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Abstract

Artificial intelligence (Al) is often presented as a new Industrial Revolution. Many domains use Al, and
molecular simulation for drug discovery does not escape that logic. This paper proposes a wide overview
of ligand-protein molecular docking and how machine learning (ML) and especially deep learning (DL),
a subset of ML is transforming it by tackling its challenges. A list of methods that describes and
compares the data representation and approaches is presented, and the paper also provides a compilation
of performances and discusses them to allow an informed choice.

Keywords: Molecular docking, Sampling, Scoring, Machine Learning, Deep Learning, Data
representation

Teaser: ML is transforming in silico ligand-protein molecular docking. Our paper details some
methods for binding site detection, scoring, or classification to provide a comprehensive overview of this
field.

Introduction

Drug discovery is a highly complex process whose most known steps include in vitro tests of putative
drugs and in vivo validation. Before these steps, however, researchers need to perform an extensive
evaluation of candidate molecules, from which perhaps a single drug may become a commercialised
product. Testing an extensive database, even in vitro, is time-consuming and costly. Indeed, the drug
discovery process takes on average 12 years from start to commercialisation and has an average cost of
$1.8 billion [1].

Researchers and pharmaceutical industries aim at reducing time and cost. They can use the molecular
docking process as a complex filter to keep only the most interesting candidates to perform experiments
like drug discovery. However, even if molecular docking is often presented in a drug discovery context,
it can also be used to detect potential drug side effects or molecule toxicity. The molecular docking
process uses the 3-dimensional (3D) structures of two molecules the ligand and the target, to predict
the preferred orientation of the first with respect to the second when bounded to each other to form
a stable complex [2]. Usually, the ligand is the smallest molecule, but the denomination choice is
project-dependent. In drug discovery, the ligand is an active principle, and the target is a biological
macromolecule (for instance, a protein or DNA). However, the docking covers a wider range of pair
possibilities: protein-DNA, protein-RNA, protein-sugar, protein-peptide, and protein-small compounds.
We decided to focus this survey on the protein-small compounds (commonly called protein-ligand)
molecular docking because it covers an important part of existing docking methods. However, we
hereafter present concepts for ligand-protein docking, which are also usable for other docking types.
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Several experimental methods allow getting 3D structures of a molecule. While X-ray-based methods
are by far the most prominent ones, nuclear magnetic resonance (NMR) and electron microscopy (EM)
based are also part of the literature. For instance, the Protein Data Bank (PDB), a well-known database
of protein’s 3D structures, includes almost 90% of the structures solved with X-ray crystallography (and
almost 99% if only the structures for which the ligand-protein binding affinity is known, are taken into
account)[3] and almost 8% with NMR. Information about methods and statistics are available on the
Protein Data Bank [4] website (https://www.rcsb.org/) respectively in its educational portal and its
statistics page.

As previously mentioned, drug discovery often needs to test against a comprehensive ligand library on
one target. This process is called virtual screening (VS) [5] or sometimes high-throughput virtual screen-
ing (HTVS). VS is used to reduce the number of tested ligands with in vitro and in vivo experiments;
the ligand’s ranking allows to eliminate candidates displaying very low affinities and thus not interesting
from a pharmaceutical perspective. Finally, through the VS process, the most interesting molecules are
selected and can be proposed for further in vitro and in vivo testing. VS can be ligand-based, i.e., only
ligand information is used: depending on the method, its structure, its chemical properties, or a combi-
nation of both are used to predict the binding. The idea is that similar ligands will bind similar targets.
VS can also be structure-based, using the complex molecular structure to determine if ligand will bind
the target. Molecular docking can be used to perform a structure-based VS campaign. It should be
noted that some papers use the molecular docking expression as a structure-based VS synonym.[6), [7, [§]
In this article, we deal only with structure-based methods because it is our direct area of expertise.

Detecting the best-bonded ligand among a database is with no doubt the most important use for
molecular docking. However, it can also be the basis of research to find new targets (in the case of
drug repositioning) or to characterise potential side-effects such as toxicity [9]. In that scenario, protein
and ligand roles are switched (¢f. Figure|l)). The authors call this process: inverse docking [10], reverse
docking [11], inverse virtual screening [9], or target screening [12]. Additionally, inverse docking processes
are performed using classical docking methods structured in a specific pipeline.

In recent years, ML methods such as DL have been implemented to optimise the docking process.
This paper aims at presenting the basis of ligand-protein docking and the associated ML approaches.
That is why we present classical molecular docking methods and then those based on ML.

The remainder of this paper is organised as follows: we begin with some fundamentals about ligand-
protein molecular docking and its challenges, then move to data with ML basics. Next, we present
some ML methods with a particular focus on DL. The following section presents and compiles some
performance metrics extracted from the methods’ papers. Finally, we conclude this survey by discussing
the potential of the methods against the molecular docking challenges.

Ligand-protein molecular docking

From 3D structures, a molecular docking[I3] experiment can predict the conformation of a complex
and its binding affinity. Molecular docking is a combination of two sub-processes. The first step is
sampling, which consists of generating a set of conformations from a rigid 3D ligand. The method is
evaluated on its capacity to explore the ligand’s conformational space. This space gathers all theoretically
possible conformations. The second step is scoring, which evaluates the binding affinity of each formed
protein-ligand complex (called a pose). Even if sampling and scoring are introduced separately, they
can be significantly correlated since scoring functions (SF) often guides the sampling method.

The main challenges for any molecular docking method are dealing with molecular flexibility and
faithfully reflecting real binding, both with a reasonable computing time. The following sections present
some classical answers (without ML) to these issues. This part aims to present the basis of molecular
docking before an in-depth study of ML methods. Figure [2| shows a simplified vision of the molecular
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docking process. The remainder of this section presents the three main challenges previously men-
tioned. It should be noted that this part does not aim at bringing new information about ligand-protein
molecular docking, it summarises information to define the molecular docking problem and its current
challenges.

First challenge: Molecule’s flexibility

In real conditions, the molecules’ flexibility is reflected through the vibrations of bounds, angles,
and dihedrals. Even though it is an essential element on molecular docking, many of the pioneer
methods considered both molecules as rigid structures and used the principle of lock-and-key [14] to solve
docking problems. New approaches based on heuristics and the improvement of computing capacity
allowed the integration of ligand’s flexibility by exploring the ligand’s conformational space. These
methods are called semi-flexible because only the smallest molecule is considered flexible, while the
target is still rigid [15]. Progressively, other methods have been developed and allowed to consider both
molecules as flexible. Hence, the target’s flexibility can be considered in different ways [16]: the target’s
conformational space can be assessed with extensive sampling (through molecular dynamic, for instance),
and relevant structures can be selected to perform numerous rigid targets docking experiments. Another
strategy consists of considering the side-chain flexibility of the residues around the binding site. Since
it is hypothesised that the presence of the ligand induces these changes, it is known as induced-fit [16].

