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Abstract: The aim of this multicentre study was to determine the in vitro susceptibility to anti-
anaerobic antibiotics of Gram-positive anaerobic cocci (GPAC) isolates responsible for invasive
infections in humans. A total of 133 GPAC isolates were collected in nine French hospitals from 2016
to 2020. All strains were identified to the species level (MALDI-TOF mass spectrometry, 16S rRNA
sequencing). Minimum inhibitory concentrations (MICs) of amoxicillin, piperacillin, cefotaxime,
imipenem, clindamycin, vancomycin, linezolid, moxifloxacin, rifampicin, and metronidazole were
determined by the reference agar dilution method. Main erm-like genes were detected by PCR. The
133 GPAC isolates were identified as follows: 10 Anaerococcus spp., 49 Finegoldia magna, 33 Parvimonas
micra, 30 Peptoniphilus spp., and 11 Peptostreptococcus anaerobius. All isolates were susceptible to
imipenem, vancomycin (except 3 P. micra), linezolid and metronidazole. All isolates were susceptible
to amoxicillin and piperacillin, except for P. anaerobius (54% and 45% susceptibility only, respectively).
MICs of cefotaxime widely varied while activity of rifampicin, and moxifloxacin was also variable.
Concerning clindamycin, 31 were categorized as resistant (22 erm(A) subclass erm(TR), 7 erm(B),
1 both genes and 1 negative for tested erm genes) with MICs from 8 to >32 mg/L. Although GPACs are
usually susceptible to drugs commonly used for the treatment of anaerobic infections, antimicrobial
susceptibility should be evaluated in vitro.

Keywords: GPAC; antimicrobial resistance; Finegoldia magna; Parvimonas micra; Peptostreptococcus
anaerobius; Peptoniphilus; Anaerococcus

1. Introduction

Gram-positive anaerobic cocci (GPAC), which are a major part of the normal human
microbiota of the oropharynx, respiratory tract, skin, and urogenital and gastrointestinal
tract (GIT), are frequently recovered from human specimens, accounting for 25–30% of
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all anaerobic clinical isolates [1,2]. They are also opportunistic pathogens responsible
for many human infections (often polymicrobial) especially in the elderly population
and immunocompromised patients, including pleuropulmonary, intraabdominal, pelvic,
skin, and soft-tissue and bone and joint infections (BJIs) as well as brain abscess and
bacteremia [1–4].

GPAC has long been an heterogenous group of organisms and then has undergone
considerable taxonomic changes with the creation of new genera formed from species previ-
ously belonging to the genus Peptostreptococcus, such as Finegoldia, Parvimonas, Anaerococcus,
and Peptoniphilus while the only remaining representative of this genus is P. anaerobius [5].
Other changes within the GPAC group include the addition of new species in these new gen-
era. The most commonly species found in clinical material are Finegoldia magna, Parvimonas
micra, Peptoniphilus harei, and Peptostreptococcus anaerobius [2,6,7].

Only few studies have focused on in vitro antimicrobial susceptibility of GPAC isolates,
many of them using unreliable conventional identification methods based on biochemical
tests. In addition, the published data are often based on GPAC in general (formerly Pep-
tostreptococcus spp.) even though there are significant differences in antibiotic susceptibility
between GPAC species [2]. Indeed, it is now accepted to identify to the species level GPAC
isolates in clinical specimens for susceptibility testing to adapt the correct antibacterial
therapy, which is now possible with the development and application of molecular meth-
ods and MALDI-TOF mass spectrometry [2,6,8,9]. Even if it is widely accepted that these
microorganisms remain consistently susceptible to antimicrobial agents generally used for
the treatment of such anaerobic infections, antimicrobial resistance among anaerobes has
increased in recent years worldwide and clinical failures have been reported in patients
receiving inappropriate treatments [10,11].

The aim of the study was to investigate the in vitro antimicrobial susceptibility of
a large collection of GPAC clinical isolates responsible for human invasive infections to
10 antimicrobial agents as well as to decipher the molecular basis of clindamycin acquired
resistance.

