

Haemolytic acylated triterpenoid saponins from Harpullia austro-caledonica

Laurence Voutquenne, Pauline Guinot, Clément Froissard, Odile Thoison,

Marc Litaudon, Catherine Lavaud

▶ To cite this version:

Laurence Voutquenne, Pauline Guinot, Clément Froissard, Odile Thoison, Marc Litaudon, et al.. Haemolytic acylated triterpenoid saponins from Harpullia austro-caledonica. Phytochemistry, 2005, 66 (7), pp.825-835. 10.1016/j.phytochem.2005.02.009 . hal-03351444

HAL Id: hal-03351444 https://hal.univ-reims.fr/hal-03351444v1

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Haemolytic acylated triterpenoid saponins from Harpullia

austro-caledonica

Laurence Voutquenne^{*a}, Pauline Guinot^{a,b}, Clément Froissard^a, Odile Thoison^c, Marc Litaudon^c, Catherine Lavaud^a

^a Laboratoire de Pharmacognosie, IFR 53 Biomolécules, FRE CNRS 2715, Bât. 18, BP 1039, 51097 Reims Cedex, France.

^b Laboratoire de Pharmacognosie, 3 rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France.

^c ICSN, UPR 2031, Avenue de la Terrasse, 91198 Gif/Yvette Cedex, France.

* <u>Corresponding author</u>
Dr. Laurence Voutquenne
Laboratoire de Pharmacognosie
FRE CNRS 2715, Bât. 18,
BP 1039
51097 Reims Cedex, France.
Tel : 33 (0)3 26 91 82 08
Fax : 33 (0)3 26 91 35 96
E-mail : <u>laurence.voutquenne@univ-reims.fr</u>

Abstract

Eight new acylated triterpenoid saponins were isolated from the stem bark of *Harpullia austro*caledonica along with the known harpuloside (**9**). Their structures were established using one- and two- dimensional NMR and mass spectrometry as $3-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 2)-\beta$ -Dglucuronopyranosyl- 21β , 22α -di-O-angeloylbarringtogenol C (**1**), $3-O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-[\beta$ -D-galactopyranosyl- $(1\rightarrow 2)]-\beta$ -D-glucuronopyranosyl- 21β , 22α -di-O-angeloyl

barringtogenol C (2), $3-O-\alpha$ -L-arabinofuranosyl- $(1\rightarrow 3)$ - $[\beta$ -D-galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucuronopyranosyl- 21β , 22α -di-O-angeloylbarringtogenolC (3), $3-O-\alpha$ -L-arabinofuranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranosyl- 21β , 22α -di-O-angeloylprotoaescigenin (4), $3-O-\alpha$ -L-arabinofuranosyl- $(1\rightarrow 3)$ - $[\alpha$ -L-arabinofuranosyl- $(1\rightarrow 2)$]- β -D-glucuronopyranosyl- 21β , 22α -di-O-angeloyl

protoaescigenin (5), $3-O-\alpha$ -L-arabinofuranosyl- $(1\rightarrow 3)-[\beta$ -D-xylopyranosyl- $(1\rightarrow 2)]-\beta$ -D-glucuronopyranosyl- 21β , 22α -di-O-angeloylprotoaescigenin (6), $3-O-\alpha$ -L-arabinofuranosyl- $(1\rightarrow 3)-[\beta$ -D-glucopyranosyl- $(1\rightarrow 2)]-\beta$ -D-glucuronopyranosyl- 21β , 22α -di-O-angeloylprotoaescigenin (7), $3-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucuronopyranosyl- 21β , 22α -di-O-angeloylprotoaescigenin (8).

The EtOH extract of the stem bark showed *in vitro* cytotoxic activity against KB cells (90% at 10 μ g/ml). At a concentration of 5 μ g/ml, the saponin mixture showed haemolytic activity and caused 100% haemolysis of a 10% suspension of sheep erythrocytes.

Keywords: *Harpullia austro-caledonica;* Sapindaceae; acylated saponins; protoaescigenin; barringtogenol C; haemolysis.

1. Introduction

In a continuation of our study on saponin constituents of plants of the Sapindaceae family and particularly on the chemotaxonomy of the genus Harpullia, we have examined the stem bark of Harpullia austro-caledonica Baillon (Sapindaceae). The genus Harpullia consists at least of 37 species distributed in Indo-Malaysia, Australia and the Pacific islands (Mabberley, 1997). Three species have been studied previously, H. pendula (Khong and Lewis, 1976), H. ramiflora (Dizes et al., 1998) and H. cupanioides (Voutquenne et al., 1998). H. austro-caledonica is a tree or a shrub originating from New Caledonia and growing in the tropical rain forest (Morat et al., 2001). In the phylogenetic and taxonomic systems of this genus, this isolated species is next to the most primitive species H. pendula and H. arborea (Leenhouts, 1985). The leaves consist of four to seven pairs of leaflets and the inflorescence is composed of yellow unisexual flowers that show an unusually wide range of variability (Leenhouts and Vente, 1982). This species was selected as a part of a screening program for potential cytotoxic compounds from plants collected in New Caledonia. In a previous chemical study, we isolated three unusual bidesmosidic saponins, along with three prosapogenins, obtained after acid hydrolysis (Voutquenne et al. 2002a). This paper reports on the isolation and structural elucidation of eight new monodesmosidic saponins (1-8) from the stem bark of this plant along with the known saponin, harpuloside 9, previously isolated from H. ramiflora (Dizes et al., 1998). The ethanolic extract from the stem bark of *H. austro-caledonica* exhibited in vitro cytotoxic activity against KB cells (90% at 10µg/ml). The haemolytic activity of the saponin mixture was tested and showed an activity 10 fold higher than the dialysed reference saponin Sigma[®]. Pure saponins 2, 3 and the mixture of saponins 6–7 were tested and are highly haemolytic.

2. Results and discussion

H. austro-caledonica was collected in the special fauna reserve of Amieu Pass and Table Unio in New Caledonia. Dried and powered stem bark was extracted with boiling 80% methanol and the methanolic extract was concentrated and precipitated in acetone. The crude saponin precipitate was dialysed, chromatographed on a silica gel column and purified by reversed phase C-18 column chromatography. Eight new compounds **1–8** were obtained, accompanied by impure harpuloside **9** (Dizes et al., 1998). Acid hydrolysis of the saponin extract gave the previously isolated mixture of prosapogenins and sugars identified by TLC and by measurement of optical rotation as D-glucose, D-galactose, L-rhamnose, L-arabinose and D-xylose (Voutquenne et al., 2002a).

Saponin 9, molecular formula C₅₇H₈₈O₂₂ (ESI-MS⁻: m/z 1123 [M-H]⁻) was identified as harpuloside, $3-O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-[\beta$ -D-xylopyranosyl- $(1\rightarrow 2)]-\beta$ -Dglucuronopyranosyl- 21β , 22α -di-O-angeloylprotoaescigenin, on the basis of its spectral data. This compound was previously isolated from *Harpullia ramiflora* (Dizes et al., 1998).

The positive ESI-LC-MS spectrum of compounds **1**, **2** and **3** gave the same ion fragment at m/z 677 [prosapogenin+Na]⁺, attributed to the loss of the glycosidic chain at position 3 and in agreement with a molecular formula of C₄₀H₆₂O₇Na. The prosapogenin was identified as 21β , 22α -di-*O*-angeloylbarringtogenol C from analysis of its ¹H and ¹³C-NMR spectra (Table 1) and from observation of connectivities in COSY, HSQC and HMBC spectra. The set of data was in full agreement with those reported in the literature (Tuntiwachwuttikul et al., 1997; Sati and Rana, 1987).