The ligand conformational space sampling

A molecule can have several degrees of freedom: three to describe its position, three to its orientation,
and the last to characterise its intrinsic flexibility regarding rotatable bounds or dihedrals. All of which
generate the conformational space. Still, today exploring this space is computationally infeasible even for
a small compound. Thus, a wide range of sampling methods exists, each of which attempts to optimise
its exploration and to find the best conformations. Sampling methods can be classified into shape
matching, systematic, stochastic, and simulation [I7, [18]. Table [I| presents several docking software and
their associated sampling techniques. This table shows that several docking software have been created
since the 1990s and, within these programs, many sampling methods have been implemented. Even
today, stochastic methods are the most used and regroup a broad panel of methods.

Shape Matching methods

Shape Matching is a method used by the first docking program, DOCK [19]. Such techniques
represent molecules (the ligand and the receptor) with geometrical shapes like spheres or polyhedrons
and use the principle of matching or complementary shapes to find new conformations. However, since
it does not consider the internal ligand flexibility, a solution is to generate ligand conformations right
before the search [10].

Systematic methods

Systematic methods allow for quantitative exploration of the ligand’s conformational space. Iterative
methods (IM) belong to the first category and attempt to generate all ligand’s conformations, starting
from a given conformer. All degrees of freedom are explored, and a given increment controls the size of
the sampling. The generated conformational space may be huge even for a small ligand, its exploration
becoming a brute force exploration.

Database methods are among the second category, where databases of conformers such as Flexibase
[20] are used. These databases contain, for each ligand, a set of conformations, and instead of computing
all possible geometries, it favours a communication with a database holding precomputed conformations.
Thus, the computing time is reduced at the expense of important storage space for the databases.

Finally, fragment-based methods (FB) [21I] can be used to search for the best conformation, either
through place-and-join strategies or incremental strategies. Place-and-join methods cut the ligand into



fragments and place them around the target site. Then, each fragment is moved to minimise its energy,
and finally, all fragments are joined to rebuild the ligand. Instead, incremental methods place the first
fragment, minimise its energy and then add the next fragment, which is also minimised. The process
is repeated until the ligand is fully rebuilt. Note that the ligand cutting may bring uncertainty in the
final ligand pose. Indeed, energy minimisation may differ between an isolated piece of ligand and the
whole molecule. In the end, the rebuilt poses may sum all ligand pieces’ imprecision.

Stochastic methods

Unlike systematic methods, stochastic methods are used to explore only a small part of the ligand’s
conformational space. These methods use pseudo-random functions to generate conformations and SF's
to guide them in their educated exploration of the conformational space. The most used methods are
Monte-Carlos (MC) [22], Ant Colony (AN), Genetic Algorithm (GA), and Particle Swarm Optimisation
(PSO) [23]. The choice of the hyperparameters strongly influences the stochastic methods and, because
of this choice, some relevant areas may be forgotten.

Simulation methods

These methods explore the molecule’s conformations thanks to computed simulations like molecu-
lar dynamics. Simulation methods use classic physics laws like Newton’s law to simulate atomic and
molecular motions and generate new conformations. For instance, De Azevebo [24] uses the program
GROMACS [25], a molecular dynamic solution. Simulation-based methods notorious drawback is the
compute time to explore the conformational space, which is why these methods mainly complement
other methods [17].

Second challenge: The binding scoring

Ranking of the ligand’s bound conformation is managed, for all software, with a scoring function.
Most often, the SF aims to estimate the free energy of binding. Since computing the exact value of this
energy is computing-intensive, SF's can be designed to produce a score accurate enough to be used in
docking simulation, allowing for many evaluations. Besides, as mentioned previously, SFs can be used
to guide sampling algorithms. Among the different classes of SF's, we can cite historical and hierarchical
families [17) 26], 27] as follows: physics-based, empirical, knowledge-based, and consensus. But first, let
us review the mathematical foundations of scoring functions: the scoring function space. Some software’s
SF, and standalone SF are presented in Table [I, Moreover, since 2010, a new class of ML-based SFs
methods appeared (we detail this class in Machine learning for ligand-protein molecular docking part).

The scoring function space

A SF aims to find the ligand’s conformation that binds best with a given protein. A protein may
be seen as a protein space item, and the first protein space definition deals only with sequence [2§].
However, regarding our problem, the best definition is ’a space containing all protein folds, where
similar structures are close together’ [29]. Hence, the ligand can be considered as a chemical space item
that gathers all small compounds [30].

Each complex is a set composed from an item of the protein space and an item of the chemical space.
Finally, a third space is called the scoring function space, which contains all possible scoring functions. It
assumes that at least one scoring function space item can predict the binding affinity between a protein
space’s structure and a compound from the chemical space. Computational methods (of all kinds) allow
exploring this space looking for the best SF for the considered protein and chemical subsets.

Physics-based scoring functions
The physics-based family was first introduced by Li et al. [27] to gather different SF types, whose
the most famous is the force field class. This subclass of SFs estimates the free energy with a weighted



sum of several energy terms. Which selection depends on the chosen force field. The most common
energy terms are Van der Waals, electrostatic interactions, and hydrogen bonds. A large variety of
force fields is available in the molecular modelling community: AMBER [3I], GROMOS [32], OPLS
[33], and CHARMM [34] are examples. Force field-based SFs can be designed using a single or a
combination of different force fields. Force field functions are often used for their accuracy related to
the utilisation of atomic distances and separate computing of bound and unbound complex energies,
such as implemented in AutoDock4 [35]. The physics-based family is also composed of solvent models
and quantum mechanics classes. The former adds solvation/desolvation effect and torsion entropy
to classical force-field terms [36].In contrast, the latter mixes quantum and molecular mechanics to
improve SF accuracy in a reasonable computing time [37]. In their paper, Li et al. found that quantum
mechanics-based SFs are the most trend physics-based subclass today [27].

Empirical scoring functions

Similar to force field-based methods, empirical methods estimate the free energy of binding but
without massive computing. This estimation is achieved by evaluating a weighted sum of parameters
such as the number of hydrogen bonds, hydrophobic/hydrophilic contacts, etc. These parameters are
simpler than force-field parameters thus also quicker to compute.

