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In this paper, we propose direct and indirect adaptive fuzzy sliding mode control approaches for a class of nonaffine nonlinear systems. In the direct case, we use the implicit function theory to prove the existence of an ideal implicit feedback linearization controller, and hence approximate it to attain the desired performances. In the indirect case, we exploit the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to establish an affine-in-control model, and therefore design an indirect adaptive fuzzy controller. In both cases, the adaptation laws of the adjustable parameters are deduced from the stability analysis, in the sense of Lyapunov, to get a more accurate approximation level. In addition to their robustness, the design of the proposed approaches does not require the upper bounds of both external disturbances and approximation errors. To show the efficiency of the proposed controllers, a simulation example is presented.

INTRODUCTION

Adaptive control schemes for nonlinear systems via feedback linearization concept have been widely employed for decades. The idea of feedback linearization approaches is to transform a nonlinear dynamic system into a linear system through state feedback mechanisms. With such transformations, those well-explored linear controllers can then be applied to meet desired control specifications. Several results and parameter adaptive control schemes have been reported in [START_REF] Isodori | Nonlinear Control Systems[END_REF][START_REF] Sastry | Adaptive Control: Stability, Convergence, and Robustness[END_REF][START_REF] Slotine | Applied Nonlinear Control[END_REF]. However, the performances of these approaches are directly relied to the exact cancellation of nonlinear terms. If these nonlinear terms are uncertain or unknown, the performances can be deteriorated due to non-exact cancellation.

As a model free design method, fuzzy systems have been successfully applied to control complex or illdefined processes whose mathematical models are difficult to obtain [START_REF] King | The application of fuzzy control systems to industrial process[END_REF][START_REF] Takagi | Identification of systems and its applications to modeling and control[END_REF]. The ability of converting linguistic descriptions into automatic control strategy makes it a practical and promising alternative to the classical control scheme for achieving control of complex nonlinear systems. A major drawback of fuzzy control systems is that the fuzzy rules must be previously tuned by trial and error procedures. To overcome this problem, some research has been focused on the Lyapunov synthesis approach to construct stable adaptive fuzzy controllers [START_REF] Spooner | Stable adaptive control of a class of nonlinear systems and neural network[END_REF][START_REF] Sue | Adaptive control of a class of nonlinear systems with fuzzy logic[END_REF][START_REF] Wang | Adaptive Fuzzy Systems and Control[END_REF][START_REF] Wang | Stable adaptive fuzzy controllers with application to inverted pendulum tracking[END_REF][START_REF] Tong | Fuzzy adaptive control for a class of nonlinear systems[END_REF]. The basic idea of most of these works is that with the universal approximation ability of fuzzy systems [START_REF] Wang | Fuzzy systems are universal approximators[END_REF], the plant model is approximated by two adaptive fuzzy systems to construct the control law. To make more accurate the approximation level and hence to improve the tracking performances, the adaptation laws of the adjustable parameters are synthesised from the stability analysis in the sense of Lyapunov. To maintain the performance of fuzzy adaptive control in the presence of external disturbances, some robust schemes based on sliding mode control or H∞ technique are presented in the literature [START_REF] Shigame | Sliding mode controller design based on fuzzy inference for nonlinear systems[END_REF][START_REF] Wang | A Course in Fuzzy Systems And Control[END_REF][START_REF] Hamzaoui | Fuzzy sliding mode control with fuzzy switching function for nonlinear uncertain MIMO systems[END_REF][START_REF] Yoo | Adaptive fuzzy sliding mode control of nonlinear systems[END_REF][START_REF] Wang | Indirect sliding mode control: part I: Fuzzy switching[END_REF][START_REF] Lin | Robust adaptive sliding mode control using fuzzy modeling for a class of uncertain MIMO nonlinear systems[END_REF][START_REF] Hamzaoui | Fuzzy sliding mode control for uncertain SISO systems[END_REF][START_REF] Chen | H∞ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach[END_REF][START_REF] Hamzaoui | Adaptive fuzzy control for uncertain nonlinear systems[END_REF][START_REF] Hamzaoui | Robust adaptive fuzzy control application to uncertain nonlinear systems in robotics[END_REF][START_REF] Chang | Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches[END_REF][START_REF] Essounbouli | A supervisory robust adaptive fuzzy controller[END_REF][START_REF] Essounbouli | A robust adaptive fuzzy control applied to disturbed MIMO systems[END_REF]. However, these approaches are restricted to affine in control plants. To overcome this restriction, some works treating the extension of adaptive control to nonaffine systems have been developed in the literature. Concerning the indirect adaptive control scheme, there are two techniques where the main idea is to synthesise an affine-in-control model of the plant to design the controller. Indeed in [START_REF] Yoon | Adaptive fuzzy control of nonlinear systems using Takagi-Sugeno fuzzy models[END_REF] and [START_REF] Boukezzoula | Fuzzy adaptive linearizing control for nonaffine systems[END_REF], the authors exploit the linear structure of the Takagi-Sugeno systems with triangular membership functions for inputs and constant conclusion, to establish an affine-in-control fuzzy model to describe the dynamic behaviour of the plant. In [START_REF] Park | Robust adaptive fuzzy controller for non-affine nonlinear systems with dynamic rule activation[END_REF], the Taylor series expansion is used to obtain an affine in a control model of the plant. Concerning the direct control scheme presented in [START_REF] Guo | CMAC NN-based adaptive control of non-affine nonlinear systems[END_REF][START_REF] Zhang | Direct adaptive control of non-affine nonlinear systems using multilayer neural network[END_REF], the authors used the implicit theorem and variable structure control to prove the existence of feedback control, which has been approximated using neural networks. To improve the approximation level and hence the tracking performances, an adaptation law is derived from the stability analysis. However, to ensure the stability and the robustness of the closed loop system in these works, an additional control signal is needed to compensate the approximation errors and the external disturbances. The design of this signal depends on the well-known upper bounds of both the approximation errors and the external disturbances, which is a restrictive assumption due to the fact that these bounds are generally unknown.