The positive ESI-LC-MS of saponin **1** gave a quasi-molecular ion peak at m/z 1015 [M+Na]⁺ and in the negative ESI-LC-MS a molecular ion was detected at m/z 991 [M-H]⁻ in agreement with a M_r of 992 amu (C₅₂H₈₀O₁₈). The positive ESI-MS experiment showed a quasi-molecular ion peak at m/z 1037 [(M-H+Na)+Na]⁺ and the MS² experiment of this ion gave positive fragments at m/z 937 [(M-H+Na)+Na-100]⁺, 853 [M+Na-162]⁺ and 677 [M+Na-338]⁺ attributed to the losses of an angeloyl group (C₅H₈O₂), a terminal hexose and a disaccharide moiety C₁₂H₁₈O₁₁, consisting of a hexosuronic acid and a hexose, respectively.

The sugar part of **1** consisted of two residues with anomeric carbons at δ 105.5 and 106.2 in the ¹³C NMR spectrum, attached to proton doublets at δ 4.5 and 4.56, respectively (HSQC). The proton system of each sugar was completely assigned on the basis of COSY and TOCSY experiments (Table 1). The sugar with its anomeric proton at δ 4.56 (J = 7.6 Hz) corresponded to a β -D-galactose with a hydroxymethyl carbon at δ 62.7 and characterised by an equatorial proton H-4 at δ 3.89 ($J_{3,4} = 5$ Hz). The second sugar with its anomeric proton at δ 4.5 (J = 7.1 Hz) was identified as a β -D-glucuronic acid on the basis of its carbon resonances (Table 1). The deshielding of C-2' (δ 83) of glucuronic acid suggested the point of linkage of the galactose. Sequencing of the disaccharidic chain was achieved by analysis of a ROESY experiment which showed ROE interactions between H-3 (δ 3.22) of barringtogenol C and H-1' (δ 4.56) of the galactose unit. Thus, saponin

1 is $3-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucuronopyranosyl- 21β , 22α -di-O-angeloyl barringtogenol C.

The negative ESI-MS of saponin 2 exhibited a molecular ion peak at m/z 1137 [M-H]⁻ in agreement with an M_r of 1138 amu (C₅₈H₉₀O₂₂). The MS² experiment of this ion gave negative fragments at m/z 991 [M-H-146]⁻ suggesting an additional 6-desoxy-hexose relative to saponin 1. The three anomeric proton doublets of 2 were detected in the ¹H NMR spectrum at δ 5.08, 4.61 and 4.57 and had correlations with their anomeric carbons at δ 103.4, 105.4 and 104.4, respectively in the HSQC experiment. The sugar with its anomeric proton as a broad doublet at $\delta 5.08$ (J = 1.8 Hz) was identified as an α -L-rhamnose, with a methyl proton doublet at $\delta 1.27$ (J = 6.2 Hz) which correlated in HSQC spectrum with a methyl carbon at $\delta 16.9$. The sugars with their anomeric protons at $\delta 4.57$ (J = 7.4 Hz) and 4.61 (J = 7.1 Hz) corresponded to a β -D-galactose and a β -D-glucuronic acid as in saponin **1** (Table 1). The downfield shifts of C-2' ($\delta 78.6$) and C-3' ($\delta 85.9$) of the glucuronyl moiety suggested the points of linkage of the trisaccharide chain (Table 1). The HMBC spectrum showed cross peaks between C-3 ($\delta_C 92.2$) of barringtogenol C and H-1' of the glucuronic acid (δ_H 4.61) and between C-2' and C-3' of this glucuronic acid and H-1'' ($\delta_H 4.57$) of the galactose unit and H-1''' ($\delta_H 5.08$) of the rhamnose unit, respectively. This sequence was confirmed by the observation of ROE interactions between the protons involved in the interglycosidic linkages. Thus, saponin **2** is $3 - O - \alpha - L$ -rhamnopyranosyl- $(1 \rightarrow 3) - [\beta - D - galactopyranosyl-<math>(1 \rightarrow 2)] - \beta - D - glucuronopyranosyl-<math>21\beta$, 22α -di-O-angeloylbarringtogenol C.

Saponin **3** exhibited a [M-H]⁻ molecular ion peak at m/z 1123 in the negative ESI-MS, in agreement with an M_r of 1124 amu (C₅₇H₈₈O₂₂). The MS² experiment gave negative fragments at m/z 1023 [M-H-C₅H₈O₂]⁻, 991 [M-H-132]⁻ and 923 [M-H-200]⁻ due to the losses of two angeloyl groups, and of a terminal pentose. These results indicated that saponin **3** contained a supplementary pentose unit relative to saponin **1**. The ¹³C NMR spectrum revealed the presence of three anomeric carbons at δ 104.5, 105.5 and 110.6, and their corresponding proton doublets were detected at δ 4.69, 4.51 and 5.29, respectively in the HSQC experiment. Analysis of 2D experiments (COSY, TOCSY and HSQC) revealed the presence of a terminal β -D-galactose and a disubstituted β -D-glucuronic acid with anomeric protons at δ 4.69 (J = 7.6 Hz) and 4.51 (J = 7.5 Hz), respectively (Table 1). The deshielded chemical shifts of the anomeric proton ($\delta_{\rm H}$ 5.29) and carbon ($\delta_{\rm C}$ 110.6) of the third glycosidic unit indicated a furanosyl ring. This third sugar was identified as an α -L-arabinose as shown by the ¹³C NMR data, which were in good agreement with those reported for α -Larabinofuranoside (Tezuka et al., 2000). The cross peaks observed in the HMBC experiment between C-3 (δ 91.9) of aglycone and H-1' of glucuronic acid and between C-2' (δ 79.1) and C-3' (δ 86.5) of this glucuronic acid and H-1" of galactose and H-1" of arabinofuranose, respectively, showed that saponin **3** is 3-*O*- α -L-arabinofuranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucuronopyranosyl-21 β ,22 α -di-*O*-angeloylbarringtogenol C.

As observed with saponins 1-3, the positive ESI-LC-MS experiments of compounds 5-7 gave a common ion fragment at m/z 693 [prosapogenin+Na]⁺ attributed to the loss of the glycosidic part. In addition, in the negative ESI-MS-MS of saponins 4-8, the MS² experiment of the [M-H]⁻ ion gave fragment at m/z 669 [M-H-glycosidic part]⁻, indicating a molecular formula of C₄₀H₆₂O₈ for the prosapogenin moiety, which was identified as 21β , 22α -di-O-angeloylprotoaescigenin, previously isolated after acidic hydrolysis (Dizes et al. 1998, Voutquenne et al. 2002a), from analysis of ¹H and ¹³C-NMR, COSY, HSQC and HMBC spectra (Table 2).

Saponin 4 was found to have the molecular formula $C_{51}H_{78}O_{18}$ as deduced from the [M-H]⁻ molecular ion at m/z 977 (M_r 978 amu) in the negative ESI-MS spectrum. The MS² experiment of this ion gave fragments at m/z 877 [M-H-C₅H₈O₂]⁻, 845 [M-H-132]⁻ and 669 [M-H-308]⁻ corresponding to the losses of an angeloyl group, a terminal pentose and a disaccharide chain (C₁₁H₁₆O₁₀) consisting of a pentose and a hexosuronic acid. The ¹H NMR spectrum of saponin 4 showed two anomeric protons at δ 4.53 (d, J = 7.2 Hz) and 5.42 (brs) which correlated in the HSQC experiment with the anomeric carbons at δ 105 and 109.6, respectively. Analysis of 2D experiments (COSY, TOCSY and HSQC) permitted the identification of a terminal α -L-arabinofuranose ($\delta_{\rm H}$ 5.42) linked to a β -D-glucuronic acid ($\delta_{\rm H}$ 4.53) monosubstituted in position 2' ($\delta_{\rm C}$ 80.6) (Table 3). Thus, saponin 4 is 3-O- α -L-arabinofuranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl-21 β ,22 α -di-O-angeloylprotoaescigenin.