Knowledge-based scoring functions

Knowledge-based SF's rely on the elaboration of a potential of mean force [38]. Based on the statistical
analysis of intermolecular interactions within large 3D structural databases of complexes, the score
attributed to a new complex considers that intermolecular interactions between certain types of atoms
or functional groups are more probable than others.

Consensus scoring functions

Each choice comes with a set of compromise, some SF's perform better on an entire class of complex
but poorer on another. Through the combination of different types of SFs, consensus SFs aim at
optimising their respective advantages. This association can be operated in different ways such as
number-by-number, rank-by-number, vote-by-number, or just through a linear combination [26].

Third challenge: The computing time

The computing time is a key metric for both sampling (huge space to explore) and scoring (invoking
occurrences). In both cases, the choice of algorithm and its implementation are critical. Regarding the
sampling, a way to reduce computing time consists of docking the ligand on a delimited zone of the
protein surface (for instance, a cube with a 20A edge centred on a specific point of interest is regularly
used). The knowledge of the localisation of the interaction site on the target is therefore crucial and is
very often related to biological results. The drawback associated with this method lies in the fact that
there is no possibility to generalise the results to uncharacterised or different systems easily. Indeed, if
known ligands are bound on a particular target’s site, there is no insurance that new ligands bind in the
same site. Similarly, a localised search could not be transposed to a new target. Some studies use more
demanding docking simulations without any a priori knowledge and explore the whole target’s surface
to overcome these limitations: this process is called blind docking. The choice of a delimited area has
a big impact on the docking accuracy: if the box does not contain the binding site or just a part of it,
then the docking will be erroneous.

Furthermore, some methods, namely binding site detection, allow the use of delimited search on
target without a priori by predicting some putative binding sites on the target surface. Commonly, this
search is done either by a geometrical search like FPocket [39] or by looking for the most interesting
zones regarding the free energy of binding, like in Q-SiteFinder, which used a —C Hj probe to detect
them [40]. It should be noted that usually, no information about the ligand is necessary. Another way



to reduce time is to use integrative docking methods, which integrate experimental data to drive their
model [41].

Finally, another way to accelerate computing is by benefiting from a High-Performance Computing
(HPC) environment. Even if this avenue is independent of the docking software, it should not be
dismissed. That is why we recently developed a parallel approach called AMIDE [42] (for Automatic
Molecular Inverse Docking Engine), initially intended for inverse docking and fitted for a classic approach.
AMIDE is based on AutoDock4 and its default SF, and includes a set of scripts allowing parallel execution
on HPC environments.

Data

Data play a key role in molecular docking method development and even more for ML-based methods.
Data quantity, quality, and how the model represents it significantly impact performance and accuracy.
Regarding data volume, the previously presented Protein Data Bank provided an extensive database of
molecular complexes.

Data quality

When developing ML models for molecular docking, it is important to train and validate the models
over established datasets instead of synthetic or augmented datasets. This guarantees representativeness,
exhaustiveness and variety for the training set, and allows for inter-method comparison on objective
criteria. . The most common datasets are listed below:

e PDBbind [43] is based on Protein Data Bank and updated each year with new complexes; each
new version comes with three sets of different sizes: General (21 382), Refined (4 852), and Core
(285) for the 2019 version.

e Directory of Useful Decoys (DUD) [44] and DUD-E (for Enhanced) [45] contains 40 (resp. 102)
target molecules and 2 950 (resp. 22 886) active ligands. Each ligand has 36 (resp. 50) decoys
that are physically close but topologically different.

e The Maximum Unbiased Validation (MUV) [46] dataset contains 17 targets, ligands (30 per target),
and decoys (50 per ligand). It is based on the National Institute of Health (NIH) PubChem.

e The Community Structure-Activity Resource (CSAR) [47] is a docked-complex database.

e SC-PDB [4§] is a database based on the PDB, but contrary to the previously mentioned dataset,
it also contains information about protein binding sites.

Data representation

Data representation is a central piece of the data science response to a specific problem. Throughout,
data has become more detailed and incorporates increasingly complex pieces of information. The choice
of representation type has a significant impact on docking performances. Even though 3D coordinates
can be directly used as input, methods often use other representations produced from 3D coordinates.
We can cite lists of descriptors, molecule fingerprints, or interaction fingerprints, image-based, or graphs.
The following sections present these different approaches.

A set of descriptors is surely the easiest way to represent a molecular complex. A descriptor is a
hand-engineered feature characterising a variable degree of fidelity a complex or a molecule. Descriptors
can also reflect physio-chemical properties such as a list of atoms of some types, the number of atoms
pair between the ligand and the target for a given threshold, or an energy term. Descriptors can also
be geometrical if they are derived from the molecule’s 3D structure. Finally, a combination of several
of the previously mentioned descriptors is usually used to represent a complex. This descriptors class



has the advantage to be easily understandable and usable, but the descriptors can only represent the
complex as a unique object, limiting the model performances.

Fingerprints are a high-level representation of molecules or complexes. The first category relies on
the molecular fingerprint where 3D data is squashed into 1D data, commonly a string of bits, integers,
or characters. The chemical formula is not detailed, while the structural formula has more details but
may be less suitable from a computing standpoint. Fingerprints can represent 2D structures like the
MACCS molecular fingerprint, which accounts for some additional chemical properties [49] or encode the
3D structure like FuzCav, which represents the protein binding site 3D structure combined with some
chemical properties [50]. DL can also be used with Molecular Surface Interaction Fingerprinting (MaSIF')
method to encode a protein [51]. The second category is based on interactions fingerprinting, the most
iconic of which are Structural Interaction Fingerprint (SIFt) [52] and Structural Protein-Ligand Inter-
action Fingerprint (SPLIF) [53]. Fingerprints bring a better complex description abstraction. Contrary
to a set of descriptors that list some chemical/geometrical properties, a fingerprint projects the elements
to a latent space more suited for ML. In some ways, they behave like autoencoders, a well-studied class
of dimensionality reduction algorithms [54] used to reduce the input dimensions.

The emergence of DL and particularly convolutional neural networks (CNN) have made possible
the use of a new kind of data representation in the form of its actual 3D structure. Complexes are
first discretised on a 3D grid, where each cell of the lattice is a voxel (volumetric pixel). Atoms are
sparsely distributed in the lattice. Additionally, voxels have channels (say RGB for images) that can
complement the set of features with properties such as atom type, charge, hybridisation, etc. Image-
based data representations better reflect the complexity, including the 3D structure, than a classic
fingerprints method. Moreover, even if a lot of information is integrated into this representation, it is
still concise. However, the main drawback is that this data representation is very sensitive to noise
because a slight rotation (nudge) of the molecule in one direction would result in a completely different
data point. Moreover, the discretisation of atoms’ coordinates may involve a loss of accuracy on the
molecule’s conformation. These issues can be partially fixed: with data augmentation for the first
problem, and a coarser molecular representation (considering residues rather than atoms) for the latter.