In this work, we propose direct and indirect adaptive fuzzy controllers for a class of non-affine systems subject to external disturbances. In the direct case, we use an adaptive fuzzy system to approximate the implicit desired feedback control whose existence is proven by the implicit theorem. In the indirect case, we exploit the linear structure of a Takagi-Sugeno fuzzy system to generate a fuzzy affine-in-control model to approximate the dynamic behaviour of the plant. In both cases, we utilize the modified sliding mode control to ensure the robustness of the closed loop system. Indeed, the approaching phase is assured by an attenuation term that allows the chattering phenomenon to be eliminated and the constraint on the knowledge of the upper bounds of both external disturbances and approximation errors to be overcome.

To improve the approximation level, the adaptation laws are derived from the stability analysis in the sense of Lyapunov. To show the efficiency of the proposed approaches, an illustration example is presented.

PROBLEM STATEMENT

Consider a single-input single-output (SISO) nonlinear system described by the following differential equation: The objective is to develop a control law using sliding mode control to ensure the tracking performances and the robustness of the closed loop system. So, forcing the system to track a reference trajectory is equivalent to forcing the plant to attain a sliding surface and to maintain it on it. The Hurwitzian structure of this surface allows the convergence of the plant to the phase plan origin.

( ) ( ) ( )

DIRECT ADAPTIVE FUZZY CONTROLLER

In this section our task is to synthesise a direct adaptive fuzzy controller for the system [START_REF] Isodori | Nonlinear Control Systems[END_REF]. For this, we assume the following:

Assumption A1: ( ) 0 , 0 u f x u b b u ∂ ⎡ ⎤ ⎣ ⎦ = >

≠ ∂

Assumption A2: There exists a smooth function

( ) 0 x β > such that ( ) / u u u u u b b t b x b b β ∂ ∂ = ≤ .
To attain the desired tracking performances, let's consider the sliding surface S or the filtered error given as follows [START_REF] Slotine | Applied Nonlinear Control[END_REF]:

( ) ( ) ( ) ( ) 1 2 1 1 1 1 1 1 ... , n n n n n i i i S e k e k e e ke - - - - - - = = - - -- = - -∑ (2) 
where r e y y =denotes the tracking error and r y is a bounded reference trajectory. The gains i k , 1,..., i n =

, are chosen such that the corresponding polynomial is Hurwitzian. Using (1) and ( 2), the time derivative of the switching surface S can be written as:

( ) ( ) ( ) ( ) ( ) 1 1 1 1 , . n n i i i n n i r i i S e k e f x u d y k e - = - = = - - = + - - ∑ ∑ (3) 
Lemma 1 [START_REF] Zhang | Direct adaptive control of non-affine nonlinear systems using multilayer neural network[END_REF]: For the system (1) free of external disturbances (d=0) satisfying A1 and A2, there exists a compact set u Φ and an unique ideal input * u such that all ( )

0 u
x ∈ Φ , the equation ( 3) can be expressed as the following form:

( )

S x S β = - , (4) 
which allows to obtain lim 0

r x y y →∞ -= .
The previous lemma guarantees only the existence of a control law guaranteeing the convergence of the tracking error toward zero and does not provide the method of constructing it [START_REF] Zhang | Direct adaptive control of non-affine nonlinear systems using multilayer neural network[END_REF]. Based on the fact that a fuzzy system is an universal approximator [START_REF] Wang | Fuzzy systems are universal approximators[END_REF], we use a fuzzy Takagi-Sugeno system to approximate the ideal law * u . To guarantee the stability of the closed loop system, we add a supplementary signal s u . Hence, the proposed control law is given by:

fuzzy s u u u = + , (5) 
( )

T fuzzy u x θ = Ψ , ( 6 
) 2 s S u ρ = - , ( 7 
)
where θ is the vector of the adjustable parameters, ( )

x Ψ the regressive vector, and ρ is a positive constant representing the attenuation level of the effects of both the approximation error and the external disturbances. Note that * u is written as

( ) * * T u x θ δ = Ψ +
, where * θ is the optimal value of θ and δ is the approximation error.

Using the Mean Value Theory [START_REF] Khalil | Nonlinear Systems[END_REF], there exists a positive constant

] [ 0 , 1 λ ∈ such that: ( ) ( ) ( ) * * , , u f x u f x u b u u λ = + - , (8) where ( ) 
, u u u f x u b u λ λ = ∂ ⎡ ⎤ ⎣ ⎦ = ∂ and ( ) * 1 u u u λ λ λ = + - .
According to the implicit theorem [31, there exists a * u such that ( )

* , 0 v f x u + = where 
( ) v x S β = ( ) ( ) 1 1 n n i r i i y ke - = - -∑
. So, (8) can be written as:

( ) ( ) ( ) ( ) ( ) ( ) * 1 * 1 , 
.

u n n i r i u i f x u v b u u x S y k e b u u λ λ β - = = -+ - = - + + + - ∑ (9) 
From ( 3) and ( 9), we can obtain:

( ) ( ) * u S x S b u u d λ β = - + - + . ( 10 
)
Using [START_REF] Takagi | Identification of systems and its applications to modeling and control[END_REF], equation [START_REF] Tong | Fuzzy adaptive control for a class of nonlinear systems[END_REF] becomes:

( ) ( ) * u fuzzy u s T u u S x S b u b u b x b d λ λ λ λ β θ δ = - + + - Ψ - + (11) 
or

( ) ( ) ( ) * 2 , T T u u u u S x S b x b x S b b d λ λ λ λ β θ θ δ ρ = - + Ψ - Ψ - - + (12) 
( ) ( )

2 T u u u S S x S b x b b d λ λ λ β θ δ ρ = - + Ψ - - + ,( 13 
)
which gives ( ) ( )

1 1 1 2 T u u u S b S b x S x b d λ λ λ β θ δ ρ - - - = - + Ψ - -+ , (14) 
where

* θ θ θ = -.
Consider the following Lyapunov function:

1 2 1 1 2 2 T u V b S λ θ θ η - = + . ( 15 
)
Differentiating ( 15) along ( 12) yields:

1 1 1 1 1 1 2 2 2 2 T T u u V Sb S Sb S λ λ θ θ θ θ η η - - = + + + . ( 16 
)
Using the fact that * θ θ θ θ = -= and since the elements of V are scalars, the equation ( 16) can be rewritten as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( )

1 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 1 S 1 1 1 . T u T T u u u T T u u T u u T u V Sb S S b x S x b b d S b x S S x S b d S b x S S b d S x S S b d S x λ λ λ λ λ λ λ λ λ θ θ η β θ δ θθ η ρ β θ δ θθ η ρ β δ θ θ η η ρ δ θ θ η η ρ - - - - - - - - = + ⎛ ⎞ = - + Ψ - - + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = - + Ψ - - - + = - -- - + + Ψ ≤ -- - + + Ψ (17) 
Choosing the following adaptation law:

( ) S x θ η = -Ψ (18) 
gives:

( ) ( ) ( ) ( ) 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 u u u u S V S b d S S S b d S S S b d b d λ λ λ λ δ ρ δ ρ ρ δ ρ δ ρ ρ - - - - ≤ - - - ≤ - - - - ⎡ ⎤ ≤ - - + - + - ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ( ) ( ) 2 2 1 2 2 2 1 2 2 . 2 2 u u b d S b d λ λ ρ δ ρ δ ρ - - + - ≤ - + - (19) 
Integrating the above inequality from 0 t = and T , we have:

( ) ( ) ( ) 2 2 2 1 2 0 0 0 2 2 T T u S V T V dt b d dt λ ρ δ ρ - - ≤- + - ∫ ∫ , (20) ( ) ( ) 
( )

2 2 2 1 2 0 0 0 2 2 T T u S dt V V T b d dt λ ρ δ ρ - ≤ - + - ∫ ∫ .( 21 
)
Using the fact that ( ) 0 V T ≥ , the above inequality can be simplified as:

( ) ( ) 2 2 2 1 2 0 0 0 2 2 T T u S dt V b d dt λ ρ δ ρ - ≤ + - ∫ ∫ , (22) 
(22) guarantees that S L ∞ ∈ . Because all the variables in the right-hand side of ( 14) are bounded, i.e., S L ∞ ∈ . Since the right side of ( 22) are also bounded,

2

S L ∈ [START_REF] Guo | CMAC NN-based adaptive control of non-affine nonlinear systems[END_REF][START_REF] Zhang | Direct adaptive control of non-affine nonlinear systems using multilayer neural network[END_REF]. Using Barbalat Lemma, we have 0 S → when t → ∞ [START_REF] Zhang | Direct adaptive control of non-affine nonlinear systems using multilayer neural network[END_REF]. Therefore, the tracking error converges to the origin, i.e., lim 0

x e →∞ = [3].
To ensure the convergence of the adaptive algorithm, we introduce the projection algorithm defined by [START_REF] Essounbouli | A supervisory robust adaptive fuzzy controller[END_REF]. 

⎧ ≤ ⎪ -Ψ = ⎪ ⎪ ⎪ Ψ ≥ = ⎨ ⎪ ⎡ ⎤ = ⎪ ⎢ ⎥ - Ψ + Ψ ⎪ Ψ < ⎢ ⎥ ⎪ ⎣ ⎦ ⎩ (23)

INDIRECT ADAPTIVE FUZZY CONTROLLER

In the case where Assumptions A1 and A2 are restrictive, and we cannot satisfy them, we can use an indirect adaptive fuzzy controller. The main idea is to construct an affine model of the plant using a Takagi-Sugeno system. Then we use it to synthesise a robust controller allowing it to ensure the tracking performances and the robustness of the closed loop system.

