfy them, we can use an 
indirect adaptive fuzzy controller. The main idea is to 
construct an affine model of the plant using a Takagi-
Sugeno system. Then we use it to synthesise a robust 
controller allowing it to ensure the tracking 
performances and the robustness of the closed loop 
system.  

The plant is constructed from a Takagi-Sugeno 
system whose inputs are the state variables 1x , 

1,...,i n= , and u . For each variable 1x , 1,...,i n= , 
and u , we define ip  and M  fuzzy sets. Hence, 
the jth rule can be written in the form: 

( )

1
1 1

1,..., ,

...

,

j n m
n n

j jn m
n

Rule j IF x is A And x is A And u is B

THEN x θ

⎡ ⎤
⎣ ⎦

⎡ ⎤=⎢ ⎥⎣ ⎦

(24) 

where { }1,...,ji pi∈  for 1,...,i n=  and { }1,...,m M∈ . 
( )1,..., ,j jn mθ  is a constant corresponding to the jth rule 

where the fuzzy sets 1
1 ,..., ,j jn m

nA A B  are used. 
Using the singleton fuzzifier, the centre average 

defuzzification and the product inference engine, the 
output of the Takagi-Sugeno system can be given by 
[8]: 

( ) ( ) ( )

( ) ( )

1 1,..., ,

1 1 1
1

1 1 1

...

...

p pn nM j jn m
ji i mBAij jn i

p pn nM
ji i mBAij jn i

x u

n
x u

x
θ μ μ

μ μ

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∏
=

∑ ∑ ∑ ∏
, (25) 

or on the following vectorial form: 

( ),T
nx x u= Θ Ψ ,   (26) 

where ( ),x uΨ  is a 1 ...p pn M× × ×  dimensional 

vector with its ( )1,..., , thj jn m  element given by: 

( )
( ) ( )

( ) ( )

1
1

1 1 1

1,..., ,

...

n
ji i mBAii

p pn nM
ji i mBAij jn i

x u
j jn m

x u

μ μ

μ μ

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∏
Ψ =

∑ ∑ ∑ ∏
, (27) 

and ( ) ( )1,...,1,1 1,..., ,,....,
Tp pn Mθ θ⎡ ⎤Θ = ⎢ ⎥⎣ ⎦

 denotes the 

vector of the adjustable parameters.  
Let’s consider that the membership functions of 

linguistic variables of u  have the form of a triangle 
and are placed evenly throughout the whole defined 
space uU  as illustrated in Fig. 1. The space uU  can 

Fig. 1. The membership functions of u . 
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be decomposed into several subspaces uUα , 
1,2,..., 1Mα = −  [25]. If u  exists in the subspace 

uUα , all membership function values are given by: 

( )

1

1

1

1
1

0

m

m

m m

m
B

m m

u a
m

a a
a u

u m
a a

otherwise

α

μ α

+

+

−

−

−⎧ =⎪ −⎪
⎪ −⎪= = +⎨

−⎪
⎪
⎪
⎪⎩

,

  (28) 

where ma  is a constant satisfying ( ) 1m mB
aμ = . 

For a given value of { }1,2,..., 1Mα = − , the control 

input u  exists in the subspace uUα . So, substituting 
(28) in (25) gives: 

( ) ( ) ( )

( ) ( )

( ) ( )

1
1,..., , 1,..., , 1

1
1

1
1,..., , 1,..., , 1

1

1 2

ˆ , , ...

                + ...

               ,

p pn
j jn j jn

s
j jn

p pn
j jn j jn

s
j jn

f x u a a

u

x x u

α α
α α

α α

α α

θ θ

θ θ

+
+

+

⎡ ⎤Θ = Ψ −⎢ ⎥⎣ ⎦

⎡ ⎤Ψ −⎢ ⎥⎣ ⎦

=Φ +Φ

∑ ∑

∑ ∑

(29) 

where 

( )

( ) ( )

1
1

1 1 1
1 ...

1
n

ji iAii
p pn nM

ji i mBAij jn i

x

s
x ua a

μ

α α μ μ

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

+ ⎢ ⎥
⎢ ⎥⎣ ⎦

∏
Ψ =

− ∑ ∑ ∑ ∏
. 

Therefore, the fuzzy system can be decomposed 
into M-1 subsystems, which allows to obtain an 
affine-in-control model of the plant [25,26]. 