Graph data can circumvent previous representation limitations because they break the absolute char-
acter of the frame of reference to a relative, more flexible one. Additionally, considering the unstructured
nature of its data, graphs are a natural way to represent molecules. A general formalism allows filling
nodes, edges, and global properties with all sorts of attributes. Even though molecule representation as
a graph is more instinctive, the authors in [55] use a graph to represent the interaction between a ligand
and a target.

Machine learning for ligand-protein molecular docking

ML can bring new strategies for complex’s scoring: either by optimising an existing SF (refine
empirical function’s weights, for instance) or by developing a new SF taking a complex’s structure as
input, the studied scoring approach hereafter [56]. Moreover, ML is sometimes used for virtual screening
(classification mode) and binding site detection. Once the dataset is chosen and the data representation
is decided, the ML model can be developed. The use of ML in molecular docking evolve very rapidly,
and the last decade saw the emergence of a great number of these methods, all bringing significant
improvement.

This section is intended as a comprehensive overview of ML methods used in the context of ligand-
protein molecular docking, presenting some functions used for scoring, classification (VS mode), and
binding site detection. Some existing works [57, B8, 59, 60] already draw a comprehensive overall
picture of the domain, and Tables [2| and |3| recall some of the elements specific to ML and DL methods,
respectively. Although the ML renaissance is more than a decade old, ML methods have been introduced
in the field of molecular docking only in recent years. Therefore, we have classified the methods according



to their type. Furthermore, we can note that this classification is more or less chronological for the DL
methods (since MLPs).

0.1. Linear Regression

The most basic use of ML is linear regression, to find linear equation’s weights. For instance, TABA
(Tool to Analyze the Binding Affinity)[61] represents a ligand-protein interaction as a set of mass-spring
contacts and then uses ML, methods to parametrise the complex’s affinity equation.

Random Forest (RF) methods

Random Forests (RF) were the first attempt at using ML methods for molecular docking. A RF is
an ensemble method that builds upon and smooths the results of an ensemble of decision trees. Each
tree is built with nodes representing a split on a single and unique criterion. Additionally, training on
different randomised subsets reduces variance, thus improving with overfitting issues, a method called
bagging.

The first version [62] of RF-Score takes a set of descriptors as input that describe the number of
atom pairs from both molecules involved in the docking. Pairs are conserved if the distance between
two atoms is less than a certain cut-off (which is a hyper-parameter), and atoms belong to one of this
type: C, N, O, S, P, F, Cl, Br, I, for a total of 36 descriptors. RF-Score was updated twice, and the last
revision uses energy terms from AutoDock Vina’s SF to improve its complex description [63]. All three
versions use a set of 500 trees to perform their models. In 2017, the same set of models had been trained
against the DUD-E dataset under the name RF-Score-VS [64] to classify complexes instead of scoring
them. More recently, Yasuo et al. [65] introduced SIEVE-Score (for Similarity of Interaction Energy
VEctor-Score). Contrary to RF-Scores, SIEVE-Score performs the search on a thousand random trees
and uses a residues level representation: for each of the targets’ residues, three interaction energies with
the ligand (Van der Waals, Coulomb, and hydrogen-bond) are computed. A complex is represented by
a vector of size 3 *n,.., where n,., is the number of residues, called the complex’s interaction fingerprint.
This method is simple and powerful yet still problematic: variable-length input vectors tend to be
limiting for many ML models.

Gradient Boosting trees method

In Gradient Boosting, sub-models are trained sequentially instead of simultaneously and from a
residual set of its predecessor. It is a form of knowledge distillation and often shows better results than
standard bagging.

In 2019, Nguyen et al. proposed the Algebraic Graph Learning Score (AGL-Score) [66], which uses a
multi-scale, multi-class weight-coloured sub-graphs data representation. The entire molecule is a graph
in which nodes’ attributes express the type of a selection of atoms along with spatial positioning, and
edges represent non-covalent bonds such as Van-der-Waals or hydrogen bond between the connected
atoms. Once the graph is built, a series of descriptive statistics is produced from the adjacency matrix’s
eigenvalues (or the Laplacian matrix) and used as the input vector to train a Boosted Tree.

Support Vector Machines (SVM) methods

Support Vector Machines (SVMs) were a popular class of ML algorithms before DL took off. First
introduced for classification problems, SVMs were then adapted for regression (SVRs). The model
intends not only to draw a separation between classes but also to maximise the margin between elements
closest to its centre. Combined with kernel methods, they are a tool capable of solving non-linear
problems.

In [67], Li et al. introduce two models of this kind. The first is based on a knowledge-based
pairwise potentials vector (SVR-KB). The other approach takes a set of physicochemical (Van der
Waals energy, ratio of ligand buried solvent-accessible surface area, hydrophobic effect) descriptors
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as input (SVR-EP). ID-Score [68] is another SVR for scoring. This method is based on the same
representation as SVR-EP only with additional descriptors, such as, for instance, metal-ligand bonding
interaction or desolvation effect. Finally, PLEIC-SVM is a SVM for specific-target VS that does not
rely on descriptors but on an embedding of a fingerprint called the Protein-Ligand Empirical Interaction
Components (PLEIC) fingerprint [69]. Three values are computed for each target’s residue: Van der
Waals interaction, hydrophobic contact, and hydrogen bonding. Then all residue feature vectors are
concatenated to produce the complex’s feature vector used as input by a SVM.

Multi- Layers Perceptrons (MLPs) methods

Multi-Layers Perceptrons (MLPs) are the first deep neural network topology in history and are
inspired by the Perceptron. They consist of stacks of layers made of a series of units, all connected from
layer to layer.