Comparison of the ¹H and ¹³C NMR spectra of saponins **5** and **4** indicated that compound **5** possessed one supplementary glycosidic unit. The molecular ion peak observed at m/z 1109 [M-H]⁻ in the negative ESI-MS experiment, in agreement with an M_r of 1110 amu (C₅₆H₈₆O₂₂), and the

negative fragment at m/z 977 [M-H-132]⁻ showed that this sugar was a pentose. In the ¹H NMR and ¹³C NMR spectra, the detection of two anomeric protons at $\delta_{\rm H}$ 5.19 (brs) and 5.3 (d, J = 3.6 Hz) with anomeric carbons at $\delta_{\rm C}$ 110.9 and 110.1 (HSQC), and of two CH₂OH at $\delta_{\rm C}$ 63 indicated the presence of two terminal α -L-arabinofuranosyl moieties (Table 3). The sugar attached to the genin was identified as a β -D-glucuronic acid ($\delta_{\rm H}$ 4.56, $\delta_{\rm C}$ 105) disubstituted in positions 2' ($\delta_{\rm C}$ 80.9) and 3' ($\delta_{\rm C}$ 86.5) as in saponins 2 and 3. The observation of ROE connectivities between H-3 of protoaescigenin and H-1' of glucuronic acid and between H-2' and H-3' of this glucuronic acid and H-1" ($\delta_{\rm H}$ 5.3) of the first arabinofuranose and H-1" ($\delta_{\rm H}$ 5.19) of the second arabinofuranose identified saponin 5 as 3-*O*- α -L-arabinofuranosyl-(1 \rightarrow 3)-[α -L-arabinofuranosyl-(1 \rightarrow 2)]- β -D-glucuronopyranosyl-21 β ,22 α -di-*O*-angeloylprotoaescigenin.

Compounds **6** and **7** were difficult to obtain in a pure state. The best separation was obtained by semi-prep. HPLC with an isocratic elution with 47 to 48% MeCN in H₂O at pH 2.4 (TFA). The retention times were 24.9 min for saponin **6** and 25.8 min for saponin **7**.

The negative ESI-MS experiment of compound **6** gave a molecular ion at m/z 1109 [M-H]⁻ (C₅₆H₈₆O₂₂). The MS² of this ion gave the same negative fragments at m/z 977 [M-H-132]⁻ and 669 [M-H-440]⁻ observed for saponin **5** suggesting that **5** and **6** were isomers. Analysis of COSY and TOCSY experiments identified an α -L-arabinofuranose ($\delta_{\rm H}$ 5.28, d, J = 2.2 Hz), a β -D-xylose ($\delta_{\rm H}$ 4.65, d, J = 7.8 Hz), and a disubstituted β -D-glucuronic acid ($\delta_{\rm H}$ 4.51, d, J = 7.6 Hz) (Table 3).

The sequencing of the triglycosidic chain was achieved by analysis of HMBC correlations observed between H-1' of the glucuronic acid ($\delta_{\rm H}$ 4.51) and C-3 ($\delta_{\rm C}$ 92.2) of the genin, between H-1" of the arabinofuranose ($\delta_{\rm H}$ 5.28) and C-3' ($\delta_{\rm C}$ 86.8) of the glucuronic acid, and between H-1" of the xylose ($\delta_{\rm H}$ 4.65) and C-2' ($\delta_{\rm C}$ 78.5) of the glucuronic acid (Table 3). Thus, saponin **6** is 3-*O*- α -Larabinofuranosyl-(1 \rightarrow 3)-[β -D-xylopyranosyl-(1 \rightarrow 2)]- β -D-glucuronopyranosyl-21 β ,22 α -di-*O*angeloylprotoaescigenin. The ESI-MS-MS experiments and the ¹H and ¹³C NMR spectra showed for saponin **7** a set of signals corresponding to the major saponin (75 %) and signals of smaller intensity (25%) due to the occurrence of residual saponin **6**. The negative ESI-MS experiment gave an intense molecular ion at m/z 1139 [M-H]⁻ for compound **7** (C₅₇H₈₈O₂₃) accompanied by a minor ion at m/z 1109 [M'-H]⁻ for the residue of **6**. This result indicated that the difference corresponded to the presence of one hexose instead of a pentose in the glycosidic chain of saponin **7**. The MS² of [M-H]⁻ at m/z 1139 gave negative fragments at m/z 1007 [M-H-132]⁻ due to the loss of a terminal pentose, and the MS³ of this ion gave fragment at m/z 845 [M-H-132-162]⁻ suggesting a loss of a terminal hexose. Analysis of COSY, TOCSY and HSQC experiments showed the presence of a terminal α -L-arabinofuranose ($\delta_{\rm H}$ 5.24), a terminal β -D-glucose ($\delta_{\rm H}$ 4.81, d, J = 7.9 Hz), and a disubstituted β -D-glucuronic acid ($\delta_{\rm H}$ 4.49) (Table 3). The analysis of HMBC correlations showed that saponin **7** is 3-*O*- α -L-arabinofuranosyl-(1 \rightarrow 3)-[β -D-glucopyranosyl-(1 \rightarrow 2)]- β -D-glucuronopyranosyl-21 β ,22 α -di-*O*-angeloylprotoaescigenin.

As observed with ESI-MS experiments, saponins **4** and **8** were isomers. The fragmentation showed the presence of a terminal pentose identified by NMR as a β -D-xylose ($\delta_{\rm H}$ 4.66), and of a hexosuronic acid identified as a β -D-glucuronic acid ($\delta_{\rm H}$ 4.52) monosubstituted in position 2' ($\delta_{\rm C}$ 80.8). The ROE correlations showed that saponin **8** is 3-*O*- β -D-xylopyranosyl-(1 \rightarrow 2)- β -Dglucuronopyranosyl-21 β ,22 α -di-*O*-angeloylprotoaescigenin.

The haemolytic activity of the decoloured saponin mixture and of pure saponins 2, 3 and the mixture of 6–7 was assessed on sheep erythrocytes (10% suspension in phosphate buffer saline) using the method previously described (Voutquenne et al., 2002b). The saponin mixture was more active than the dialysed reference saponin mixture from Sigma[®] (Sigma[®] D) and than the pure tested saponins. 25% Haemolysis was obtained at 1 μ g/ml. The HD₁₀₀ was determined at 5 μ g/ml and the HD₅₀ was estimated at 2 μ g/ml. Saponins 2, 3 and the mixture 6–7 showed HD₁₀₀ at 10, 5

and 10 μ g/ml and HD₅₀ at 5, 2.5 and 3 μ g/ml, respectively (Figure 1). The haemolytic activity of saponin **3** was twice that of saponin **2**, suggesting that an arabinofuranosyl moiety attached to position 3 of glucuronic acid is more effective than a rhamnosyl moiety. More saponins need to be tested to confirm this result. The quantities of the isolated pure saponins **1**, **4**, **5**, and **8** were insufficient to allow the measurement of their individual haemolytic activities in order to complete structure-activity relationships.