After synthesising the fuzzy model, our next task is 
to develop a robust controller to ensure the global 
stability and the robustness of the closed loop system. 
So, the proposed control law is given by: 

( ) ( ) ( ) ( )11
2 1

1

n
n i

r i s
i

u x x y k e uα α
−−

=

⎡ ⎤⎡ ⎤= Φ −Φ + + +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ,(30) 

where su  denotes an additional term guaranteeing 
the robustness of the closed loop system by 
attenuating the effects of both the external 
disturbances and the approximation errors to a 
prescribed level ρ . To attain this objective, we 

choose su  as given in (7): 2s
Su
ρ

= − . 

Using (30), the time derivative of the sliding surface is 
given by: 

( ) ( )ˆ, , , sS f x u f x u u d= − Θ + + .          (31) 

If we note by ( ) ( )* * *ˆ , , ,Tf x u x uΘ = Θ Ψ  the optimal 

value of ( ) ( )ˆ , , ,Tf x u x uΘ = Θ Ψ  and by ( ),w f x u=  

( )* *ˆ , ,f x u− Θ  the minimal approximation error, (31) 

can be rewritten as: 

( ) 2,T SS w x u d
ρ

= + Θ Ψ + − ,             (32) 

To determine the adaptation law of the adjustable 
parameter vector Θ , we consider the following 
Lyapunov function: 

21 1
2 2

TV S
σ

= + Θ Θ ,                    (33) 

where σ  is a positive constant given by the designer. 
Using (32) and the fact that Θ = −Θ , the time 

derivative of (33) can be written as: 

( ) 2
1,T TSV S w x u d
σρ

⎡ ⎤
= + Θ Ψ + − − Θ Θ⎢ ⎥

⎢ ⎥⎣ ⎦
,    (34) 

[ ] ( )
2

2
1 ,TSV S w d S x uσ
σρ

⎡ ⎤= + − − Θ Θ − Ψ⎣ ⎦ ,   (35) 

[ ] ( )
2 2

2 2
1 ,

2 2
TS SV S w d S x uσ

σρ ρ
⎡ ⎤= + − − − Θ Θ− Ψ⎣ ⎦ ,(36) 

[ ] [ ]

[ ] ( )

2
22

2

2
22

2

1 2
2

1 1 , ,
2 2

T

SV w d S w d

Sw d S x u

ρ
ρ

ρ σ
σρ

⎡ ⎤
= − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤+ + − − Θ Θ− Ψ⎣ ⎦

(37) 

[ ] [ ]

( )

2 2
2

2

2

1
2 2

1  , ,
2

T

SV w d w d

S S x u

ρρ
ρ

σ
σρ

⎡ ⎤
= − + − + +⎢ ⎥

⎣ ⎦

⎡ ⎤− − Θ Θ − Ψ⎣ ⎦

        (38) 

[ ] ( )
2

2
2

1 1 , .
2 2

TSV w d S x uσ
σρ

⎡ ⎤≤ + − − Θ Θ − Ψ⎣ ⎦ (39) 

If we choose the following adaptation law: 

( ),S x uσΘ = Ψ                          (40) 

and using the same mathematical tool development 
presented in the previous section, we can obtain:  

( ) [ ]
2 2

2
20 0

0
22

T TS dt V w d dtρ
ρ

≤ + +∫ ∫ .        (41) 

As proven in the previous section, we have 2S L∈  
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and S L∞∈ . Hence, we have 0S →  when t →∞ . 
According to the Hurwitzian structure of the sliding 
surface, the system converges to the origin of the 
phase plan [3]. 

Remark 1: To overcome the singularity problem 
when ( )2 0xαΦ =  without complicating the 
controller structure, we propose to substitute the term 

( )
1

2 xα −
⎡ ⎤Φ⎣ ⎦  by 

( )

( )

2
2

2

x

x

α

αε

⎡ ⎤Φ⎣ ⎦

⎡ ⎤+ Φ⎣ ⎦

 [33] which yields 

the new control law: 

( )

( )
( ) ( ) ( )12

12
12

n
n i

r i s
i

x
u x y k e u

x

α
α

αε

−

=

⎡ ⎤Φ ⎡ ⎤⎣ ⎦= −Φ + + +⎢ ⎥
⎢ ⎥⎡ ⎤ ⎣ ⎦+ Φ⎣ ⎦

∑ ,(42) 

where ε  is a small positive constant. 
Remark 2: To ensure the convergence of the 

adaptive algorithm, we modify the adaptation law by 
using the projection technique as given by (43). 
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( ) ( )
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, 0]

: [
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, 0]

T

if f

S x u or f

and S x u

if f
S x u S x

and S x u

σ

σ

⎧ Θ ≤
⎪

Ψ Θ =⎪
⎪⎪ Ψ ≤Θ = ⎨
⎪ ⎡ ⎤ Θ =ΘΘ⎪ ⎢ ⎥Ψ − Ψ⎪ Ψ >⎢ ⎥Θ⎪ ⎣ ⎦⎩

 