NNscore v1 [70] was the first attempt to bring artificial neural networks to molecular docking. It is
a simple feed-forward MLP with an input vector of 194 features (including basic pairwise atom binding,
energy terms, or the number of rotatable binds), a single 5-units hidden layer, and a classification output
layer ("good’ or 'poor’ binder). A year later, its v2 [70] made use of energy terms from Vina’s SF as
primary descriptors and added features from BINding ANAlyzer (including v1’s descriptors) [71]. In
addition, the network is rewritten to deal with regression (one output neuron), having a better capacity
(hidden layer pushed to 10 neurons). In 2020, Gentille et al. introduced Deep Docking [72]. The labels
are produced by performing molecular docking on a subset of the ZINC15 [73] ligand database with
a specific set of proteins. As there is no mention of the network topology, a set of physicochemical
descriptors are used instead. Deep Docking takes the Morgan fingerprint [74] to represent the ligand’s
molecular structure. Deep Docking trains its network on the previously mentioned subset of ZINC15
and classifies the other ligands between two classes (binder and non-binder).

Convolutional Neural Networks (CNNs) methods

Convolutional Neural Networks (CNNs) are made of convolutional layers and a tool to catch spatial
correlations. Filters weights are learned from sliding across the layer input to build a relevant abstract
representation of the original data.

AtomNet(©[75] is a commercial molecular docking software and one of the firsts to rely on CNN.
It makes use of a 3D grid, where each cell represents some basic structural features (atom types or
SPLIF, SIFt fingerprints, for example). The network’s input is a vectorised grid of 20A edge and 1A
spacing, then four convolutional layers, followed by two hidden layers of 1024 neurons. In the end, a
logistic regression classifies the input between two classes. For DeepVS, also a CNN, Pereira et al. [76]
define the initial atoms feature set with a context (atom types, atomic partial charges, amino-acid types,
and the distances to neighbours) for each complex’s atom. To compensate for variable input size, the
network incorporates an embedding in the form of a lookup table. The resulting vector is a fixed-size
float array that summarises input data. Then, it is processed by a single 2D convolutional layer to
extract abstract information and two classic layers to produce a classification. Ragoza et al., in 2017,
introduces a CNN-based SF [77] that works on similar 3D-grid images. The novelty here is that each
atom is represented by an uncertainty distribution around the atom’s centre instead of a fixed value.
The network is a succession of 3 blocks (convolution and pooling) followed by a fully connected (FC)
binary classification layer.

Atomic CNN [7§] is built from two types of unique operations: atom-type-specialised convolutions
of 1 x 1 filters and radial pooling that filters across the atom neighbours. This approach uses atom
coordinates and atom types as inputs, the first allows to build the interatomic distance matrix, and the
second is used for the atom types matrix preparation. The first layer (atomic convolution) combines
matrices to another, and then the radial pooling layer is used to reduce the matrix’s dimension. Fi-
nally, an Atomistic FC layer flattens the feature volume (signature vector), followed by two FC layers



producing a final regression output. While previous methods focused exclusively on binding scoring
or classification, DeepSite [79] aims at finding potential binding sites. The input protein 3D grid is
augmented along the channel axis with 8 physicochemical descriptors, and the network is a standard
CNN (3D convolution followed by MaxPooling), leading to a regression score of potential. Imrie et al.
DenseF'S [80] combines Ragoza’s data representation and a particular kind of skip-connection network
called a Densely Connected Convolutional Network (DenseNet) [81]. In 2018 Stepniewska-Dziubinska et
al. designed Pafnucy [82], a classic CNN built to estimate affinity between a ligand and a target from an
initial 4D tensor (3D coordinates discretised on a 3D grid and 19 features). The network is composed of
three convolutional layers followed by three FC layers that produce a binding score. DeepAffinity [83]
is another unusual network engineered around Recurrent Neural Networks (RNN) for scoring, taking a
SMILES representation of the ligand, while the target embedding is a string called Structural Property
Sequence. Both terms are then independently milled into a sequence-to-sequence (autoencoder) model,
their latent vectors processed each by a 1D convolutional layer, then concatenated before a FC layer
produces the affinity score..

In DeepBindRG [84], Zhang et al. cleverly flattens the input complex into a projected 2D image
and performs Residual Network (ResNet) [85] computations to produce an affinity score. Later in 2019,
Zheng et al. OnionNet [86] suggested a Multiple-Layer Intermolecular-Contact, where a series of shells
is built around a central atom. Inside each onion layer, we find a relevant feature set (depending
on its encapsulating atoms). This allows the authors to account for non-local interactions. Eight
atom types (leading to 64 pairs) and 60 shells are stacked for a total of 3840 features. The model
is three convolutional layers followed by three FC CNN. FRSite for faster R-CNN site predictor [87]
was developed to predict protein binding sites, it takes a 3D grid with 8 commonly used channels to
represent the target. The authors employ a particular 3D CNN adapted from the Faster R-CNN [8§].
This network is split into three sub-networks: the first part is a 3D CNN feature extractor, whose output
is fed to the second and third parts of the network. The second part is a Region Proposal Network-3D
allowing to extract putative binding sites. Finally, the outputs of the first and the second parts are
given to the third one to classify the resulting sites.

Francoeur et al. [89] extended the work from Ragoza et al. [77], taking the same input data repre-
sentation and the same general model architecture but performing a comprehensive hyper-optimisation,
ending up with more convolutional layers and average pooling instead of max-pooling. The authors
from Pafnucy [82] also worked on binding site detection with the same protein representation used in
Pafnucy and proposed Kalasanty [90]. The protein is discretised on a 3D grid, and 18 descriptors are
used for each atom. Taking inspiration from semantic image segmentation, Stepniewska-Dziubinska et
al. used a U-Net [91] to identify potential binding sites. The Kalasanty data representation has inspired
the DeepSurf [02] authors who have adapted it. Instead of discretising all the molecule atoms as was
made in the original paper, the authors selected only a few points of interest from a solvent accessible
surface mesh. Then each point neighbourhood is discretised on a 3D grid with the same features as
Kalasanty. Finally, the model is Bottleneck 3D-LDS-Resnet, itself an evolution of ResNet [85].

Graph Neural Networks (GNNs) methods

Graph Neural Networks (GNNs) is a variety of neural network that works on graph-formatted data.
They have evolved from spectral methods to a much more flexible comprehensive modelling tool. Graph
Convolutional Networks (GCNs) are a particular class of GNNs, applying convolution and pooling
operations from CNNs to graphs.