3. Experimental

3.1. General experimental procedures

¹H and ¹³C NMR spectra were recorded on Bruker Avance DRX 500 in CD₃OD (¹H at 500 MHz and ¹³C at 125 MHz); 2D experiments were performed using standard Bruker microprograms. ESI-LC-MS, ESI-MS and MS-MS experiments were recorded on a Finningan LCQ deca ion trap mass spectrometer (Finnigan MAT, San Jose, USA); For MSⁿ experiments, the samples were introduced by direct infusion of a methanolic solution at a flow rate of 5µl min⁻¹. MALDI-TOF Voyager DE STR, Applied Biosystemes, Les Ulis-France Optical rotations were measured in MeOH with a Perkin-Elmer 241 Polarimeter. CC was carried out on Kieselgel 60 (63-200 mesh) Merck or LiChroprep RP-18 (40-63 µm) Merck. HPLC was performed on a DIONEX apparatus equipped with an ASI-100 autosampler, a P580 pump, a diode array detector UVD 340S (212nm) and Chromeleon[®] software. A C-18 DIONEX VYDAC (201SP510, 250 × 10 mm, 5 µm) was used for semi-preparative HPLC with a binary eluent (solvent A, H₂O (pH 2.4 with 0.025 % TFA); solvent B, MeCN) and a flow rate of 3 ml min⁻¹.

3.2. Plant material

Stem bark of *H. austro-caledonica* was collected in the rain forest at an elevation of 600 m in the special fauna reserve of Amieu Pass and Table Unio, New Caledonia, in March 1997. The

specimen of the plant (LIT 0250) is deposited in the herbarium of the Botany and Plant Ecology Department at the Research Institute for the Development (IRD) of Noumea (New Caledonia).

3.3. Extraction and isolation

Dried and powered stem bark (1110 g) was macerated in 20% aq. MeOH (10 l) for 17 h and boiled for 3 h. The hydromethanolic extract was filtered, evaporated and freeze-dried to give a residue (106 g) which was suspended in MeOH (400 ml). The methanolic solution was added to 2 l of Me₂CO and the ppt. was filtered and dried over KOH *in vacuo*. This dried ppt. (57 g) was dissolved in pure H₂O and dialysed against H₂O in seamless cellulose tubing under agitation during 48 h. The contents of the tubes were freeze-dried to afford 32 g of a saponin mixt. (yield 3%).

Two aliquots of the saponin mixt. (1 g and 3 g) were fractionated on a silica gel CC, using a gradient of CHCl₃-MeOH-H₂O (8:2:0 to 15:10:1) for the first sample and (7:3:0 to 12:8:1) for the second sample.

Frs. [11-14] (90 mg) of the first column and frs. [8-9] (200 mg) of the second column eluted with CHCl₃-MeOH (7:3) were similar on TLC (CHCl₃-MeOH-H₂O, 12:8:1) and then were purified on a reversed-phase RP-18 CC using a gradient of MeOH-H₂O (55:45 to 8:2). Frs. [10-25] eluted with MeOH-H₂O (65:35) were purified by silica gel CC, eluting with a gradient of CHCl₃-MeOH-HCOOH (90:10:1 to 70:30:1) and then finally purified by semi-prep. HPLC with a linear gradient of 50 to 51 % B in 20 min to give saponins **9** (rt = 15.1 min, 4 mg), **6-7** (rt = 15.6 min, 3.2 mg) and **5** (rt =17.9 min, 1.5 mg); Frs. [33-38] eluted with MeOH-H₂O (65:35) were purified by semi-prep. HPLC, using the same conditions, to give saponin **2** (rt = 13.9 min, 2.2 mg).

Frs. [15-22] (280 mg) of the first column and frs. [10-21] (1.16 g) of the second column, eluted with CHCl₃-MeOH (7:3), were similar on TLC (CHCl₃-MeOH-H₂O, 12:8:1) and were then purified on a reversed-phase RP-18 CC using a gradient of MeOH-H₂O (55:45 to 8:2). Frs. [14-16] eluted with MeOH-H₂O (55:45) were purified by preparative TLC in CHCl₃-MeOH-H₂O (12:8:1) to give a mixture of saponins **6-7** (5 mg); Frs. [42-47] (272 mg), eluted with MeOH-H₂O (6:4), were

purified by reversed-phase RP-18 CC, eluting with MeOH-H₂O (85:15), and followed by semiprep. HPLC using various elution prog. : 62 % B (0-20 min) for frs [9-11] to give saponin **2** (rt = 8 min, 7.9 mg), 56-57% B (0-15 min) for frs [12-20] to give saponins **6-7** (rt = 9.4 min, 13.2 mg), and 49-50 % B (0-30 min) for frs [49-64] to give saponins **5** (rt = 22.9 min, 1.5 mg) and **4** (rt = 24.8 min, 2 mg); Frs. [48-63] (272 mg), eluted with MeOH-H₂O (7:3), were purified by reversed-phase RP-18 CC and then by semi-prep. HPLC with a linear gradient of 65 to 68 % B in 20 min to give 2.5 mg of saponin **2** (rt = 10.2 min) or by prep. TLC in CHCl₃-MeOH-HCOOH (65:35:1) to give 6.7 mg of saponin **3**.

Frs. [22-30] (302 mg) of the second column, eluted with CHCl₃-MeOH-H₂O (30:20:1), were purified by silica gel CC, eluting with a gradient of CHCl₃-MeOH-HCOOH (90:10:1 to 60:40:1). Frs. [49-57], [62-68] and [76-88], eluted with (85:15:1), were purified by semi-prep. HPLC with 49 % B in 30 min to give saponins **6** (rt = 19.7 min, 3.2 mg), **7** (rt = 20.1 min, 3.2 mg), **8** (rt = 21 min, 2 mg), **3** (rt = 21.8 min, 1.2 mg), **1** (rt = 25.9 min, 2 mg) and **2** (rt = 27.9 min, 2 mg).

The different fractions containing the mixture of saponins **6-7** were gathered together and purified in twice by semi-prep. HPLC with 47% to 48% B in 30 min to give saponins **6** (rt = 24.9 min, 3.3 mg) and **7** (rt = 25.8 min, 1.3 mg).

3.4. Saponin **1**

 $[\alpha]_D^{21}$ + 2.3 (MeOH; *c* 0.13); ¹H and ¹³C NMR (CD₃OD), see Table 1; ESI-LC-MS (negative ion mode) *m/z* 991 [M-H]⁻; ESI-LC-MS (positive ion mode) *m/z* 1015 [M+Na]⁺, 677 [M+Na-338]⁺; ESI-MS (positive ion mode) *m/z* 1037 [(M-H+Na)+Na]⁺, 677 [M+Na-338]⁺; ESI-MS-MS : MS² (1037) *m/z* 1019 [(M-H+Na)+Na-H₂O]⁺, 937 [(M-H+Na)+Na-100]⁺, 875 [(M-H+Na)+Na-162]⁺, 853 [M+Na-162]⁺, 699 [(M-H+Na)+Na-338]⁺, 677 [M+Na-338]⁺; MS³ (853) *m/z* 753 [M+Na-162-100]⁺, 577 [M+Na-100-338]⁺.