(43) 
 

5. AN ILLUSTRATION EXAMPLE 
 
To illustrate the effectiveness of the proposed 

adaptive controllers, we consider the following 
system: 

( ) ( )
1 2

2 3 2
2 1 2

1

0.1 0.1 1 sin 0.1

.

x x

x x u x u u

y x

=⎧
⎪⎪ = + + + +⎨
⎪

=⎪⎩

  (44) 

In this simulation example, the control objective is 
to determine u so that the output y  follows the 
desired reference trajectory sin( )ry t= . To show the 
robustness of the proposed approaches, we consider 
that the system is subject to external disturbances in 
the form ( )0.2 sin( ) sin(2 )d t t= + . 

To synthesise the direct adaptive fuzzy controller, 
we use a fuzzy system with the state variables x₁  
and x₂  as inputs and fuzzyu  as output. For each 
input variable, we define five fuzzy sets covering 
uniformly their universes of discourse [-1.5,1.5], 
whose corresponding membership functions are 

triangular. The plant must attain the following surface 
S e e= + , and slide on it to reach the origin 0e e= = . 
Figs. 2, 3 and 4 present the simulation results for the 
initial sate [ ] [ ]1 2 0.5 0.5T Tx x = and the 
attenuation level 0.05ρ = . Figs. 2 and 3 demonstrate 
the good tracking performances and the convergence 
of the state variables to their reference trajectories. In 
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Fig. 2. Evolution of the state variable 1x  (solid line)

and its reference trajectory (dashed line). 
 

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)  
Fig. 3. Evolution of the state variable 2x  (solid line)

and its reference trajectory (dashed line). 
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Fig. 4. Applied control signal. 
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Fig. 4, we remark that the control signal does not 
contain any abrupt variation despite the knowledge 
unavailability of the upper bound of the external 
disturbances.  

To overcome the restrictive assumptions A1 and A2 
used to design the control law (5), we propose to use 
the indirect adaptive fuzzy controller given by (31). 
For this, we must at first define a fuzzy system, which 
inputs the state variables ( )1 2x x  and the control 
input u , to approximate the dynamic function 
( ),f x u . The universe of discourse of the inputs 1x , 

2x , and u are respectively [ ]1.5 1.5− , [ ]1.5 1.5−  
and [ ]2.5 2.5− . For each input variable, we have 
defined respectively 5, 5, and 6 linguistic sets. Figs. 5 
and 6 give the evolution of the state variables 1x  and 

2x  together with the corresponding reference signals. 
Despite using an affine-in-control fuzzy model to 
synthesise the control law, we can note the good 
tracking performances and the convergence of the 
system to the desired trajectories. This can be justified 

by the good approximation level assured by the 
proposed approach as illustrated in Fig. 7. The applied 
control signal to attain our objective is given by Fig. 8. 

In summary, we can conclude that the proposed 
approaches (direct and indirect schemes) allow the 
desired tracking performances to be attained and also 
ensure the robustness of the closed loop system, 
without using classical methods of linearization. 
Furthermore, the design of these controllers does not 
require any knowledge regarding the disturbances 
structure or their bounds. 

 
6. CONCLUSION 

 
In this paper direct and indirect robust adaptive 

fuzzy controllers for a class of nonaffine nonlinear 
systems are presented. In the direct case, based on the 
implicit theorem, a fuzzy adaptive system is used to 
attain the desired performances. In the indirect case, a 
Takagi-Sugeno system is used to synthesise an affine-
in-control model, and hence to design the controller. 
In the two cases, the robustness of the closed loop 
system is guaranteed by a modified sliding mode 
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Fig. 5. Evolution of the state variable 1x  (solid line)
and its reference trajectory (dashed line). 
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Fig. 6. Evolution of the state variable 2x  (solid line)

and its reference trajectory (dashed line). 
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Fig. 7. Evolution of the dynamic function ( )f x,u

(dashed line) and its approximation
(continuous line). 
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Fig. 8. Applied control signal. 
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control where the upper bounds of both the external 
disturbances and the approximation errors are not 
required. To improve the approximation accuracy, the 
adaptation laws of the adjustable parameters are 
deduced from the stability analysis in the sense of 
Lyapunov. The simulation results demonstrate both 
good tracking performances and high efficiency of 
theses approaches. Current works are focussed on the 
use of a state observer to overcome the assumption on 
the availability of the state variables to the 
measurement. 
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