The first molecular docking method to use graph data was PotentialNet [93]. Instead of just covalent
bonds, authors consider additional bonds with one adjacency matrix for each bond type, concatenated
along the channel resulting in a 3D adjacency matrix. Moreover, they use a distance matrix that
indicates the distance between each atom pair. The network is a GCN split into three stages: on the
first stage, only covalent bonds are used for the propagation, then both covalent and non-covalent bonds
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are used for the propagation, and finally, a ’graph gather’ step, which gathers matrix’s rows by summing,
is followed by a FC layer used to produce a binding score. In 2019, Lim et al. [94] introduce a Graph
Neural Network (GNN) with a Gated-Augmented Attention Layer (GAT). For each node, in addition
to regular edges, atoms in a close neighbourhood (5A) are also connected. This method works on three
matrices: the first is the node features matrix, the second is the adjacency for only covalent bonds (in
the ligand and the protein), and the third is adjacency for inter-molecular interaction (the second matrix
is included in it). At each step of the network, the node feature matrix is on the one hand updated by
a GAT, and the second matrix is, on the other hand, updated by another GAT, which uses the third
matrix. Then the second updated node features matrix is subtracted from the first. After some steps,
all node feature vectors are summed, and a FC layer uses this vector to classify the complex.

Torgn et al. propose a VS method that uses two graphs to represent the target and the ligand [95].
On the target side, graph nodes are the residues (restricted to the binding site), edges connect every
neighbour in a sphere of 7A, and the features are extracted from the FEATURE program [96]. The
ligand graph is a classic 2D molecular graph. Then training is a two-steps process: the first encodes
the binding-site graph (dimensionality reduction). The encoder is kept for the second step, which
concatenates its output to a second GCN trained on ligand graphs. The result is fed to the FC layer and
a Softmax classifier. Tanebe et al. [97] use GNNs to classify good or bad binders. This work represents
the ligand by a graph generated from SMILES string where nodes are atoms and edges are bonds. The
target is a graph where nodes are residues, and edges types (5 in total) depend only on the distance
between C,, of each residue. A GNN then embeds both graphs, and the resulting concatenation is used
to classify the complex. In the Tsubaki et al. method [98], the authors use the SMILES representation
of the ligand to produce a graph and then use a GNN to embed this graph into a vector. For the target,
the amino acid sequence is embedded by a CNN. Both are concatenated, and an FC followed by Softmax
makes a prediction. Recently Morrone et al. proposed a new DL method for the docking problem [55]
using GCN. This method uses two graphs as input. The first represents the covalent ligand graph (L).
The second graph is a contact graph built by hopping from the protein atoms to the ligand atoms in
a 4A neighbourhood (LP). This modular method can take L, LP, or L+LP as input. In any case, the
input is embedded by a GCN and fed to a CNN for prediction.

Networks’ architecture comparison

The DL family is divided into three classes: MLPs, CNNs, and GNNs. We presented three MLPs, but
only two describe their architectures, which is not enough to perceive an evolution of MLP’s architecture.
Moreover, both with known architecture are just different versions of the same method.

Regarding CNNs, a large variety of networks (ResNet, UNet...) bring many architectural possibilities.
For the CNNs, the main architecture is adapted from 3D grids (3DCNN), like AtomNet or Pafnucy. The
topologies are not identical, but they use the common CNN layers. However, some methods propose
new original architecture like the Atomic CNN or use well-known architecture like Kalansaty, which
is based on UNet, a network historically created for image segmentation. Because of the black-box
nature of DL-based models, it is difficult to assert the superiority of a CNN topology with regards to
its counterparts: it heavily depends on the chosen data representation.

In the case of GNNs, the limited number of available methods does not allow highlighting a particular
architecture. It should be noted that some methods use GNNs as a first step to embed the inputs and
then use FC layers or a CNN to produce an output.

Performance measurement

So far, we have been focusing on modelling only, but as mentioned previously, datasets are not only
dedicated to training but also to evaluate and assess the methods. Therefore, this section aims to present
usual performance metrics for classification methods (VS), SF, and binding site detection.
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VS assessment

In addition to datasets, authors also use a series of metrics to compare to other existing contributions.
In the case of VS, the model is evaluated on its capacity to distinguish between binding and non-binding
ligands. Generally, the Enrichment Factor (EF) or the Area Under the Curve (AUC) of the Receiver
Operating Characteristic curve (ROC) are used. EF evaluates if selected ligands are better binders
than randomly selected ones and takes only real positive values: a poor classifier has FF =< 1, a
better-than-random one has FF > 1. This metric allows comparing the rate of true binders among the
top-ranked ligands (in top {1%, 2%, 5%, 10%}) to that rate in a random selection. The ROC' curve, on
the other hand, is used to visually assess the quality of a classifier as its discrimination threshold varies.
The best AUC value is 1.0 and 0.0 in the worst case (random case being 0.5).

Table 4] gathers AUC' performances from various methods including those drawn from [58 [59]. This
table shows the difficulty to draw a simple conclusion about VS performances. The dataset is the first
problem that arises when trying to compare pure performance. Second, most methods are not self-
supporting and require the adjunction of other classic sampling software. So, even if two methods are
assessed on the same dataset, their performances are heavily impacted by the chosen sampling method.
Moreover, even though the sampling method is theoretically the same, they may differ on parameter
initialisation, as explained by Shen et al. [59]. Consequently, we are condemned to use raw performances
given in the same paper to compare some methods. For example, Lim’s method is better than AtomNet
and Ragoza’s method, according to Lim et al. [94].

SF assessment

Su et al. Comparative Assessment of Scoring Functions (CASF) [99] introduced three criteria to
assess a SF method: scoring power, ranking power, docking power. In more details:

e Scoring reflects the ability for a SF 7to produce binding scores in a linear correlation with ex-
perimental binding data”. It uses Pearson’s correlation coefficient (R,) (sometimes R2) and the
standard deviation in linear regression (SD). Pearson coefficient can take its value between —1
and +1. The closest it is to 1, the better is the method assessed. For SD, the smallest value is
best. R, and, to a lesser extent, SD are the most used criterion.

e Ranking refers to the ability for a SF "to correctly rank the known ligands of a certain target
protein by their binding affinities when the precise binding poses of those ligands are given”. The
assessment uses Spearman’s rank correlation coefficient (p), Kendall’s rank correlation coefficient
(1) and, the Predictive Index (PI). These criteria have values in [—1,1], for all +1 indicate a
perfect ranking and —1 a reverse [99).

e Docking represents the ability for a SF ”to identify the native ligand binding pose among
computer-generated decoys”. Assessment uses RSMD (eq [l)) to compare top-ranked ligand by
the SF method and native ligand pose. A threshold is used to consider docking as a success. The
success rate is used to judge the method as a success. Commonly the used cutoff is 2.0A.

RMSD = \/Z?=°<Xﬁ - X (1)

Where E is expected atoms’ coordinates, S is simulated atom’s coordinates, and n is the number
of ligand’s atoms.

