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Abstract 

Artificial intelligence (AI) is often presented as a new Industrial Revolution. Many domains use AI, including 

molecular simulation for drug discovery. In this review, we provide an overview of ligand–protein molecular docking 

and how machine learning (ML), especially deep learning (DL), a subset of ML, is transforming the field by tackling 

the associated challenges.  
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Introduction 

Drug discovery is a complex process that involves in vitro tests of putative drugs and in vivo validation, among other 

steps. However, before these steps, researchers need to perform an extensive evaluation of candidate molecules, 

from which a single drug might become a commercialized product. Testing an extensive database, even in vitro, is 

time-consuming and costly. Indeed, the drug discovery process takes an average of 12 years from start to 

commercialization, with an average cost of US$1.8 billion.1 

Researchers and pharmaceutical industries aim to reduce both the time and cost associated with drug development. 

Molecular docking can be used as a complex filter to highlight only the most interesting drug candidates. Molecular 

docking can also be used to detect potential drug side effects or molecule toxicities. Molecular docking uses the 3D 

structures of two molecules, the ligand and the target, to predict the preferred orientation of the first with respect 

to the second when bound to each other to form a stable complex.2 Usually, the ligand is the smallest molecule, 

although the denomination choice is project dependent. In drug discovery, the ligand is an active principle, and the 

target is a biological macromolecule (e.g., a protein or DNA). However, the docking covers a wider range of pair 

possibilities: protein–DNA, protein–RNA, protein–sugar, protein–peptide, and protein–small compounds. We focus 

here on protein–small compound (commonly called protein–ligand) molecular docking because it covers an 

important selection of existing docking methods. We present concepts for ligand–protein docking that are also 

usable for other docking types. Several experimental methods can be used to obtain the 3D structure of a molecule. 

Although X-ray-based methods are by far the most prominent, nuclear magnetic resonance (NMR)-based and 

electron microscopy (EM)-based methods also feature. For instance, the Protein Data Bank (PDB), a database of 

protein 3D structures, includes almost 90% of the structures solved with X-ray crystallography (and almost 99% if 

only the structures for which the ligand–protein binding affinity is known are taken into account)3 and almost 8% 

solved with NMR. Information about methods and statistics are available on the PDB4 website (www.rcsb.org). 

Drug discovery often requires tests against a comprehensive ligand library on one target. This process is called virtual 

screening (VS)5 or high-throughput VS (HTVS). It is used to reduce the number of tested ligands with in vitro and in 

vivo experiments; the ranking of the ligands allows the elimination of candidates displaying very low affinities and, 

thus, not interesting from a pharmaceutical perspective. Finally, through VS, the most interesting molecules are 

selected for further in vitro and in vivo testing. VS can be ligand based (i.e., only ligand information is used): 

depending on the method, its structure, chemical properties, or a combination thereof are used to predict the 

binding, given that similar ligands will bind similar targets. VS can also be structure based, using the complex 

molecular structure to determine whether the ligand will bind the target. Molecular docking can be used to perform 

mailto:angelo.steffenel@univ-reims.fr
https://doi.org/10.1016/j.drudis.2021.09.007


* Corresponding author Steffenel, L.A. (angelo.steffenel@univ-reims.fr) 
Published in Drug Discovery Today (January 2022) https://doi.org/10.1016/j.drudis.2021.09.007  2  

a structure-based VS campaign. Some papers use the molecular docking expression as a structure-based VS 

synonym.6, 7, 8 Here, we focus only on structure-based methods. 

Detecting the optimally bound ligand among a database is an important use for molecular docking. However, it can 

also be the basis of research to find new targets (in the case of drug repositioning) or to characterize potential side-

effects, such as toxicity,9 whereby the protein and ligand roles are switched (Fig. 1). The authors call this process 

variously inverse docking,10 reverse docking,11 inverse VS,9 or target screening.12 Additionally, inverse docking 

processes are performed using classical docking methods structured in a specific pipeline. 

In recent years, ML methods, such as DL, have been implemented to optimize the docking process. In this review, we 

discuss ligand–protein docking and the associated ML approaches. 

Ligand–protein molecular docking 

Based on 3D structures, a molecular docking13 experiment can predict the conformation of a complex and its binding 

affinity. Molecular docking is a combination of two processes. The first is sampling, which involves generating a set 

of conformations from a rigid 3D ligand. The method is evaluated on its capacity to explore the conformational space 

of the ligand. This space gathers all theoretically possible conformations. The second step is scoring, which evaluates 

the binding affinity of each protein–ligand complex formed (called a pose). Even if sampling and scoring are 

introduced separately, they can be significantly correlated because scoring functions (SF) often guide the sampling 

method. 

The main challenges for any molecular docking method (Fig. 2) are dealing with molecular flexibility and faithfully 

reflecting real binding, both with a reasonable computing time. Here, we summarize problems associated with 

molecular docking, current challenges, and approaches to address them (without ML). 