3.5. Saponin 2

 $\left[\alpha\right]_{D}^{21}$ - 10.0 (MeOH; c 0.66); ¹H and ¹³C NMR (CD₃OD), see Table 1; ESI-LC-MS (positive ion

mode) *m/z* 1161 [M+Na]⁺, 677 [M+Na-484]⁺; ESI-MS (negative ion mode) *m/z* 1137 [M-H]⁻; ESI-MS-MS : MS² (1137) *m/z* 991 [M-H-146]⁻; ESI-MS (positive ion mode) *m/z* 1183 [(M-H+Na)+Na]⁺, 677 [M+Na-484]⁺; ESI-MS-MS : MS² (1183) *m/z* 1083 [(M-H+Na)+Na-100]⁺, 1037 [(M-H+Na)+Na-146]⁺, 1021 [(M-H+Na)+Na-162]⁺, 999 [M+Na-162]⁺, 899 [M+Na-162-100]⁺, 853 [M+Na-162-146]⁺.

3.6. Saponin **3**

 $[\alpha]_D^{21}$ - 10.9 (MeOH; *c* 0.53); ¹H and ¹³C NMR (CD₃OD), see Table 1; ESI-LC-MS (positive ion mode) *m/z* 1147 [M+Na]⁺, 677 [M+Na-470]⁺; ESI-MS (negative ion mode) *m/z* 1123 [M-H]⁻; ESI-MS (mode) *m/z* 1123 [M-H]⁻; ESI-MS (positive ion mode) *m/z* 1123 [M-H]⁻; ESI-MS (positive ion mode) *m/z* 1169 [(M-H+Na)+Na]⁺, 677 [M+Na-470]⁺; ESI-MS-MS : MS² (1169) *m/z* 1069 [(M-H+Na)+Na-100]⁺, 1037 [(M-H+Na)+Na-132]⁺, 1007 [(M-H+Na)+Na-162]⁺, 985 [M+Na-162]⁺, MS³ (1069) *m/z* 969 [(M-H+Na)+Na-200]⁺, 937 [(M-H+Na)+Na-100-132]⁺, 907 [(M-H+Na)+Na-100-162]⁺, 675 [(M-H+Na)+Na-200-294]⁺, 577 [M+Na-100-470]⁺, MS³ (1007) *m/z* 907 [(M-H+Na)+Na-162-100]⁺, 875 [(M-H+Na)+Na-162-132]⁺, 807 [(M-H+Na)+Na-162-200]⁺.

3.7. Saponin **4**

 $[\alpha]_D^{21}$ -25.5 (MeOH; *c* 0.11); ¹H and ¹³C NMR (CD₃OD), see Tables 2 and 3; ESI-LC-MS (positive ion mode) *m/z* 1001 [M+Na]⁺, 693 [M+Na-308]⁺; ESI-MS (negative ion mode) *m/z* 977 [M-H]⁻; ESI-MS-MS : MS² (977) *m/z* 877 [M-H-100]⁻, 845 [M-H-132]⁻, 669 [M-H-308]⁻; ESI-MS (positive ion mode) *m/z* 1023 [(M-H+Na)+Na]⁺, 923 [(M-H+Na)+Na -100]⁺, 693 [M+Na-308]⁺.

3.8. Saponin 5

 $[\alpha]_D^{21}$ -32.3 (MeOH; *c* 0.13); ¹H and ¹³C NMR (CD₃OD), see Tables 2 and 3; ESI-LC-MS (positive ion mode) *m/z* 1133 [M+Na]⁺, 1001 [M+Na-132]⁺, 869 [M+Na-264]⁺, 693 [M+Na-440]⁺; ESI-MS (negative ion mode) *m/z* 1109 [M-H]⁻, 977 [M-H-132]⁻; ESI-MS-MS : MS² (1109) *m/z* 977 [M-H-132]⁻, 669 [M-H-440]⁻; ESI-MS (positive ion mode) *m/z* 1155 [(M-H+Na)+Na]⁺, 693 [M+Na-440]⁺; ESI-MS-MS : MS² (1155) *m/z* 1055 [(M-H+Na)+Na-100]⁺, 1023 [(M-H+Na)+Na-132]⁺, 715 [(M-H+Na)+Na-440]⁺, MS³ (1023) *m/z* 923 [(M-H+Na)+Na-132-100]⁺, 891 [(M-H+Na)+Na-132-132]⁺, 693 [M+Na-440]⁺.

3.9. Saponin **6**

 $[\alpha]_D^{21}$ -13.2 (MeOH; *c* 0.25); ¹H and ¹³C NMR (CD₃OD), see Tables 2 and 3; ESI-LC-MS (positive ion mode) *m/z* 1133 [M+Na]⁺, 1001 [M+Na-132]⁺, 693 [M+Na-440]⁺; ESI-MS (negative ion mode) *m/z* 1109 [M-H]⁻; ESI-MS-MS : MS² (1109) *m/z* 977 [M-H-132]⁻, 669 [M-H-440]⁻; ESI-MS (positive ion mode) *m/z* 1155 [(M-H+Na)+Na-H)]⁺, 693 [M+Na-440]⁺; ESI-MS-MS : MS² (1155) *m/z* 1055 [(M-H+Na)+Na-100]⁺, 1023 [(M-H+Na)+Na-132]⁺, 955 [(M-H+Na)+Na-200]⁺, 715 [(M-H+Na)+Na-440]⁺, MS³ (1055) *m/z* 955 [(M-H+Na)+Na-200]⁺, 923 [(M-H+Na)+Na-100-132]⁺, MS³ (1023) *m/z* 1005 [(M-H+Na)+Na-132-H₂O]⁺, 923 [(M-H+Na)+Na-132-100]⁺, 715 [(M-H+Na)+Na-440]⁺, 693 [M+Na-440]⁺.

3.10. Saponin 7

¹H and ¹³C NMR (CD₃OD), see Tables 2 and 3; ESI-LC-MS (positive ion mode) m/z 1163 [M+Na]⁺, 693 [M+Na-470]⁺; ESI-MS (negative ion mode) m/z 1139 [M-H]⁻; ESI-MS-MS : MS² (1139) m/z 1007 [M-H-132]⁻, MS³ (1007) m/z 907 [M-H-132-100]⁻, 845 [M-H-132-162]⁻, 669 [M-H-470]⁻; ESI-MS (positive ion mode) m/z 1185 [(M-H+Na)+Na]⁺, 693 [M+Na-470]⁺; ESI-MS-MS : MS² (1185) m/z 1085 [(M-H+Na)+Na-100]⁺, 1053 [(M-H+Na)+Na-132]⁺, 715 [(M-H+Na)+Na-470]⁺, MS³ (1085) m/z 985 [(M-H+Na)+Na-200]⁺, 953 [(M-H+Na)+Na-100-132]⁺, MS³ (1053) m/z 1035 [(M-H+Na)+Na-132-H₂O]⁺, 953 [(M-H+Na)+Na-132-100]⁺, 891 [(M-H+Na)+Na-132-162]⁺, 693 [M+Na-470]⁺.

3.11. Saponin 8

 $[\alpha]_D^{21}$ -3.76 (MeOH; *c* 0.13); ¹H and ¹³C NMR (CD₃OD), see Tables 2 and 3; ESI-MS (negative ion mode) *m/z* 977 [M-H]⁻; ESI-MS-MS : MS² (997) *m/z* 877 [M-H-100]⁻; 845 [M-H-132]⁻; 669 [M-H-308]⁻.