Note that the CASF dataset is identical to the PDBbind core set for the corresponding year. Table
lists some method assessments for scoring power. Contrary to Table Table |5 items are more
comparable: to assess a SF, authors used a dataset of docked complexes. Consequently, the sampling
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step is unnecessary, and thus assessments differ only by the used dataset. However, a wide dataset
variety is available, each with several subsets and versions (PDBbind for instance). If the used datasets
are identical, then their respective performance can finally be compared. For example, OnionNet has a
better R, score than Francoeur’s method on the PDBbind 2017 core set.

Binding site detection assessment

To assess binding site detection methods, there are two main options. At first, we can use a dataset
of already docked ligand-protein complexes (like PDBbind) and predict binding sites for proteins. Then,
for each complex, it is possible to consider the method output as a success if at least one predicted protein
site is the real binding site. This approach is interesting if the binding site composition is unknown.

However, all previously mentioned methods used the SCpdb [48] dataset for training and assessment.
This dataset contains the sites’ atomic composition and, once the predicted sites are defined, atomic
compositions can be compared. Authors use two metrics:

e The distance to the centre of the binding site (DCC) metric measures the distance either
between the centre of the real binding site and the closest atom of the predicted site, the distance
or between the centre of the real binding site and the centre of the predicted site. In both cases,
the site detection is a success regarding a threshold fluctuating between 4A and 20A. Better the
success ratio is, the better is the method.

e The discretised volumetric overlap (DVO) metric aims to assess the overlapping between
the predicted and the real binding site. Authors use the Jaccard Index on the sites’ convex hull.
Both volumes are discretised, and the ratio between the overlapping volume and merged volume
is computed. Closest to 1 the Jaccard Index is, the better is the method.

We do not propose a table gathering binding site detection methods’ performances because data are
often provided as charts without the raw values. However, most recent methods are compared by their
authors to the older ones in their respective papers.

Conclusion

This paper aimed to present how ML and particularly DL can help us to tackle molecular docking
challenges. We have presented three challenges: sampling, scoring, and computing time. Regarding the
sampling challenge, from the best of our knowledge, no ML method attempts to tackle it.

Concerning the scoring challenge, it is, without doubt, the most studied problem. Indeed, ML scoring
methods are very interesting regarding the scoring function space exploration. Many ML methods have
been developed for it, and most of them outperform classical methods. Thus, ML SF may be regarded as
a hybrid evolution between knowledge-based and empirical functions. Indeed, similarly to knowledge-
based, ML methods attempt to extract statistics from a comprehensive database to build the most
relevant model. On the other hand, ML methods use relatively simple inputs (see Data representation
part) and find links between them. It is even more evident for DL methods that aim to optimise the
networks’ weights, which is very similar to the goal of an empirical function. Although they are not
the main focus for this review, a particular class of ML models called physics-informed DL has a lot of
potential because it incorporates physical constraints in the learning process.

This survey showed ML methods outperform the classic ones, whether for scoring or classification.
Moreover, recently proposed GNN methods have interesting performances and are still today little-
explored. Therefore, we think it is an approach that may be more studied in-depth.

The last-mentioned challenge is about time computing. It should be noted that no ML scoring
methods are compared with others regarding time computing. That is why it is harder to discuss the
capacity of ML towards time reduction. However, as explained, a delimited search may be used to reduce
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time, and some ML methods to predict binding sites are presented in our survey, and they outperform
classical binding site detection methods, according to their authors. Therefore, we think GNNs may be
an interesting approach to propose a better method.

One general drawback is that almost all methods are not proposed and assessed in a complete docking
pipeline; it would be interesting to compare classical ones like AutoDock with ML workflow. Moreover,
the training and inference times of ML methods are never mentioned by their authors. We believe
this information should be included in more works as it provides invaluable insights on the models’
complexity.

Our future works aim to propose a complete pipeline including data preparation, binding site detec-
tion, and molecular docking, the last two with ML. Our work will especially focus on the Extra-Cellular
Matrix, a complex 3D network that supports cells. This tissue is involved in ageing or some diseases
like tumours and a main research target from our teams.
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Figure 1: On the left, the illustration of the classical docking process that consists of finding the best ligand for a given
protein. On the right, the illustration of the inverse docking process consisting of finding the best target for a given ligand.
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Figure 2: A simplified workflow of the molecular docking process with sampling and scoring sub-processes.
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Software Year | Sampling Scoring Ref
ICM 1994 | Stochastic (MC) | Force field (ECEPP) | [100]
GOLD 1995 | Stochastic (GA) | Force field (AMBER) | [101]
SANDOCK 1998 | Shape Matching | Empirical [102]
MultiScore® 2001 - Consensus [103]
LigandFit 2003 | Stochastic (MC) | Empirical [104]
DrugScore® 2005 - Knowledge-based [105]
DFire® 2005 - Knowledge-based [106]
Glide 2006 | Stochastic (MC) | Empirical [107]
PLANTS 2006 | Stochastic (AC) | Empirical [108]
SODOCK 2007 | Stochastic (PSO) | Force field (AMBER) | [109]
eHiTS 2007 | Systematic (FB) | Empirical [110]
KScore® 2008 - Knowledge-based [111]
AutoDock 4 2009 | Stochastic (GA) | Force field (AMBER) | [35]

AutoDock Vina | 2010 | Stochastic (GA) | Empirical [112]
VoteScore® 2011 - Consensus [113]
FRED 2011 | Systematic (IM) | Customisable [114]
D-Score® 2013 - Force field (Tripos) [115]
FlexAID 2015 | Stochastic (GA) | Empirical [116]
MOLS 2.0 2016 | Systematic (IM) | Force field (AMBER) | [117]
DINC 2.0 2017 | Systematic (FB) | Empirical [T18]

Table 1: A non-exhaustive list of some molecular docking software and the class of their sampling and scoring methods. ¢

are only scoring functions. This list is based on (R. Vasseur, PhD thesis, University of Reims Champagne-Ardenne, 2015)

Name \ Year \ Input \ Usage \ Refs
Linear Regression
TABA \ 2020 \ Mass-Spring System \ Scoring \ [61]
Random Forest (RF)

RF-Score 2010 Set of descriptors Scoring [62]
RF-Score-v2 2014 Set of descriptors Scoring [119]
RF-Score-v3 | 2015 Set of descriptors Scoring [63]
RF-Score-VS | 2017 Set of descriptors VS [64]
SIEVE-Score | 2019 Energy vectors VS [65]

Gradient Boosting trees
AGL-Score 2019 Multi-scale weighted Scoring, VS [66]
coloured sub-graphs
Support Vector Machine (SVM)