2. Materials and Methods
2.1. Bacterial Isolates and Identification

A total of 133 non-redundant clinical isolates of GPAC collected from patients suffering
from invasive infections in nine French hospitals between 2016 and 2020, including 109
(82%) from 2019, were studied. These isolates were recovered from patients with bacteremia
(n = 37; 28%), BJIs (n = 51; 38%), and deep-seated soft-tissue infections (n = 45; 34%).
For microbiological investigation, strains were grown on 5% horse blood agar plates
(bioMérieux, Marcy-l’Etoile, France) incubated for at least 48 h in an anaerobic chamber at
35 ◦C. Phenotypic identification at the species level was performed using the MALDI-TOF
mass spectrometry technology (Microflex; Bruker Daltonics, Wissembourg, France) in
accordance with the manufacturer’s instructions, and if necessary, by sequencing of the
16S rRNA gene, as previously described [12].

2.2. Antimicrobial Susceptibility Testing (AST)

MICs were determined using the reference agar dilution method according to 2018
CLSI guidelines using Brucella agar supplemented with 5% laked sheep blood, 5 mg/L
hemin, and 1 mg/L vitamin K [13]. Plates were inoculated using a Steers replicator device
(delivering a final inoculum of ca. 105 CFU per spot) and incubated anaerobically for 48 h
at 35 ◦C. The 10 following antibiotics were tested: amoxicillin, piperacillin, cefotaxime,
imipenem, clindamycin, vancomycin, linezolid, moxifloxacin, rifampicin, and metronida-
zole. MICs were interpreted according to 2020 CA-SFM/EUCAST clinical breakpoints
recommended for anaerobes except for cefotaxime for which the PK-PD (non-species re-
lated) breakpoint was used (https://www.sfm-microbiologie.org/, accessed on 25 March
2021). Bacteroides thetaiotaomicron ATCC 29741 and Clostridioides difficile ATCC 700057 were
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used as quality control strains. The production of β-lactamase was assessed using the
nitrocefin disk (Cefinase, BD BBL) as recommended by the manufacturer.

2.3. Detection of Resistance Genes

The bacterial genomic DNA of macrolide-resistant isolates was extracted using the
QIAamp DNA Mini Kit (Qiagen, Courtaboeuf, France). Detection of erm(A) [including
subclass erm(TR)], erm(B), erm(C), erm(F), erm(T) and erm(X) genes was performed by PCR as
previously described [14]. All PCR-amplified products were sequenced in both directions
by the Sanger method using the same primers.

3. Results

Of the 133 GPAC clinical isolates, the most frequently isolated species was F. magna
(n = 49; 36.8%) followed by P. micra (n = 33; 24.8%), Peptoniphilus spp. (n = 30; 22.6%), P.
anaerobius (n = 11; 8.3%), and Anaerococcus spp. (n = 10; 7.5%) (Figure 1). Six different
species were identified among Peptoniphilus spp. (19 P. harei (63.3%), 4 P. indolicus, 3 P.
grossensis, 2 P. lacrimalis, 1 P. gorbachii, 1 P. assacharolyticus) while three were in Anaerococcus
spp. (8 A. vaginalis (80%), 1 A. octavius, 1 A. nagyae). Note that P. micra isolates were
mostly (82%) recovered from bacteremia while a majority (≥50%) of isolates of F. magna
and Peptoniphilus spp. were collected from BJIs (Figure 1).

Figure 1. Distribution and origin of the different Gram-positive anaerobic cocci (GPAC) clinical
isolates.