3.13. Haemolytic activity

This assay was performed as described previously (Voutquenne et al., 2002b). The 10% sheep erythrocyte suspension was obtained by dilution of a commercial 50% suspension from Biomerieux[®] Lyon with phosphate buffer saline (PBS). 30 mg of the saponin mixt. was decoloured by VLC with CHCl₃-MeOH-H₂O (70:30:5) to eliminated the tannins. The purified saponin mixt.

and saponins **2**, **3** and **6–7** were dissolved in PBS; the samples were prepared in triplicate with concentrations ranging from 1 to 50 μ g/ml. 25 μ l of erythrocytes diluted suspension were added to 1 ml of the sample and rapidly stirred. Absorbance of the supernatant was measured at 540 nm after 60 min of incubation and 5 min of centrifugation at 3000 rpm. HD₅₀ and HD₁₀₀ were the concentrations of sample which cause 50% and 100% of haemolysis, respectively.

Acknowledgements

The authors are very grateful to Dr Tanguy Jaffré and Dr Jean-Marie Veillon of the Botany and Plant Ecology Department, Research Institute for the Development (IRD), Noumea (New Caledonia), for their help in the identification of the plant, and to Dr Thierry Sevenet (ICSN, CNRS), Laurent Ghnassia and Pelenato Maituku (IRD, Noumea) for the collection of the plant.

References

- Dizes, C., Gerald, F., Lavaud, C., Elias, R., Faure, R., Massiot, G., 1998. Harpuloside, a triterpenoid saponin from *Harpullia ramiflora*. Phytochemistry 48, 1229–1232.
- Khong, P.W., Lewis, K.G., 1976. Chemical constituents of *Harpullia pendula*. Aust. J. Chem., 29, 1351–1364.
- Leenhouts, P. W., Vente, M., 1982. A taxonomic revision of *Harpullia* (Sapindaceae). Blumea 28, 1–52.
- Leenhouts, P. W., 1985. An attempt towards a natural system of *Harpullia* (Sapindaceae). Blumea 31, 219–234.
- Mabberley, D. J., 1997. The Plant-Book (2 Ed.), Cambridge University Press, Cambridge.
- Morat, P., Jaffre, T., Veillon J-M., 2001. The flora of new Caledonia's calcareous substrates. Bull. Mus. Natl. Hist., Adansonia, Ser 3, 23, 109-127

Sati, O.P., Rana, U., 1987. Triterpenoids of Aesculus indica. Pharmazie 42, 141.

- Tezuka, Y., Honda, K., Banskota, A.H., Maung Thet, M., Kadota, S., 2000. Kinmoonosides A–C, Three New Cytotoxic Saponins from the Fruits of *Acacia concinna*, a Medicinal Plant Collected in Myanmar. J. Nat. Prod., 63, 1658–1664.
- Tuntiwachwuttikul, P., Pancharoen, O., Mahabusarakam, W., Wiriyachitra, P., Taylor, W.C., Bubb,W.A., Towers, G.H.N., 1997. A triterpenoid saponin from *Maesa ramentacea*. Phytochemistry 44, 491–495.
- Voutquenne, L., Lavaud, C., Massiot, G., Delaude, C., 1998. Saponins from *Harpullia cupanioides*. Phytochemistry 49, 2081–2085.
- Voutquenne, L., Kokougan, C., Lavaud, C., Pouny, I., Litaudon, M., 2002a. Triterpenoid saponins and acylated prosapogenins from *Harpullia austro-caledonica*. Phytochemistry 59, 825–832.
- Voutquenne, L., Lavaud, C., Massiot, G., Le Men–Olivier, L., 2002b. Structure-activity relationships of haemolytic saponins. Pharm. Biol. 40, 253–262.

Fig.1- Haemolytic activity of the saponin mixture of *H. austro-caledonica* relative to the pure saponins **2**, **3** and the mixture of **6**-7, and the commercial saponin from Sigma[®].