The plant is constructed from a Takagi-Sugeno system whose inputs are the state variables 1

x , 1,..., i n = , and u . For each variable 1 x , 1,..., i n = , and u , we define i p and M fuzzy sets. Hence, the j th rule can be written in the form:

( ) 

1

Rule j IF x is A And x is A And u is

B THEN x θ ⎡ ⎤ ⎣ ⎦ ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ (24) 
where { } Using the singleton fuzzifier, the centre average defuzzification and the product inference engine, the output of the Takagi-Sugeno system can be given by [START_REF] Wang | Adaptive Fuzzy Systems and Control[END_REF]:

( ) ( ) ( ) ( ) ( ) 1 1,..., , 1 1 1 1 1 1 1 ... ... p pn n M j jnm ji i m B A i j jn i p pn n M ji i m B A i j jn i x u n x u x θ μ μ μ μ = = ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ∑ ∑ ∑ ∏ = ∑ ∑ ∑ ∏ , (25) 
or on the following vectorial form:

( )

, T n x x u = Θ Ψ , (26) where ( ) 
, x u Ψ is a 1 ... p pn M × × × dimensional
vector with its ( ) 1,..., , th j jn m element given by:

( ) ( ) ( ) ( ) ( ) 1 1 1 1 1
1,..., , ... 

n ji i m B A i i p pn n M ji i m B A i j jn i x u j jnm x u μ μ μ μ = = ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ∏ Ψ = ∑ ∑ ∑ ∏ , (27) 
- ⎧ = ⎪ - ⎪ ⎪ - ⎪ = = + ⎨ - ⎪ ⎪ ⎪ ⎪ ⎩ , ( 28 
)
where m a is a constant satisfying

( ) 1 m m B a μ = .
For a given value of

{ } 1, 2,..., 1 M α =
-, the control input u exists in the subspace u U α . So, substituting ( 28) in [START_REF] Yoon | Adaptive fuzzy control of nonlinear systems using Takagi-Sugeno fuzzy models[END_REF] gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 
α α α α α α α α θ θ θ θ + + + ⎡ ⎤ Θ = Ψ - ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ Ψ - ⎢ ⎥ ⎣ ⎦ = Φ + Φ ∑ ∑ ∑ ∑ (29) 
where ( ) ( ) ( )

1 1 1 1 1 1 ... 1 n ji i A i i p pn n M ji i m B A i j jn i x s x u a a μ α α μ μ = = ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ + ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ∏ Ψ = - ∑ ∑ ∑ ∏ .
Therefore, the fuzzy system can be decomposed into M-1 subsystems, which allows to obtain an affine-in-control model of the plant [START_REF] Yoon | Adaptive fuzzy control of nonlinear systems using Takagi-Sugeno fuzzy models[END_REF][START_REF] Boukezzoula | Fuzzy adaptive linearizing control for nonaffine systems[END_REF].

After synthesising the fuzzy model, our next task is to develop a robust controller to ensure the global stability and the robustness of the closed loop system.

the proposed control law is given by:

( ) ( ) ( ) ( ) 1 1 2 1 1 n n i r i s i u x x y ke u α α - - = ⎡ ⎤ ⎡ ⎤ = Φ -Φ + + + ⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ ∑ , (30) 
where s u denotes an additional term guaranteeing the robustness of the closed loop system by attenuating the effects of both the external disturbances and the approximation errors to a prescribed level ρ . To attain this objective, we choose s u as given in (7):

2 s S u ρ = - .
Using [START_REF] Khalil | Nonlinear Systems[END_REF], the time derivative of the sliding surface is given by:

( ) ( ) , , , s S f x u f x u u d = - Θ + + . (31) 
If we note by ( )

( ) * * * ˆ, , , T f x u x u Θ = Θ Ψ the optimal value of ( ) ( ) ˆ, , , T f x u x u Θ = Θ Ψ
and by ( )

, w f x u = ( ) * * ˆ, , f x u -
Θ the minimal approximation error, [START_REF] Gho | Model reference control of nonlinear systems via implicit function emulation[END_REF] can be rewritten as:

( ) 2 , T S S w x u d ρ = +Θ Ψ + - , (32) 
To determine the adaptation law of the adjustable parameter vector Θ , we consider the following Lyapunov function:

2 1 1 2 2 T V S σ = + Θ Θ , ( 33 
)
where σ is a positive constant given by the designer.