Regardless of the bacterial species, all 133 isolates tested were categorized as suscep-
tible to imipenem, linezolid, and metronidazole (Table 1). Surprisingly, three strains
of P. micra (3/33; 9%) were categorized as resistant to vancomycin (MIC = 4 mg/L)
whereas all other 130 isolates were susceptible (Table 1). Except 5/11 (45%) resistant
strains of P. anaerobius (MIC = 8–16 mg/L), all other 128 strains were susceptible to amox-
icillin with MICs ranging from ≤0.03 to 2 mg/L (Table 1). None isolate exhibited a
β-lactamase activity. Only seven isolates were not susceptible to piperacillin (1 F. magna,
MIC = 16 mg/L; 6 P. anaerobius, MIC = 16–32 mg/L) while 57 isolates (2/10 Anaerococ-
cus spp., 44/49 (90%) F. magna, 1/33 P. micra, 4/30 Peptoniphilus spp., 6/11 (55%) P.
anaerobius) exhibited MICs higher than 2 mg/L (Table 1). It is noteworthy that all the
6 cefotaxime-resistant (MIC = 8 mg/L) P. anaerobius isolates were also highly-resistant
to amoxicillin (MIC = 8–16 mg/L) and piperacillin (MIC = 16–32 mg/L) whereas other
cefotaxime-resistant isolates were susceptible to both penicillins (except 1 F. magna). Most
of strains (80–100%) were susceptible to rifampicin with only 10 non-susceptible strains
(2 Anaerococcus spp. 6 F. magna, 1 P. micra, 1 Peptoniphilus spp.) (Table 1). Moxifloxacin
seemed to have a limited activity against F. magna (21/49 (43%) with MIC ≥ 4 mg/L) while
other species were mostly (80–91%) categorized as susceptible (Table 1).
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Table 1. Antimicrobial susceptibility profiles of the 133 GPAC human invasive isolates.

Antibiotic
(Clinical BP) a MIC (mg/L)

Anaerococcus
spp. b

(n = 10)

F. magna
(n = 49)

P. micra
(n = 33)

Peptoniphilus
spp. c

(n = 30)

P. anaerobius
(n = 11)

Amoxicillin
(≤4/>8)

MIC50 ≤0.03 0.25 0.06 0.12 2
MIC90 0.25 0.5 0.5 0.5 16
Range ≤0.03–0.25 ≤0.03–2 ≤0.03–2 ≤0.03–0.5 0.25–16
Susceptibility (%) 100 100 100 100 55

Piperacillin
(≤8/>16)

MIC50 0.12 0.25 0.25 0.06 16
MIC90 2 1 2 2 32
Range ≤0.03–4 ≤0.03–16 ≤0.03–4 ≤0.03–4 0.25–32
Susceptibility (%) 100 98 100 100 45

Cefotaxime
(≤1/>2)

MIC50 0.5 8 0.12 0.12 8
MIC90 16 16 1 2 8
Range ≤0.03–>16 0.12–>16 ≤0.03–8 ≤0.03–4 0.25–8
Susceptibility (%) 80 10 97 87 45

Imipenem
(≤2/>4)

MIC50 ≤0.03 0.06 ≤0.03 ≤0.03 1
MIC90 0.12 0.25 0.12 0.06 2
Range ≤0.03–0.12 ≤0.03–1 ≤0.03–0.25 ≤0.03–0.12 ≤0.03–2
Susceptibility (%) 100 100 100 100 100

Clindamycin
(≤4/>4)

MIC50 0.06 1 0.12 1 0.5
MIC90 16 32 1 >32 1
Range ≤0.03–>32 ≤0.03–>32 ≤0.03–>32 ≤0.03–>32 ≤0.03–>32
Susceptibility (%) 80 76 94 53 91

Vancomycin
(≤2/>2)

MIC50 2 2 2 0.5 2
MIC90 2 2 2 2 2
Range 0.5–2 1–2 0.5–4 0.5–2 1–2
Susceptibility (%) 100 100 91 100 100

Linezolid
(≤2/>4)

MIC50 1 2 1 1 0.5
MIC90 1 2 1 2 0.5
Range 0.5–2 0.25–4 0.5–2 0.25–2 0.5–2
Susceptibility (%) 100 100 100 100 100

Moxifloxacin
(≤1/>2)

MIC50 1 0.5 0.25 0.25 0.12
MIC90 2 8 0.5 4 8
Range 0.25–8 ≤0.03–>16 0.03–8 0.06–>16 0.06–8
Susceptibility (%) 80 57 91 87 82

Rifampicin
(≤4/>16)