Table 1				
¹ H and ¹	³ C-NMR	data of sape	onins 1. 2	and 3

δ_{II} δ_{C} δ_{II} δ_{C} δ_{III} δ_{C} 3 3.22 $dd(9.4.5.4)$ 91.0 3.22 $dd(112.4.7)$ 92.2 3.22 $dd(11.5.3.8)$ 91.9 12 5.42 $m(w_{12}=10.3)$ 125.3 5.41 $brt(3.2)$ 143.0 - 143.0 - 143.0 1.39 $brd(12.5)$ 3.4.9 1.92 2.7.7 $t1.2.5$ $t1.11$ $t1.2.2$ $dt(12.1)$ 7.4.3 5.61 $dt(10.1)$ 7.4.3 5.61 $dt(10.1)$ 7.4.3		1			2			3		
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$		δ_{H}		$\delta_{\rm C}$	$\delta_{\rm H}$		$\delta_{\rm C}$	$\delta_{\rm H}$		δ _C
3 3.22 $dd(9.4.5.4)$ 91.0 3.22 $dd(11.2.4.7)$ 92.2 3.22 $dd(11.5.3.8)$ 91.9 13 12 5.3 5.41 $br(3.2)$ 125.3 5.40 $br(12.5)$ 34.9 1.72 $brd(12.5)$ 47.8 2.72 $tr(12.4)$ 47.9 2.72 $tr(11.8)$ 47.8 2.72 $tr(12.3)$ 47.8 2.12 $dr(12.4)$ 47.9 2.72 $tr(11.8)$ 47.8 2.72 $tr(12.3)$ 47.8 2.1 6.03 $d(10.3)$ 74.3 5.60 $d(10.1)$ 78.8 6.03 $d(10.1)$ 78.4 24 0.90 s 17.0 0.90 s 16.9 0.90 s 16.9 25 1.01 s 16.2 1.01 s 16.2 1.00 s 16.2 1.00 s 16.2 1.00 s 16.2 1.01 s 16.2 1.01 s 16.2 1.00 s 16.2 1.02 s 21.7 1.83 s 27.7 2.8 2.98 $d(11.2)$ 64.5 2.98 $d(12.2)$ 6.97 s 27.7 1.23 s 20.3 1.11 s 20.3 1.11 s 20.3 1.12 s 20.3 1.11 s 20.3 1.12 s 20.3 1.13 s 20.3 1.12 s 20.3 1.14 s 20.3 1.12 s 20.3 2.7 $sd(12.3)$ $dq(7.3-1.5)$ 16.0 1.93 $dq(7.3-1.5)$ 16.0 1.93 $dq(7.2-1.2)$ 16.0 5 1.84 $q'(1.4)$ 20.9 1.84 $q'(1.5)$ 20.9 1.84 $q'(1.2)$ 20.9 $22-ragedyl$ -1 129.4 -1 129.	Barrin	gtogen	ol C							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3.22	<i>dd</i> (9.4-5.4)	91.0	3.22	<i>dd</i> (11.2-4.7)	92.2	3.22	<i>dd</i> (11.5-3.8)	91.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	5.42	$m (w_{1/2} = 10.3)$	125.3	5.41	<i>brt</i> (3.2)	125.3	5.41	<i>brt</i> (3)	125.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	-		143.0	-		143.0	-	1 1(12.5)	143.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	1.39	т	35.0	1.39	dd(15-1)	34.9	1.39	brd(12.5)	34.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1.72	m = (m - C)	(0.7)	1./2	aa(15-3.7)	(0.7)	1./2	bra(12.5)	(0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	4.02	$m (W_{1/2} = 0.0)$ dm (12.4)	09.7 70.0	4.02	$m (W_{1/2} = 0.9)$ dm (11.8)	09.7 70.8	4.01	$m (W_{1/2} = 0.0)$	09.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	2.00	dm(12.4)	40.9	2.00	dd(11.8,3.1)	40.0	2.00	dd(12.3-3.6)	40.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	2.72	t(12.4)	47.9	2.72	t(11.8)	47.8	2 72	t(12.3-5.0)	47.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	6.03	d(10.3)	79.8	6.02	d(10.1)	79.8	6.03	d(10.1)	79.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	5.61	d(10.3)	74.3	5.60	d(10.1)	74.3	5.61	d(10.1)	74.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1.11	s	28.5	1.10	s (1011)	28.4	1.12	s (1011)	28.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	0.90	- S	17.0	0.90	- S	16.9	0.90	- S	16.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1.01	S	16.2	1.01	S	16.2	1.00	S	16.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	0.97	S	17.4	0.97	S	17.3	0.97	S	17.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1.52	S	27.8	1.52	S	27.7	1.43	S	27.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	2.98	<i>d</i> (11.2)	64.5	2.98	<i>d</i> (11.2)	64.5	2.98	d (11.1)	64.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.30	d (11.2)		3.29	d (11.2)		3.30	d (11.1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	0.90	S	29.7	0.90	S	29.7	0.90	S	29.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	1.12	S	20.3	1.11	S	20.3	1.12	S	20.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-Ang	geloyl								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-		169.1	-		169.2	-		169.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-		129.4	-		129.4	-		129.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6.08	<i>qq</i> (7.3-1.4)	138.9	6.08	<i>qq</i> (7.3-1.5)	138.8	6.08	<i>qq</i> (7.2-1.2)	138.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.93	<i>dq</i> (7.3-1.4)	16.0	1.93	<i>dq</i> (7.3-1.5)	16.0	1.93	<i>dq</i> (7.2-1.2)	16.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1.84	$q^{t}(1.4)$	20.9	1.84	$q^{t}(1.5)$	20.9	1.84	$q^{t}(1.2)$	20.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22-Ang	geloyl		1.60 =			1.60 =			1.60 =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-		169.7	-		169.7	-		169.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-		129.2	-		129.2	-	(7, 2, 1, 2)	129.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6.10	qq(7.3-1.5)	139.5	6.10	qq(7.3-1.5)	139.5	6.10	qq(7.2-1.2)	139.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.95	dq(7.3-1.5)	16.0	1.95	dq(7.3-1.5)	16.0	1.95	dq(7.2-1.2)	16.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Э 2 а Б	1.80	$q^{r}(1.5)$	20.9	1.86	$q^{*}(1.5)$	20.9	1.80	$q^{i}(1.2)$	20.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 - \beta - D - 1$	GICA	J(7,1)	105.5	4 6 1	$\frac{1}{7}$ (7.1)	105 4	4 5 1	1 (7 5)	105.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4.50	a(7.1)	105.5	4.01	a(7.1)	105.4	4.51	a (7.5)	105.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,	3.37	l(7.1)	85.0	3.81	aa(8.7-7.1)	/8.0	3.// 2.7	m	/9.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>⊃</i> ⊿,	5.05 2.51	m	78.0	2.75	l(0.7)	03.9 72.2	5./ 2.60	l(7.5)	80.5 72.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5'	3.51	<i>m</i>	75.0	3.86	l(0.0)	76.8	3.60	111 122	72.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6'	5.08	m	70.0	5.80	u (9)	175.2	5.00	m	77.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ס ז' ג'ת	Gal		IIa			173.2			na
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2^{-p-D}	-0 <i>u</i> i 4 56	d(7.6)	106.2	4 57	d(74)	104 4	4 69	d(7.6)	104.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ?"	3.63	t(7.7)	74 1	3.57	dd(9.3-7.4)	73.0	3.56	dd(9.8-7.7)	73.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3"	3 51	dd(7.8-5)	74.8	3 51	dd (9.8-3.3)	74.8	3.50	dd (9.8-3.3)	74.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>4</i> "	3.89	m	69.7	3.83	dm(3.3)	70.2	3.85	m	70.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5"	3.49	m	76.8	3.47	m	77.3	3.49	m	77.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6"	3.72	brd (12.2)	62.7	3.66	<i>dd</i> (11.7-4.8)	62.7	3.67	<i>dd</i> (11.6-5.2)	62.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.75	brd (12.2)		3.80	dd (11.7-6.6)		3.77	brd (11.6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					3'-α-	L-Rha		3'-α-	L-Ara(f)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1""				5.08	brd (1.8)	103.4	5.29	d(2.3)	110.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2""				4.07	dd (3.7-1.8)	72.1	4.13	m	83.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3""				3.69	dd (9.5-3.7)	72.2	3.85	т	78.0
5"" 3.96 dq (9.5-6.2) 70.6 3.78 dd (12.3-4.2) 63.0 6"" 1.27 d (6.2) 16.9 16.9	4""				3.44	t (9.5)	73.8	4.13	т	85.2
6 ^{•••} 1.27 d (6.2) 16.9 3.63 dd (12.3-6)	5'''				3.96	dq (9.5-6.2)	70.6	3.78	<i>dd</i> (12.3-4.2)	63.0
6''' 1.27 d (6.2) 16.9								3.63	dd (12.3-6)	
	6'''				1.27	d(6.2)	16.9			