First challenge: Molecule flexibility 

In real conditions, the flexibility of the molecules is reflected through the vibrations of bounds, angles, and dihedrals. 

Even though it is an essential element in molecular docking, many of the pioneer methods considered molecules as 

rigid structures and used the principle of lock-and-key14 to solve docking problems. New approaches based on 

heuristics and improvements in computing capacity allowed the integration of ligand flexibility by exploring the 

conformational space of the ligand. These methods are semiflexible because only the smallest molecule is 

considered flexible, whereas the target is still rigid.15 Progressively, other methods have been developed to consider 

both molecules as flexible. Hence, the flexibility of the target can be considered in different ways16: the 

conformational space of the target can be assessed with extensive sampling (e.g., through molecular dynamics), and 

relevant structures can be selected to perform numerous rigid target docking experiments. Another strategy 

considers the side-chain flexibility of the residues around the binding site. Given the hypothesis that the presence of 

the ligand induces these changes, it is known as ‘induced fit’.16 

The ligand conformational space sampling 

A molecule can have several degrees of freedom (three to describe its position, three its orientation, and the last to 

characterize its intrinsic flexibility regarding rotatable bounds or dihedrals), all of which generate the conformational 

space. Exploring this space is computationally infeasible even for a small compound. Thus, a range of sampling 

methods exists, each of which optimizes its exploration and to find the best conformations. Sampling methods can 

be classified into shape matching, systematic, stochastic, and simulation.17, 18 Table 1 presents examples of docking 

software and associated sampling techniques. Stochastic methods are currently the most used and involve a broad 

panel of methods. 

Shape-matching methods 

Shape matching is a method used by the first docking program, DOCK.19 Such techniques represent molecules (the 

ligand and the receptor) with geometrical shapes, such as spheres or polyhedrons, and use the principle of matching 

or complementary shapes to find new conformations. However, because it does not consider the internal ligand 

flexibility, one solution is to generate ligand conformations immediately before the search.16 

mailto:angelo.steffenel@univ-reims.fr
https://doi.org/10.1016/j.drudis.2021.09.007


* Corresponding author Steffenel, L.A. (angelo.steffenel@univ-reims.fr) 
Published in Drug Discovery Today (January 2022) https://doi.org/10.1016/j.drudis.2021.09.007  3  

Systematic methods 

Systematic methods allow for quantitative exploration of the conformational space of the ligand. Iterative methods 

(IM) attempt to generate all conformations of a ligand, starting from a given conformer. All degrees of freedom are 

explored, and a given increment controls the size of the sampling. The generated conformational space can be huge 

even for a small ligand. 

Database methods use databases of conformers, such as Flexibase.20 These databases contain, for each ligand, a set 

of conformations and, instead of computing all possible geometries, favor communication with a database holding 

precomputed conformations. Thus, the computing time is reduced at the expense of important storage space for the 

databases. 

Finally, fragment-based methods (FBs)21 can be used to search for the best conformation, either through place-and-

join strategies or incremental strategies. Place-and-join methods cut the ligand into fragments and place them 

around the target site. Then, each fragment is moved to minimize its energy and, finally, all fragments are joined to 

rebuild the ligand. By contrast, incremental methods place the first fragment, minimize its energy, and then add the 

next fragment, which is also minimized. The process is repeated until the ligand is fully rebuilt. Ligand cutting can 

bring uncertainty in the final ligand pose. Indeed, energy minimization can differ between an isolated piece of ligand 

and the whole molecule. The rebuilt poses can sum the imprecision of all ligand pieces. 

Stochastic methods 

Unlike systematic methods, stochastic methods are used to explore only a small part of the conformational space of 

the ligand. These methods use pseudo-random functions to generate conformations and SFs to guide them in their 

exploration of the conformational space. The most used methods are Monte-Carlo (MC),22 ant colony (AN), genetic 

algorithm (GA), and particle swarm optimization (PSO).23 The choice of the hyperparameters influences the 

stochastic methods and, thus, some relevant areas might be forgotten. 

Simulation methods 

These methods explore the conformations of the molecule using computed simulations, such as molecular dynamics. 

Simulation methods use classic physics laws, such as Newton’s law, to simulate atomic and molecular motions and 

generate new conformations. For instance, De Azevebo24 used the program GROMACS,25 a molecular dynamic 

solution. Simulation-based methods notorious drawback is the compute time to explore the conformational space, 

which is why these methods mainly complement other methods.17 

Second challenge: The binding scoring 

Ranking of the bound conformation of the ligand is managed, for all software, with a scoring function. The SF usually 

aims to estimate the free energy of binding. Given that computing the exact value of this energy is computing 

intensive, SFs can be designed to produce a score accurate enough to be used in docking simulation, allowing for 

many evaluations. In addition, SFs can be used to guide sampling algorithms. Among the different classes of SF, 

historical and hierarchical families17, 26, 27 include physics based, empirical, knowledge based, and consensus. First, we 

review the mathematical foundations of scoring functions: the scoring function space. Examples of software and 

standalone SFs are presented in Table 1. 