MIC50 ≤0.03 0.5 ≤0.03 ≤0.03 ≤0.03
MIC90 >32 >32 ≤0.03 1 ≤0.03
Range ≤0.03–32 ≤0.03–>32 ≤0.03–8 ≤0.03–>32 ≤0.03–0.5
Susceptibility (%) 80 88 97 97 100

Metronidazole
(≤4/>4)

MIC50 1 0.5 0.25 1 0.5
MIC90 2 1 0.5 2 1
Range 0.25–2 0.25–4 ≤0.12–1 0.12–4 0.25–1
Susceptibility (%) 100 100 100 100 100

a 2020 CA-SFM/EUCAST clinical breakpoints (in mg/L) recommended for anaerobes except for cefotaxime for which PK-PD (non-species
related) breakpoint was used. b 8 A. vaginalis, 1 A. octavius, 1 A. nagyae. c 19 P. harei, 4 P. indolicus, 3 P. grossensis, 2 P. lacrimalis, 1 P. gorbachii,
1 P. assacharolyticus. MIC: Minimum inhibitory concentration.

Concerning clindamycin, 31 were categorized as resistant (MIC = 8–>32 mg/L) in-
cluding 2 Anaerococcus spp. (2 A. vaginalis), 12 F. magna, 2 P. micra, 14 Peptoniphilus spp.
(6 P. harei, 3 P. indolicus, 2 P. lacrimalis, 2 P. grossensis and 1 P. gorbachii), and 1 P. anaerobius
(Tables 1 and 2). Of them, 22 and 7 possessed acquired erm(A) subclass erm(TR) and erm(B)
genes, respectively, while one strain was positive for both erm(A) subclass erm(TR) and
erm(B) genes and no erm-like gene was found for one strain (Table 2).
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Table 2. Acquired genes of macrolides-lincosamides-streptogramins (MLS) resistance among the
31 clindamycin resistant GPAC clinical isolates.

Genes
Anaerococcus

spp.
(n = 2 a/10)

F. magna
(n = 12/49)

P. micra
(n = 2/33)

Peptoniphilus
spp. b

(n = 14/30)

P. anaerobius
(n = 1/11)

erm(A) − − − − −
erm(A) subclass
erm(TR) 2 8 − 12 −

erm(B) − 3 2 1 1
erm(B) + erm(TR) − − − 1 −
erm(C) − − − − −
erm(T) − − − − −
erm(X) − − − − −

a 2/8 A. vaginalis. b 6/19 P. harei, 3/4 P. indolicus, 2/3 P. grossensis, 2/2 P. lacrimalis, 1/1 P. gorbachii.

4. Discussion

In a study using 16S rRNA-targeted probes and/or sequencing of the 16S rRNA
gene for accurate identification, Wildeboer-Veloo et al. showed that the most frequently
encountered GPAC in human specimens among 188 clinical isolates were F. magna (29%),
P. micra (22%) and P. harei (18%) followed by P. ivorii (6%), A. vaginalis (5%), A. lactolyticus
(5%), and P. anaerobius/stomatis (5%) [6]. A European surveillance study conducted on
299 GPAC reported that the majority of clinical isolates were identified as F. magna (37%), P.
micra (18%), P. harei (15%), A. vaginalis (7%), and P. anaerobius (7%) [15]. Here, we report
a similar relative distribution with a proportion of 37% for F. magna followed by P. micra
(25%), P. harei (14%), P. anaerobius (8%), and A. vaginalis (6%) (Figure 1), which confirms the
clinical importance of these Top5 species.

As observed here, F. magna is the most common species of GPAC recovered from
human clinical specimens, accounting for 5–12% of all anaerobic isolates and 20–38% of
all GPAC isolates [1]. It is also likely the most pathogenic organism and the species most
frequently isolated in pure culture [11]. Typical infections due to this species are soft-tissue
abscesses, wound infections (incl. diabetic ulcers, pressure ulcers), and BJIs [5].