^a na : not assigned

1			i or inc p	<u>1054p0</u>	Senin part or s	uponna	<u> </u>			7			0		
	4			<u> </u>			<u> </u>						<u>ð</u>		
	$\delta_{\rm H}$		ðc	δ_{H}		ð _C	$\delta_{\rm H}$		ð _C	δ_{H}		δ _C	δ_{H}		ð _C
Pro	otoaesc	igenin	01 5	2 42		000				2.42					
3	3.45	m	91.7	3.42	m	92.8	3.34	m	92.2	3.42	m	92.8	3.37	m	91.7
12	5.42	$m (w_{1/2} = 11.5)$	125.2	5.41	$m (w_{1/2} = 11.5)$	125.2	5.41	<i>brt</i> (3.4)	125.1	5.41	$m (w_{1/2} = 11.5)$	125.2	5.41	<i>brt</i> (3.5)	125.2
13	-		143.0	-		143.1	-		143.0	-		143.0	-		143.0
15	1.38	<i>dd</i> (11-3.8)	34.8	1.39	<i>brd</i> (14.5)	34.8	1.39	brd (15.2)	34.8	1.39	brd (15)	34.8	1.39	<i>brd</i> (14.5)	34.8
1.6	1.71	<i>dm</i> (11)	() =	1.71	<i>brd</i> (14.5)		1.72	m		1.72	m	(0 -	1.71	dd (14.2-4.3)	(0 -
16	4.01	$m (w_{1/2} = 7.6)$	69.7	4.01	m	69.7	4.01	$m (w_{1/2} = 6.7)$	69.7	4.02	$m (w_{1/2} = 6.6)$	69.7	4.02	$m (w_{1/2} = 7.4)$	69.7
18	2.66	<i>dm</i> (11.8)	40.8	2.66	<i>dm</i> (13.7)	40.8	2.66	<i>dd</i> (13.7-2.8)	40.8	2.66	dd (12-4.2)	40.8	2.66	<i>dm</i> (12.1)	40.8
19	1.22	<i>dm</i> (11.8)	47.8	1.22	<i>dm</i> (13.7)	47.9	1.22	т	47.8	1.22	m	47.8	1.22	<i>dd</i> (12.1-11.4)	47.8
	2.72	<i>t</i> (11.8)		2.72	<i>t</i> (13.7)		2.72	<i>t</i> (13.3)		2.72	<i>t</i> (12)		2.72	<i>t</i> (11.4)	
21	6.02	<i>d</i> (10.1)	79.8	6.02	<i>d</i> (10)	79.8	6.03	d (10.2)	79.8	6.02	<i>d</i> (10.1)	79.8	6.02	d (10.2)	79.8
22	5.61	<i>d</i> (10.1)	74.3	5.61	<i>d</i> (10)	74.3	5.60	<i>d</i> (10.2)	74.3	5.60	<i>d</i> (10.1)	74.3	5.61	d (10.2)	74.3
23	1.26	S	23.1	1.26	S	23.1	1.21	S	22.6	1.21	S	22.8	1.21	S	22.7
24	3.37	<i>d</i> (11.7)	64.5	3.36	<i>d</i> (11.7)	64.4	3.23	<i>d</i> (11.4)	63.8	3.24	d (11.1)	64.1	3.25	d (11.8)	63.8
	4.09	<i>d</i> (11.7)		4.10	<i>d</i> (11.7)		4.09	<i>d</i> (11.4)		4.09	<i>d</i> (11.1)		4.09	<i>d</i> (11.8)	
25	0.96	S	16.3	0.95	S	16.3	0.90	S	16.1	0.91	S	16.2	0.91	S	16.1
26	0.96	S	17.2	0.95	S	17.2	0.95	S	17.2	0.96	S	17.2	0.96	S	17.2
27	1.52	S	27.7	1.52	S	27.7	1.52	S	27.7	1.52	S	27.7	1.52	S	27.7
28	2.98	<i>d</i> (11.2)	64.5	2.98	<i>d</i> (11.7)	64.5	2.98	d (11.1)	64.5	2.98	<i>d</i> (11.2)	64.5	2.98	<i>d</i> (11.2)	64.5
	3.29	d (11.2)		3.29	d (11.7)		3.29	d (11.1)		3.29	d (11.2)		3.29	d (11.2)	
29	0.90	S	29.7	0.89	S	29.7	0.90	S	29.7	0.90	S	29.7	0.90	S	29.7
30	1.12	S	20.3	1.11	S	20.3	1.11	S	20.3	1.11	S	20.3	1.11	S	20.3
21-	Angelo	vl													
1	-		169.2	_		169.2	-		169.3	_		169.3	-		169.2
2	-		129.4	-		129.4	-		129.4	-		129.4	-		129.4
3	6.07	<i>qq</i> (7.3-1.5)	138.8	6.08	qq(7.4-1.4)	138.8	6.08	qq(7.3-1.5)	138.8	6.08	qq(7.3-1.5)	138.8	6.08	qq(7.2-1.5)	138.8
4	1.93	dq(7.3-1.5)	16.0	1.93	dq(7.4-1.4)	16.0	1.93	dq(7.3-1.5)	16.0	1.93	dq(7.3-1.5)	16.0	1.92	dq(7.2-1.5)	16.0
5	1.84	$q^{t}(1.5)$	20.9	1.84	$q^{t}(1.4)$	20.9	1.84	$q^{t}(1.5)$	20.9	1.84	$q^{t}(1.5)$	20.9	1.84	$q^{t}(1.5)$	20.9
22-	Angelo	vl			1 ()			1 ()			1 \ /			1 \ /	
1	-		169.7	_		169.6	_		169.7	_		169.7	_		169.7
2	-		129.2	_		129.2	-		129.2	-		129.2	_		129.2
3	6.10	<i>aa</i> (7.3-1.5)	139.5	6.10	<i>aa</i> (7.4-1.5)	139.5	6.10	<i>aa</i> (7.3-1.5)	139.5	6.10	<i>aa</i> (7.3-1.5)	139.5	6.10	<i>aa</i> (7.3-1.5)	139.5
4	1.95	da(7.3-1.5)	16.0	1.95	dq(7.4-1.5)	16.0	1.95	dq(7.3-1.5)	16.0	1.95	dq(7.3-1.5)	16.0	1.95	dq(7.3-1.5)	16.0
5	1.86	$a^{t}(1.5)$	20.9	1.86	$a^{t}(1.5)$	20.9	1.86	$a^{t}(1.5)$	20.9	1.86	$a^{t}(1.5)$	20.9	1.86	$q^{t}(1.5)$	20.9

Table 21H and 13C NMR data of the prosapogenin part of saponins 4–8

	4			5	A		6			7			8		
	δ_{H}		δ _C	δ_{H}		$\delta_{\rm C}$	δ_{H}		δ _C	δ_{H}		$\delta_{\rm C}$	δ_{H}		δ _C
3-β-1	D-GlcA														
1'	4.53	d (7.2)	105.0	4.56	d (7.2)	105.0	4.51	d (7.6)	105.0	4.49	d (7.8)	105.0	4.50	d (7.2)	105.0
2'	3.44	m	80.6	3.55	dd (8.5-7.2)	80.9	3.64	dd (8.9-7.7)	78.5	3.70	m	78.6	3.52	t (7.9)	80.8
3'	3.58	т	78.6	3.67	m	86.5	3.72	t (8.7)	86.8	3.70	т	87.0	3.65	t(8.1)	78.3
4'	3.50	т	73.6	3.63	т	72.6	3.69	m	72.7	3.58	<i>t</i> (9)	72.5	3.53	m	73.3
5'	3.89	т	77.8	3.57	т	na ^a	3.59	т	78.0	3.61	d (9)	77.9	3.87	т	77.8
6'	_		na ^a	_		na ^a	_		176.3	-		176.3	_		na ^a
2'-α-	L-Ara(Э		2'-α-	L-Ara(f)		2'-B-	D-Xvl		2'-B-	D-Glc		2'-B-1	D-Xvl	
1"	5.42	brs	109.6	5.30	d (3.6)	110.1	4.65	d(7.8)	104.6	4.81	d (7.9)	104.0	4.66	d(7.7)	105.0
2"	4.05	т	83.0	4.02	dd (6-3.6)	83.3	3.19	dd (9.2-7.8)	75.4	3.19	t(8.1)	75.4	3.22	dd (9.3-7.9)	75.5
3"	3.85	t(6.1)	77.3	3.88	t (6)	76.9	3.30	t (9.2)	78.0	3.38	t(8.7)	78.0	3.30	t (8.8)	78.1
4"	4.08	m	85.0	4.07	ddd (6-5-2.3)	84.6	3.53	ddd (10.7-9.2-5.5)	70.9	3.53	t(8.9)	70.0	3.52	ddd (9.9-8.8-5.1)	70.8
5"	3.59	<i>dd</i> (11.8-4.8)	63.1	3.58	dd (12.4-5)	63.0	3.17	t (11.1)	66.8	3.23	m	78.2	3.15	t(11)	66.9
	3.75	<i>dd</i> (11.8-2.4)		3.76	dd(12.4-2.3)		3.84	dd (11.5-5.5)					3.84	dd (11-5.3)	
6"										3.78	т	<u> </u>		x ,	
										3.80	m	61.5			
3'-α-	L-Ara(Д													
1""		· /		5.19	brs (w _{1/2} = 5)	110.9	5.28	d(2.2)	110.9	5.24	d(2.2)	110.8			
2""				4.13	m	83.2	4.13	dd (4.6-2.2)	83.3	4.13	dd(4.5-2.2)	83.4			
3""				3.88	t (6)	77.8	3.86	dd (6.7-4.6)	77.8	3.85	dd (7-4)	77.9			
4""				4.13	m	85.5	4.12	m	85.4	4.09	m	85.3			
5""				3.65	<i>dm</i> (11.5)	63.0	3.80	dd (11.7-2.3)	63.0	3.78	dd (12-2.5)	62.9			
				3.79	dm(11.5)		3.62	dd(11.7-6.3)		3.63	dd (12-4)				

Table 31H and 13C NMR data of the glycosidic part of saponins 4–8

^ana : not assigned