The scoring function space 

A SF determines the conformation of the ligand that binds best with a given protein. The first protein space 

definition deals only with sequence.28 However, the most appropriate definition is ‘a space containing all protein 

folds, where similar structures are close together’.29 Hence, the ligand can be considered as a chemical space item 

that gathers all small compounds.30 

Each complex is a set comprising an item of the protein space and an item of the chemical space. A third space is the 

SF space, which contains all possible scoring functions. It assumes that at least one SF space item can predict the 

binding affinity between the structure of a protein space and a compound from the chemical space. Computational 
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methods enable this space to be explored to determine the optimal SF for the considered protein and chemical 

subsets. 

Physics-based scoring functions 

The physics-based family was first introduced by Li et al.27 to gather different SF types, the most well known of which 

is the force field class. This subclass of SFs estimates the free energy with a weighted sum of several energy terms. 

Which selection depends on the chosen force field. The most common energy terms are Van der Waals, electrostatic 

interactions, and hydrogen bonds. Numerous force fields are available, including AMBER,31 GROMOS,32 OPLS,33 and 

CHARMM34. Force field-based SFs can be designed using a single or a combination of different force fields. Force field 

functions are often used for their accuracy related to the use of atomic distances and separate computing of bound 

and unbound complex energies, such as implemented in AutoDock4.35 The physics-based family also comprises 

solvent models and quantum mechanics classes. The former adds solvation/desolvation effects and torsion entropy 

to classical force-field terms.36 By contrast, the latter mixes quantum and molecular mechanics to improve SF 

accuracy in a reasonable computing time.37 Li et al. found that quantum mechanics-based SFs are currently the most 

promising physics-based subclass.27 

Empirical scoring functions 

Similar to force field-based methods, empirical methods estimate the free energy of binding but without massive 

computing requirements. This estimation is achieved by evaluating a weighted sum of parameters, such as the 

number of hydrogen bonds, hydrophobic/hydrophilic contacts, and so on. These parameters are simpler than force-

field parameters and, thus, also quicker to compute. 

Knowledge-based scoring functions 

Knowledge-based SFs rely on the elaboration of a potential of mean force.38 Based on the statistical analysis of 

intermolecular interactions within large 3D structural databases of complexes, the score attributed to a new 

complex considers that intermolecular interactions between certain types of atom or functional group are more 

probable than others. 

Consensus scoring functions 

Each choice has compromises, and some SFs perform better on an entire class of complex but poorer on others. 

Through the combination of different types of SF, consensus SFs aim to optimize their respective advantages. This 

can be achieved in different ways, such as number-by-number, rank-by-number, vote-by-number, or through a linear 

combination.26 

Third challenge: Computing time 

Computing time is a key metric for both sampling (huge space to explore) and scoring (invoking occurrences). In both 

cases, the choice of algorithm and its implementation are crucial. Regarding the sampling, a way to reduce 

computing time involves docking the ligand on a delimited zone of the protein surface (e.g., a cube with a 20 Å edge 

centered on a specific point of interest is regularly used). Therefore, knowledge of the localization of the interaction 

site on the target is crucial and is often related to biological results. The drawback associated with this method lies in 

the fact that it is not possible to generalize the results to uncharacterized or different systems easily. Indeed, if 

known ligands are bound on the site of a particular target, there is no guarantee that new ligands bind in the same 

site. Similarly, a localized search can not be transposed to a new target. Some studies use more demanding docking 

simulations without any a priori knowledge and explore the surface of whole target to overcome these limitations: 

this process is called blind docking. The choice of a delimited area significantly impacts the docking accuracy: if the 

box does not contain the binding site or only a part of it, then docking will be erroneous. 

Furthermore, some methods, such as binding site detection, allow the use of delimited searches on a target without 

a priori information by predicting putative binding sites on the target surface. Commonly, this search is done either 

by a geometrical search, such as FPocket,39 or by looking for the most interesting zones regarding the free energy of 

binding, as in Q-SiteFinder, which uses a −CH3 probe to detect such zones.40 Usually, no information about the ligand 
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is necessary. Another way to reduce time is to use integrative docking methods, which integrate experimental data 

to drive the model.41 

Finally, another way to accelerate computing is to use a high-performance computing (HPC) environment. Even if 

this avenue is independent of the docking software, it should not be dismissed. A parallel approach was recently 

developed, called Automatic Molecular Inverse Docking Engine (AMIDE),42 initially intended for inverse docking and 

fitted for a classic approach. AMIDE is based on AutoDock4 and its default SF and includes a set of scripts allowing 

parallel execution on HPC environments. 