Using [START_REF] Ge | Adaptive control of non-affine nonlinear systems using neural networks[END_REF] and the fact that Θ = -Θ , the time derivative of (33) can be written as:

( ) 2 1 , T T S V S w x u d σ ρ ⎡ ⎤ = + Θ Ψ + - -Θ Θ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , (34) [ ] ( ) 2 2 1 , 
T S V S w d S x u σ σ ρ ⎡ ⎤ = + - -Θ Θ-Ψ ⎣ ⎦ , (35) [ ] ( ) 2 2 2 2 1 , 2 2 T 
S S V S w d S x u σ σ ρ ρ ⎡ ⎤ = + - - -Θ Θ-Ψ ⎣ ⎦ , (36) [ ] [ ] [ ] ( ) 
2 2 2 2 2 2 2 2 1 2 2 1 1 , , 2 2 T 
S V w d Sw d S w d S x u ρ ρ ρ σ σ ρ ⎡ ⎤ = - + - + - ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ + + - -Θ Θ-Ψ ⎣ ⎦ (37) [ ] [ ] ( ) 2 2 2 2 2 1 2 2 1 , , 2 T 
S V w d w d S S x u ρ ρ ρ σ σ ρ ⎡ ⎤ = - + - + + ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ - -Θ Θ- Ψ ⎣ ⎦ (38) 
[ ] ( )

2 2 2 1 1 , . 2 2 T S V w d S x u σ σ ρ ⎡ ⎤ ≤ + - -Θ Θ- Ψ ⎣ ⎦ (39) 
If we choose the following adaptation law:

( )

, S x u σ Θ = Ψ (40) 
and using the same mathematical tool development presented in the previous section, we can obtain:

( ) [ ] 2 2 2 2 0 0 0 2 2 T T S dt V w d dt ρ ρ ≤ + + ∫ ∫ . ( 41 
)
As proven in the previous section, we have 2

S L ∈

and S L ∞ ∈ . Hence, we have 0 S → when t → ∞ . According to the Hurwitzian structure of the sliding surface, the system converges to the origin of the phase plan [START_REF] Slotine | Applied Nonlinear Control[END_REF].

Remark 1: To overcome the singularity problem when ( )

2 0 x α Φ =
without complicating the controller structure, we propose to substitute the term ( )

1 2 x α - ⎡ ⎤ Φ ⎣ ⎦ by ( ) ( ) 2 2 2 x x α α ε ⎡ ⎤ Φ ⎣ ⎦ ⎡ ⎤ + Φ ⎣ ⎦
[33] which yields the new control law:

( ) ( ) ( ) ( ) ( ) 1 2 1 2 1 2 n n i r i s i x u x y k e u x α α α ε - = ⎡ ⎤ Φ ⎡ ⎤ ⎣ ⎦ = -Φ + + + ⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎣ ⎦ + Φ ⎣ ⎦ ∑ ,( 42 
)
where ε is a small positive constant.

Remark 2:

To ensure the convergence of the adaptive algorithm, we modify the adaptation law by using the projection technique as given by (43).