SVR-KB 2011 | Pairwise potential vector Scoring [67]

SVR-EP 2011 Set of descriptors Scoring
ID-Score (SVR) | 2013 Set of descriptors Scoring [68]
PLEIC-SVM 2017 PLEIC Fingerprint Target-specific VS® | [69]

Table 2: Machine Learning methods for ligand-protein docking, *: Target-specific VS means this method was developed
for a specific type of target.
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Name \ Year \ Input \ Usage \ Ref
Multi-Layers Perceptrons (MLPs)
NNscore 2010 Set of descriptors VS [70]
NNscore 2.0 | 2011 Set of descriptors Scoring
Deep Docking | 2020 2D fingerprints VS [72]
Convolutional Neural Networks (CNNs)
AtomNet(© | 2015 3D grid with descriptors VS [75]
DeepVS 2016 Set of descriptors VS [76]
Ragoza2017 | 2017 3D grid of 34 channels VS [77]
Atomic CNN | 2017 3D structure Scoring [78]
DeepSite® 2017 3D grid of 8 channels Binding site | [79]
detection
DenseF'S 2018 3D grid of 34 channels VS [80]
Pafnucy 2018 3D grid of 19 channels Scoring [82]
DeepAffinity | 2019 Fingerprints Scoring [83]
DeepBindRG | 2019 2D matrix Scoring [84]
OnionNet 2019 64 descriptors for each shell Scoring [86]
FRSite® 2019 3D grid of 8 channels Binding site | [87]
detection
Francoeur2020 | 2020 3D grid of 28 channels Scoring [89]
Kalasanty® 2020 3D grid of 18 channels Binding site | [90]
detection
DeepSurf® 2020 3D grid of 18 channels Binding site | [92]
detection
Graph Neural Networks (GNNs)
PotentialNet | 2018 Atoms bond graph Scoring [93]
Lim2019 2019 Atoms bond graph VS [94]
Torgn2019* 2019 | Target’s residues graph + Ligand graph VS [95]
Tanebe2019* | 2019 | Target’s residues graph + Ligand graph VS [97]
Tsubaki2019* | 2019 Target’s sequence + Ligand graph VS [98]
Morrone2020 | 2020 | Ligand bond graph + Contact graph VS [55]

Table 3: Deep Learning methods for ligand-protein docking. According to CNNs’ terminology, which comes from image
terminology, channels are used to represent descriptors.® indicates end-to-end methods.
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Presented | Docking Assessed 15t Used | AUC | 2™ Used | AUC | Ref®
method engine method dataset dataset
PLEIC-SVM Glide Gscore DUD 0.82 [69]
PLEIC-SVM 0.93
NN-Score Vina Vina DUD 0.70 [70]
methods NNScore-v1 0.78
NNScore-v2 0.76
DeepVS Dock 6.6 Dock 6.6 DUD 0.48 [76]
DeepVS 0.74
Vina Vina DUD 0.62
DeepVS 0.81
RF-Score-VS Vina Vina DUD-E | 0.74 [64]
RF-Score-V3 0.67
RF-Score-VS 0.84
Dock 6.6 Dock 6.6 DUD-E 0.61
RF-Score-V3 0.66
RF-Score-VS 0.80
AtomNet(©) Smina Smina DUD-E | 0.696 [75]
AtomNet(© 0.895
Ragoza’s Smina Smina DUD-E | 0.716 MUV 0.549 | [77]
method RF-Score 0.622 0.512
NN-Score 0.584 0.441
Ragoza’s method 0.868 0.522
DenseF'S Vina Vina DUD-E | 0.703 MUV 0.546 | [80]
Ragoza’s method 0.862 0.507
DenseFS 0.917 0.534
Lim’s method | Smina Smina DUD-E | 0.689 MUV 0.533 | [94]
AtomNet(© 0.855
Ragoza’s method 0.868 0.518
Lim’s method 0.968 0.536
Torgn’s Vina DUD-E | 0.716 MUV 0.538 | [95]
method RF-Score 0.622 0.536
NNScore 0.584 0.454
Ragoza’s method 0.868 0.567
Torgn’s method 0.886 0.621
Morrone’s Vina Vina DUD-E | 0.70 [55]
methods Morrone L 0.82
Morrone LP 0.65
Morrone L+LP 0.81

Table 4: Some assessment of VS methods with DUD, DUD-E, and MUV datasets, ¢ listed scores are sometimes in
supporting information. A same method can have different performances on the same dataset and with the same docking

engine, it is due to the impact of data preparation and docking engine setting.

26




Presented method Dataset Assessed SF R, SD | Ref*
RF-Score PDBbind 2007 Core Set ChemScore 0.441 | 2.15 | [62]
GoldScore 0.295 | 2.29
RF-Score 0.776 | 1.58
RF-Score-v2 PDBbind 2007 Core Set | RF-Score-v2 | 0.803 | 1.54 | [119]
RF-Score-v3 PDBbind 2007 Core Set RF-Score-v3 | 0.803 | 1.42 | [63]
SVR-KB CSAR-SETI1 SVR-KB 0.59° [67]
and SVR-EP 0.55°
SVR-EP CSAR-SETI2 SVR-KB 0.67°
SVR-EP 0.50°
ID-Score PDBbind 2007 Core Set ID-Score 0.753 | 1.63 | [68
Atomic CNN PDBbind 2015 Core Set | Atomic CNN | 0.448° [78]
PDBbind 2015 Refined Set | Atomic CNN | 0.529°
Pafnucy PDBbind 2016 Core Set Pafnucy 0.78 | 1.37| [82]
CASF-2013 Pafnucy 0.70 |1.61
DeepBindRG CASF-2013 Vina 0.5725 [84]
DeepBindRG | 0.6394
AGL-Score CASF-2007 ID-Score 0.753 [66]
Vina 0.554
AGL-Score 0.830
CASF-2013 AGL-Score 0.792
OnionNet PDBbind 2013 Core Set AutoDock 0.54 | 1.61 | [86]
Vina 0.54 1.60
ChemScore 0.592 | 1.82
Pafnucy 0.70 1.61
RF-Score-V3 0.74 1.51
AGL-Score 0.792 | 1.45
OnionNet 0.78 | 1.45
PDBbind 2016 Core Set Pafnucy 0.78
RF-Score-V3 0.80
AGL-Score 0.833
OnionNet 0.816
Francoeur’s method | PDBbind 2016 Core Set Francoeur 0.733 [89]

Table 5: Some assessment of SF methods, ¢ listed scores are sometimes in supporting information, values with ® are (Rp)*.
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