Data 

Data have a key role in the development of molecular docking methods, especially for ML-based methods. Data 

quantity, and quality, and how the model represents them significantly impact performance and accuracy. Regarding 

data volume, the PDB provides an extensive database of molecular complexes. 

Data quality 

When developing ML models for molecular docking, it is important to train and validate the models over established 

data sets instead of using synthetic or augmented data sets. This guarantees representativeness, exhaustiveness, 

and variety for the training set, and allows for intermethod comparisons of objective criteria. Common data sets 

include: (i) PDBbind,43 which is based on the PDB and updated each year with new complexes; each new version 

comes with three sets of different sizes: General (21 382), Refined (4852), and Core (285) for the 2019 version; (ii) 

Directory of Useful Decoys (DUD)44 and DUD-E45 (for Enhanced) contain 40 and 102 target molecules and 2950 and 

22 886 active ligands, respectively. Each ligand has 36 or 50 decoys, respectively that are physically close but 

topologically different; (iii) the Maximum Unbiased Validation (MUV)46 data set contains 17 targets, ligands (30 per 

target), and decoys (50 per ligand). It is based on the National Institute of Health (NIH) PubChem database; (iv) The 

Community Structure-Activity Resource (CSAR),47 which is a docked-complex database; (v) the sc-PDB,48 which is a 

database based on the PDB, but compared with the previously mentioned data set, it also contains information 

about protein binding sites. 

Data representation 

Data representation is a central piece of the data science response to a specific problem. Data have become more 

detailed and incorporate increasingly complex pieces of information. The choice of representation type has a 

significant impact on docking performance. Even though 3D coordinates can be directly used as input, methods 

often use other representations produced from 3D coordinates, including descriptors, molecule fingerprints, or 

interaction fingerprints, image-based, or graphs. 

A set of descriptors is the easiest way to represent a molecular complex. A descriptor is a hand-engineered feature 

characterizing a variable degree of the fidelity of a complex or a molecule. Descriptors can also reflect 

physiochemical properties, such as a list of atoms of certain types, the number of atom pairs between the ligand and 

the target for a given threshold, or an energy term. Descriptors can also be geometrical if they are derived from the 

3D structure of a molecule. Finally, a combination of several of these descriptors is usually used to represent a 

complex. This descriptors class is often easily understandable and usable, but the descriptors can only represent the 

complex as a unique object, limiting the model performances. 

Fingerprints are a high-level representation of molecules or complexes. The first category relies on the molecular 

fingerprint, in which 3D data are converted into 1D data, commonly a string of bits, integers, or characters. The 

chemical formula is not detailed, whereas the structural formula has more details but might be less suitable from a 

computing standpoint. Fingerprints can represent 2D structures, such as the MACCS molecular fingerprint, which 

accounts for additional chemical properties,49 or encode 3D structures, such as FuzCav, which represents the protein 

binding site 3D structure combined with chemical properties.50 DL can also be used with Molecular Surface 

Interaction Fingerprinting (MaSIF) to encode a protein.51 The second category is based on interaction fingerprinting, 

the most well known of which are Structural Interaction Fingerprint (SIFt)52 and Structural Protein-Ligand Interaction 

Fingerprint (SPLIF).53 Fingerprints allow improved complex description abstraction. Compared with a set of 
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descriptors that list some chemical/geometrical properties, a fingerprint projects the elements to a latent space 

more suited for ML. In some ways, they behave like autoencoders, a class of dimensionality reduction algorithms54 

used to reduce the input dimensions. 

The emergence of DL and particularly convolutional neural networks (CNNs) has made possible the use of a new kind 

of data representation in the form of its actual 3D structure. Complexes are first discretized on a 3D grid, in which 

each cell of the lattice is a voxel (volumetric pixel). Atoms are sparsely distributed in the lattice. Additionally, voxels 

have channels (e.g., RGB for images) that can complement the set of features with properties such as atom type, 

charge, and hybridization. Image-based data representations better reflect the complexity, including the 3D 

structure, compared with a classic fingerprints method. Moreover, even if a lot of information is integrated into this 

representation, it remains concise. However, the main drawback is that this data representation is sensitive to noise 

because a slight rotation (nudge) of the molecule in one direction results in a completely different data point. 

Moreover, the discretization of the coordinates of an atom might involve a loss of accuracy of the conformation of 

the molecule. These issues can be partially fixed, with data augmentation for the first problem, and a coarser 

molecular representation (considering residues rather than atoms) for the latter. 

Graph data can circumvent previous representation limitations because they change the absolute character of the 

frame of reference to a relative, more flexible one. Additionally, considering the unstructured nature of their data, 

graphs are a natural way to represent molecules. A general formalism allows filling nodes, edges, and global 

properties with all kinds of attribute. Even though molecule representation as a graph is more instinctive, Morrone 

et al.55 used a graph to represent the interaction between a ligand and a target. 