(

T if f S x u or f and S x u if f S x u S x and S x u σ σ ⎧ Θ ≤ ⎪ Ψ Θ = ⎪ ⎪ ⎪ Ψ ≤ Θ = ⎨ ⎪ ⎡ ⎤ Θ = ΘΘ ⎪ ⎢ ⎥ Ψ - Ψ ⎪ Ψ > ⎢ ⎥ Θ ⎪ ⎣ ⎦ ⎩ (43) ) ( ) ( ) ( ) ( ) max max max 2 : [ ] , [ , 0] : [ , , 0] 

AN ILLUSTRATION EXAMPLE

To illustrate the effectiveness of the proposed adaptive controllers, we consider the following system: ( ) ( )

1 2 2 3 2 2 1 2 1 0.1 0.1 1 sin 0.1 . x x x x u x u u y x = ⎧ ⎪ ⎪ = + + + + ⎨ ⎪ = ⎪ ⎩ (44)
In this simulation example, the control objective is to determine u so that the output y follows the desired reference trajectory sin( )

r y t = .
To show the robustness of the proposed approaches, we consider that the system is subject to external disturbances in the form ( )

0.2 sin( ) sin(2 ) d t t = + .
To synthesise the direct adaptive fuzzy controller, we use a fuzzy system with the state variables x₁ and x₂ as inputs and fuzzy u as output. x (solid line) and its reference trajectory (dashed line). x (solid line) and its reference trajectory (dashed line). Fig. 4, we remark that the control signal does not contain any abrupt variation despite the knowledge unavailability of the upper bound of the external disturbances.

To overcome the restrictive assumptions A1 and A2 used to design the control law [START_REF] Takagi | Identification of systems and its applications to modeling and control[END_REF], we propose to use the indirect adaptive fuzzy controller given by [START_REF] Gho | Model reference control of nonlinear systems via implicit function emulation[END_REF]. For this, we must at first define a fuzzy system, which inputs the state variables ( ) For each input variable, we have defined respectively 5, 5, and 6 linguistic sets. Figs. 5 and6 give the evolution of the state variables 1

x and 2

x together with the corresponding reference signals.

Despite using an affine-in-control fuzzy model to synthesise the control law, we can note the good tracking performances and the convergence of the system to the desired trajectories. This can be justified by the good approximation level assured by the proposed approach as illustrated in Fig. 7. The applied control signal to attain our objective is given by Fig. 8. In summary, we can conclude that the proposed (direct and indirect schemes) allow the desired tracking performances to be attained and also ensure the robustness of the closed loop system, without using classical methods of linearization. Furthermore, the design of these controllers does not require any knowledge regarding the disturbances structure or their bounds.

CONCLUSION

In this paper direct and indirect robust adaptive fuzzy controllers for a class of nonaffine nonlinear systems are presented. In the direct case, based on the implicit theorem, a fuzzy adaptive system is used to attain the desired performances. In the indirect case, a Takagi-Sugeno system is used to synthesise an affinein-control model, and hence to design the controller. In the two cases, the robustness of the closed loop system is guaranteed by a modified sliding mode x (solid line) and its reference trajectory (dashed line). x (solid line) and its reference trajectory (dashed line). control where the upper bounds of both the external disturbances and the approximation errors are not required. To improve the approximation accuracy, the adaptation laws of the adjustable parameters are deduced from the stability analysis in the sense of Lyapunov. The simulation results demonstrate both good tracking performances and high efficiency of theses approaches. Current works are focussed on the use of a state observer to overcome the assumption on the availability of the state variables to the measurement.
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 1 Fig. 1. The membership functions of u .

Fig. 2 .

 2 Figs. 2, 3 and 4 present the simulation results for the initial sate

Fig. 3 .

 3 Fig. 3. Evolution of the state variable 2x (solid line) and its reference trajectory (dashed line).

Fig. 4 .

 4 Fig. 4. Applied control signal.
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 2 . The universe of discourse of the inputs 1 x , , and u are respectively [ ]

Fig. 5 .

 5 Fig. 5. Evolution of the state variable 1x (solid line) and its reference trajectory (dashed line).

Fig. 6 .

 6 Fig.[START_REF] Spooner | Stable adaptive control of a class of nonlinear systems and neural network[END_REF]. Evolution of the state variable 2x (solid line) and its reference trajectory (dashed line).

Fig. 7 .

 7 Fig. 7. Evolution of the dynamic function ( ) f x,u (dashed line) and its approximation (continuous line).

Fig. 8 .

 8 Fig. 8. Applied control signal.
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