P. micra is part of the normal commensal microbiota of the GIT and the gingival crevice
and it is mainly recognized as an oral pathogen especially isolated from polymicrobial
infections such as periodontitis while it has been implicated in infections in other parts of
the body [2,5]. In our study, it was mainly (82%) isolated from blood that is concordant
with its frequent implication in GPAC bacteremia in a recent Swedish study, representing
42% (96/226) of GPAC episodes [7]. The authors also showed that GPAC bacteremia is
much more common than previously reported and is a condition with significant 30-day
mortality (11%) mainly in elderly patients with comorbidities [7].

As described here, Peptoniphilus spp. (mainly P. harei) are found in chronic wound
samples (e.g., ulcer samples, diabetic wounds) and in osteoarticular samples [2]. With A.
lactolyticus, A. vaginalis has been identified among the predominant species in grouped
samples of diabetic foot ulcers and pressure ulcers [2]. P. anaerobius is recognized as part of
the GIT and is one of the most common GPAC associated with infections of the abdominal
cavity and female genitourinary tract [1,2].

GPAC are usually susceptible to antibiotics used to treat anaerobic infections but
increasing resistance trends have been reported and major differences between species of
GPAC have been observed [1,15–27]. In addition, most AST reports until recently presented
data for GPAC as a group rather than for individual species [1,15,28–32].

Most evidence suggests that F. magna, P. micra and P. harei are almost always suscep-
tible to penicillins [16,17,19–29,31,33]. By contrast, strains of P. anaerobius usually present
higher MIC values and some of them are highly resistant with MICs of amoxicillin up to
16–64 mg/L [16,17,19,26,27,33]. In our study, MICs of amoxicillin and piperacillin were
also up to 64- and 256-fold higher for P. anaerobius than those for other species, respec-
tively (Table 1). Penicillin resistance seemed to be due not to β-lactamase production but
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rather to alterations in penicillin-binding proteins (PBPs) as previously reported [34]. The
activity of cefotaxime appeared to be moderate with MIC50 from 1 to 16 mg/L, especially
against F. magna and P. anaerobius (only 10% and 45% of susceptible strains, respectively)
whereas GPAC were uniformly susceptible to imipenem (MIC50 ≤ 0.12 mg/L) as previously
reported [15–17,19,20,25,26,28,29,31,35].

Resistance to macrolides and lincosamides was described in Peptostreptococcus spp.
three decades ago [36]. As observed here, clindamycin resistance rates among GPAC vary
widely and this resistance is rising, especially in F. magna (3–51%) and Peptoniphilus spp.
(1–36%) for which MIC90 range from 2 to >256 mg/L [11,16,17,19,20,22,23,25,26,37]. In a
recent global program (T.E.S.T. 2010–2016) evaluating the in vitro activity of tigecycline
and comparators against a large European collection of anaerobes, susceptibility to clin-
damycin was 77%, 96%, 87%, 80%, and 95% against F. magna (n = 654), P. micra (n = 456), P.
asaccharolyticus (n = 78), P. harei (n = 209), and P. anaerobius (n = 256), respectively [38].

Although levels of clindamycin resistance can be as high as 50%, little is known about
the genetic basis of resistance to macrolides-lincosamides-streptogramins (MLS) in GPAC.
Therefore, only two studies have investigated the molecular basis of MLS basis in these
organisms. The first study reported an incidence of 80% macrolide resistance among
21 clinical isolates of Peptostreptococcus spp. due to erm(A) subclass erm(TR), suggesting that
these anaerobic members of the normal oropharyngeal microbiota may be an important
reservoir of this gene for transfer to pathogens such as Streptococcus pyogenes [39]. In the
second study, we detected 25 F. magna isolates (out of 69; i.e., 36%) that exhibited high-level
MICs of erythromycin (>256 mg/L) harboring either erm(A) subclass erm(TR) or erm(B) [40].
Altogether, our findings confirm that erm(A) subclass erm(TR) is the predominant MLS
resistance gene among GPAC and that erm(B) could also be detected whereas other erm-like
genes have never been identified up to now. It is noteworthy that we did not perform the
detection of erm genes among clindamycin-susceptible isolates, which constitutes a limit of
our study since erm genes can be harbored by strains categorized as susceptible.