Machine learning for ligand–protein molecular docking 

ML can bring new strategies to score a complex, either by optimizing an existing SF (e.g., refining the weights of an 

empirical function) or by developing a new SF taking the structure of a complex as input.56 Moreover, ML is 

sometimes used for VS (classification mode) and binding site detection. Once the data set is chosen and the data 

representation is decided, the ML model can be developed. The use of ML in molecular docking has evolved rapidly, 

and the previous decade saw the emergence of numerous methods, all bringing significant improvement. 

Here, we provide a comprehensive overview of ML methods used in the context of ligand–protein molecular 

docking, presenting functions used for scoring, classification (VS mode), and binding site detection. Existing studies57, 

58, 59, 60 provide a comprehensive overall view of the domain, detailed in Table 2, Table 3 for ML and DL, respectively. 

Although the ML renaissance is more than a decade old, ML methods were introduced to the field of molecular 

docking relatively recently. Therefore, we classify the methods according to their type. 

Linear regression 

The most basic use of ML is linear regression, which determines the weights of the linear equation. For instance, 

Tool to Analyze the Binding Affinity (TABA)61 represents a ligand-protein interaction as a set of mass-spring contacts 

and then uses ML methods to parametrize the affinity equation of the complex. 

Random Forest methods 

Random Forests (RF) were the first attempt to use ML methods for molecular docking. A RF is an ensemble method 

that builds upon and smooths the results of an ensemble of decision trees. Each tree is built with nodes representing 

a split on a single and unique criterion. Additionally, training on different randomized subsets reduces variance, thus 

improving with overfitting issues, a method called ‘bagging’. 

The first version of RF-Score62 takes a set of descriptors as input that describe the number of atom pairs from both 

molecules involved in the docking. Pairs are conserved if the distance between two atoms is less than a certain cut-

off (which is a hyperparameter), and atoms belong to one of these types: C, N, O, S, P, F, Cl, Br, or I, for a total of 36 

descriptors. RF-Score was updated twice, and the last revision uses energy terms from AutoDock Vina’s SF to 

improve the complex description.63 All three versions use a set of 500 trees to run their models. In 2017, the same 

set of models had been trained against the DUD-E data set under the name RF-Score-VS64 to classify complexes 
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instead of scoring them. More recently, Yasuo et al. introduced Similarity of Interaction Energy VEctor-Score (SIEVE-

Score).65 Compared with RF-Scores, SIEVE-Score performs the search on 1000 random trees and uses a residues level 

representation: for each residue in the targets, three interaction energies with the ligand (Van der Waals, Coulomb, 

and hydrogen bonds) are computed. A complex is represented by a vector of size 3 ∗ nres , where nres is the number 

of residues, called the interaction fingerprint of the complex. This method is simple and powerful but still 

problematic because variable-length input vectors tend to be limiting for many ML models. 

Gradient boosting trees method 

In Gradient Boosting, submodels are trained sequentially instead of simultaneously and from a residual set of its 

predecessor. It is a form of knowledge distillation and often shows better results compared with standard bagging. 

 

In 2019, Nguyen et al. proposed the Algebraic Graph Learning Score (AGL-Score),66 which uses a multiscale, 

multiclass weight-colored subgraph data representation. The entire molecule is a graph in which the attributes of 

the nodes express the type of a selection of atoms along with spatial positioning, and edges represent noncovalent 

bonds, such as Van-der-Waals or hydrogen bonds between the connected atoms. Once the graph is built, a series of 

descriptive statistics is produced from the eigenvalues of the adjacency matrix (or the Laplacian matrix) and is used 

as the input vector to train a Boosted Tree. 

Support vector machine methods 

Support vector machines (SVMs) were a popular class of ML algorithms before the development of DL. First 

introduced for classification problems, SVMs were then adapted for regression (SVRs). The model not only separates 

classes, but also maximizes the margin between elements closest to its center. Combined with kernel methods, they 

are a tool capable of solving nonlinear problems. 

Li et al.67 introduce two models of this kind. The first is based on a knowledge-based pairwise potential vector (SVR-

KB). The other approach takes a set of physicochemical (Van der Waals energy, ratio of ligand-buried solvent-

accessible surface area, and hydrophobic effect) descriptors as input (SVR-EP). ID-Score68 is another SVR for scoring. 

This method is based on the same representation as SVR-EP only with additional descriptors, such as metal–ligand 

bonding interactions or desolvation effects. Finally, PLEIC-SVM is a SVM for specific-target VS that relies on an 

embedding of a fingerprint called the Protein-Ligand Empirical Interaction Component (PLEIC) fingerprint.69 Three 

values are computed for the residue of each target: Van der Waals interactions, hydrophobic contacts, and hydrogen 

bonding. All residue feature vectors are then concatenated to produce the feature vector of the complex used as 

input by a SVM. 

Multilayer perceptron methods 

Multilayer perceptrons (MLPs) were the first deep neural network topologies developed, and were inspired by the 

Perceptron. They comprise stacks of layers formed of a series of units, all connected from layer to layer. 

NNscore v170 was the first attempt to bring artificial neural networks to molecular docking. It is a simple feed-

forward MLP with an input vector of 194 features (including basic pairwise atom binding, energy terms, or the 

number of rotatable bonds), a single 5-unit hidden layer, and a classification output layer (‘good’ or ‘poor’ binder). A 

year later, its v270 made use of energy terms from Vina’s SF as primary descriptors and added features from BINding 

ANAlyser71 (including v1′s descriptors). In addition, the network is rewritten to deal with regression (one output 

neuron), having a better capacity (hidden layer pushed to ten neurons). In 2020, Gentille et al. introduced Deep 

Docking,72 in which the labels are produced by performing molecular docking on a subset of the ZINC1573 ligand 

database with a specific set of proteins. Given that there is no mention of the network topology, a set of 

physicochemical descriptors is used instead. Deep Docking takes the Morgan fingerprint74 to represent the molecular 

structure of the ligand. Deep Docking trains its network on the previously mentioned subset of ZINC15 and classifies 

the other ligands between two classes (binder and non-binder). 

Convolutional neural network methods 
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CNNs comprise convolutional layers and a tool to catch spatial correlations. Filter weights are learned from sliding 

across the layer input to build a relevant abstract representation of the original data. 

AtomNet75 is a commercial molecular docking software and one of the first to rely on CNN. It uses a 3D grid, in which 

each cell represents some basic structural features (e.g., atom types or SPLIF, SIFt fingerprints). The input of the 

network is a vectorized grid with a 20 Å edge and 1 Å spacing, with four convolutional layers, followed by two hidden 

layers of 1024 neurons. A logistic regression classifies the input between two classes. For DeepVS, also a CNN, 

Pereira et al.76 defined the initial atom feature set with a context (atom types, atomic partial charges, amino-acid 

types, and distance to neighbors) for the atoms of each complex. To compensate for variable input size, the network 

incorporates a lookup table. The resulting vector is a fixed-size float array that summarizes input data. It is then 

processed by a single 2D convolutional layer to extract abstract information and two classic layers to produce a 

classification. Ragoza et al. introduced a CNN-based SF77 that works on similar 3D grid images. The novelty here is 

that each atom is represented by an uncertainty distribution around the center of the atom instead of a fixed value. 

The network is a succession of three blocks (convolution and pooling) followed by a fully connected (FC) binary 

classification layer. 

Atomic CNN78 is built from two types of unique operation: atom type-specialized convolutions of 1 × 1 filters and 

radial pooling that filters across the atom neighbors. This approach uses atom coordinates and atom types as inputs, 

the former builds the interatomic distance matrix, and the latter is used to prepare the atom type matrix. The first 

layer (atomic convolution) combines matrices with each other, and the radial pooling layer is then used to reduce 

the dimension of the matrix. Finally, an atomistic FC layer flattens the feature volume (signature vector), followed by 

two FC layers, producing a final regression output. Although previous methods focused exclusively on binding 

scoring or classification, DeepSite79 aims to find potential binding sites. The 3D input protein grid is augmented along 

the channel axis with eight physicochemical descriptors, and the network is a standard CNN (3D convolution 

followed by MaxPooling), leading to a regression score of potential. Imrie et al. developed DenseFS,80 which 

combines Ragoza’s data representation and a skip-connection network called a Densely Connected Convolutional 

Network (DenseNet).81 Stepniewska-Dziubinska et al. designed Pafnucy,82 a classic CNN built to estimate affinity 

between a ligand and a target from an initial 4D tensor (3D coordinates discretized on a 3D grid and 19 features). 

The network comprises three convolutional layers followed by three FC layers that produce a binding score. 

DeepAffinity83 is another unusual network engineered around recurrent neural networks (RNNs) for scoring, taking a 

SMILES representation of the ligand, whereas the target embedding is a string called the Structural Property 

Sequence. Both terms are then independently milled into a sequence-to-sequence (autoencoder) model, their latent 

vectors processed each by a 1D convolutional layer and then concatenated before a FC layer produces the affinity 

score. 

In DeepBindRG,84 Zhang et al. cleverly flatten the input complex into a projected 2D image and perform residual 

network (ResNet)85 computations to produce an affinity score. In OnionNet,86 Zheng et al. suggested a multilayer 

intermolecular contact, in which a series of shells is built around a central atom. Inside each onion layer, there is a 

relevant feature set (depending on its encapsulating atoms). This allows the authors to account for nonlocal 

interactions. Eight atom types (leading to 64 pairs) and 60 shells are stacked for a total of 3840 features. The model 

is formed of three convolutional layers followed by three FC CNNs. FRSite87 for faster R-CNN site predictor was 

developed to predict protein binding sites. It takes a 3D grid with eight commonly used channels to represent the 

target. The authors used a particular 3D CNN adapted from the Faster R-CNN.88 This network is split into three 

subnetworks: the first is a 3D CNN feature extractor, the output of which is fed to the second and third parts of the 

network. The second part is a 3D region proposal network, which allows extraction of putative binding sites. Finally, 

the outputs of the first and second parts are given to the third to classify the resulting sites. 