Almost all GPAC isolates are susceptible to metronidazole (as in our study) even
if some resistant strains have been described [15–17,19,20,23,25,26,28–32,38,41]. Indeed,
reduced susceptibility to metronidazole has so far only been rarely detected in surveillance
studies among some P. micra, F. magna, and Peptostreptococcus spp. isolates [42]. Several
molecular mechanisms have been associated with metronidazole resistance, mainly in
Bacteroides fragilis [42]. It is mainly related to drug inactivation by nitroimidazole reductase
encoded by nim genes [42]. To date, 11 nim genes (nimA to nimK) sharing between 54
and 90% amino acid identities have been described [40]. Of them, only nimB genes have
been identified in the chromosome of some GPAC isolates (P. anaerobius, A. prevotii, P.
micra) [42]. Note that the nimB gene was detected in 34% (21/61) of GPAC isolates with
MIC of metronidazole ≥0.5 mg/L, including only two highly resistant F. magna isolates
(MIC > 128 mg/L) while the other 19 strains remained susceptible [43]. Since metronidazole
is often the drug used for empirical treatment of anaerobic infections and some resistant
GPAC clinical isolates have been described, microbiologists should verify the activity of
this antibiotic if necessary.

In the literature, no acquired high-level resistance to vancomycin (MIC50 = 0.06–1 mg/L;
MIC90 = 0.25–1 mg/L) or to linezolid (MIC50 = 0.5–4 mg/L; MIC90 = 0.5–4 mg/L) has
been reported so far [15,18,21,23,24,26,27,30,31,35,41]. In our study, three strains of P. micra
exhibited an MIC of 4 mg/L and were categorized as resistant but they are probably part
of the wild-type population, as previously described [31]. All strains were susceptible to
linezolid regardless the species (MIC50 and MIC90 = 0.5–2 mg/L).

In our study, susceptibility to moxifloxacin greatly varied depending on the species
(9–43%), which is concordant with observations reported in the literature
(0–48%) [20,23,25,26,30–32,37]. In agreement with these studies, we also observed that
F. magna was more resistant than other species. Among newer fluoroquinolones, it was
demonstrated that delafloxacin was more active than levofloxacin against GPAC (n = 20),
with MIC50 and MIC90 values of 0.003 and 0.38 mg/L versus 2 and >32 mg/L, respec-
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tively [44]. In this later study, none of the GPAC isolates tested presented a MIC of
delafloxacin equal or higher than 4 mg/L [44].

5. Conclusions

In our study, a remarkable difference in antibiotic susceptibility among the five most
clinically important GPAC species (i.e., F. magna, P. micra, P. harei, A. vaginalis, and P.
anaerobius) was found. These differences underline the importance to identify to the
species level clinical isolates responsible for human infections. Compared to the processing
time for aerobic bacteria, the cultivation and identification steps for anaerobic isolates
usually take much longer. Clinical laboratories should provide any clinically relevant
information in a precise and timely manner to the clinicians since the lack of detection of an
infection-associated anaerobic isolate can often lead to inappropriate therapeutic choices
and clinical failure [45]. This is particularly true in this period of emergence of antimicrobial
resistance among clinically relevant anaerobes. However, in vitro susceptibility testing
is not routinely performed because it is time consuming and has some technical issues.
For individual patient management, it is important to remember that AST for anaerobes
should be performed when: (1) the selection of an active agent is critical for disease
management, (2) long-term therapy is being considered, (3) anaerobes are recovered from
sterile body sites, (4) the infection persists despite adequate therapy with an appropriate
therapeutic regimen, and/or (5) in cases of single recovered anaerobic pathogen from
culture [10]. Besides the aforementioned points, susceptibility testing should also be
performed whenever it is possible, especially for epidemiological surveillance purposes and
to guide the choice of empirical antibiotic therapy [45]. This surveillance (locally, nationally,
and internationally) needs to be continuously conducted, since recommendations on first-
line agents of therapy are usually based on these data.
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