Francoeur et al.89 extended work by Ragoza et al.,77 taking the same input data representation and general model 

architecture but performing a comprehensive hyperoptimization to produce more convolutional layers and average 

pooling instead of max-pooling. The authors of Pafnucy82 also worked on binding site detection with the same 

protein representation used in Pafnucy and proposed Kalasanty,90 in which the protein is discretized on a 3D grid, 

and 18 descriptors are used for each atom. Taking inspiration from semantic image segmentation, Stepniewska-

Dziubinska et al. used a U-Net91 to identify potential binding sites. The Kalasanty data representation was adapted by 
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the DeepSurf92 authors: instead of discretizing all the molecule atoms as in the original paper, the authors selected 

only a few points of interest from a solvent-accessible surface mesh. Each point neighborhood is then discretized on 

a 3D grid with the same features as Kalasanty. Finally, the resulting model is Bottleneck 3D-LDS-Resnet, itself an 

evolution of ResNet.85 

Graph neural networks 

Graph neural networks (GNNs) are a variety of neural networks that work on graph-formatted data. They have 

evolved from spectral methods to a more flexible comprehensive modeling tool. Graph convolutional networks 

(GCNs) are a particular class of GNNs, applying convolution and pooling operations from CNNs to graphs. 

The first molecular docking method to use graph data was PotentialNet.93 Instead of only covalent bonds, it 

considers additional bonds with one adjacency matrix for each bond type, concatenated along the channel and 

resulting in a 3D adjacency matrix. Moreover, it uses a distance matrix that indicates the distance between each 

atom pair. The network is a GCN split into three stages: in the first stage, only covalent bonds are used for the 

propagation; then, both covalent and noncovalent bonds are used for propagation, and, finally, a ‘graph gather’ step, 

which gathers matrix rows by summing, is followed by a FC layer used to produce a binding score. Lim et al.94 

introduced a GNN with a gated-augmented attention layer (GAT). For each node, in addition to regular edges, atoms 

in a close neighborhood (5 Å) are also connected. This method works on three matrices: the first is the node features 

matrix, the second is the adjacency for only covalent bonds (in the ligand and the protein), and the third is adjacency 

for intermolecular interactions (in which the second matrix is included). In each step of the network, the node 

feature matrix is updated by a GAT, and the second matrix is updated by another GAT, which uses the third matrix. 

Then, the second updated node feature matrix is subtracted from the first. After additional steps, all node feature 

vectors are summed, and a FC layer uses this vector to classify the complex. 

Torgn et al. proposed a VS method that uses two graphs to represent the target and the ligand.95 On the target side, 

graph nodes are the residues (restricted to the binding site), edges connect every neighbor in a sphere of 7 Å, and 

the features are extracted from the FEATURE program.96 The ligand graph is a classic 2D molecular graph. The 

training is a two-step process: the first encodes the binding site graph (dimensionality reduction). This encoder is 

kept for the second step, which concatenates its output to a second GCN trained on ligand graphs. The result is fed 

to the FC layer and a Softmax classifier. Tanebe et al.97 used GNNs to classify good or bad binders. This approach 

represents the ligand by a graph generated from SMILES string in which nodes are atoms and edges are bonds. The 

target is a graph in which nodes are residues, and edge types (five in total) depend only on the distance between the 

Cα of each residue. A GNN then embeds both graphs, and the resulting concatenation is used to classify the complex. 

In the Tsubaki et al. method,98 the authors used the SMILES representation of the ligand to produce a graph and a 

GNN to embed this graph into a vector. For the target, the amino acid sequence is embedded by a CNN. Both are 

concatenated, and an FC followed by Softmax makes a prediction. Recently, Morrone et al. proposed a new DL 

method for the docking problem using GCN.55 This method uses two graphs as input. The first represents the 

covalent ligand graph (L). The second graph is a contact graph built by hopping from the protein atoms to the ligand 

atoms in a 4 Å neighborhood (LP). This modular method can take L, LP, or L + LP as input. In each case, the input is 

embedded by a GCN and fed to a CNN for prediction. 

Comparison of network architectures 

The DL family is divided into three classes: MLPs, CNNs, and GNNs. We have discussed three MLPs, but only two 

describe their architectures, which is not enough to understand the evolution of MLP architecture. Moreover, the 

two with known architectures are different versions of the same underlying method. 

Regarding CNNs, a variety of networks (e.g., ResNet and UNet) bring many architectural possibilities. For CNNs, the 

main architecture is adapted from 3D grids (3DCNN), such as AtomNet or Pafnucy. The topologies are not identical, 

but use common CNN layers. However, some methods propose original architectures, such as the Atomic CNN, or 

use well-known architecture, such as Kalansaty, which is based on UNet, a network historically created for image 

segmentation. Given the black-box nature of DL-based models, it is difficult to assess the superiority of a CNN 

topology with regards to its counterparts because this depends on the chosen data representation. 
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For GNNs, the limited number of available methods does not allow a particular architecture to be highlighted. Some 

methods use GNNs as a first step to embed the inputs and then use FC layers or a CNN to produce an output. 

Performance measurement 

So far, we have focused on modeling only; however, data sets are dedicated not only to training, but also to 

evaluating and assessing the methods used. Therefore, we present here performance metrics for classification 

methods (VS), SF, and binding site detection. 

VS assessment 

In addition to data sets, authors also use a series of metrics to compare with other existing contributions. In VS, the 

model is evaluated on its capacity to distinguish between binding and nonbinding ligands. Generally, the enrichment 

factor (EF) or the area under the curve (AUC) of the receiver operating characteristic curve (ROC) are used. EF 

evaluates whether selected ligands are better binders than randomly selected ones and takes only real positive 

values: a poor classifier has EF ≤1, whereas a better-than-random one has EF > 1. This metric allows the rate of true 

binders among the top-ranked ligands (in the top {1%,2%,5%,10%}) to be compared with the rate in a random 

selection. By contrast, ROC curve is used to visually assess the quality of a classifier as its discrimination threshold 

varies. The optimal AUC value is 1.0, whereas 0.0 is the worst case (random case being 0.5). 

Table 4 details AUC performances from various methods, including those drawn from.53, 54 This table shows the 

difficulty in drawing a simple conclusion about VS performances. The data set is the first problem that arises when 

trying to compare pure performance. Second, most methods are not self-supporting and require the adjunction of 

other classic sampling software. Thus, even if two methods are assessed on the same data set, their performances 

are impacted by the chosen sampling method. Moreover, even though the sampling method is theoretically the 

same, they might differ on parameter initialization, as explained by Shen et al.59 Consequently, we have to use raw 

performances given in the same paper to compare methods. For example, Lim’s method is better than AtomNet and 

Ragoza’s method, according to Lim et al.94 

SF assessment 

Comparative Assessment of Scoring Functions (CASF),99 developed by Su et al., introduced three criteria to assess a 

SF method: scoring power, ranking power, docking power. 

Scoring reflects the ability of a SF ‘to produce binding scores in a linear correlation with experimental binding data’. 

It uses Pearson’s correlation coefficient (Rp) (sometimes Rp²) and the standard deviation in linear regression (SD). Rp 

can be between −1 and +1. The closer to 1, the better the method assessed. For SD, the smallest value is optimal. Rp 

and, to a lesser extent, SD are the most-used criteria. 

Ranking refers to the ability of a SF ‘to correctly rank the known ligands of a certain target protein by their binding 

affinities when the precise binding poses of those ligands are given’. The assessment uses Spearman’s rank 

correlation coefficient (ρ), Kendall’s rank correlation coefficient (τ), and the Predictive Index (PI). These criteria have 

values of [−1,1], whereby +1 indicates a perfect ranking and −1 the reverse.99 

Docking represents the ability of a SF ‘to identify the native ligand binding pose among computer-generated decoys’. 

Assessment uses RSMD (Eq. (1)) to compare top-ranked ligand by the SF method and native ligand pose. A threshold 

is used to consider docking as a success. Commonly, the cut-off used is 2.0 Å. 

𝑅𝑀𝑆𝐷 =  √∑ (𝑋𝐸
𝑖 −𝑋𝑆

𝑖 )²𝑛
𝑖=0

𝑛
  (1) 

where E is the expected coordinates of the atoms, S is the simulated coordinates of the atoms, and n is the number 

of atoms in the ligand. 

The CASF data set is identical to the PDBbind core set for the corresponding year. Table 5 lists examples of method 

assessments for scoring power. Compared with Table 4, the entries in Table 5 are more comparable: to assess a SF, 

authors use a data set of docked complexes. Consequently, the sampling step is unnecessary and, thus, assessments 
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differ only by the used data set. However, a wide data set variety is available, each with several subsets and versions 

(e.g., PDBbind). If the used data sets are identical, then their respective performance can be compared. For example, 

OnionNet has a better Rp score than Francoeur’s method on the PDBbind 2017 core set. 

Binding site detection assessment 

There are two main options to assess binding site detection methods. First, we can use a data set of already docked 

ligand–protein complexes (e.g., PDBbind) and predict binding sites for proteins. Then, for each complex, it is possible 

to consider the method output as a success if at least one predicted protein site is the real binding site. This 

approach is interesting if the binding site composition is unknown. 

However, all previously mentioned methods used the sc-PDB48 data set for training and assessment. This data set 

contains the atomic composition of the sites and, once the predicted sites are defined, atomic compositions can be 

compared. The authors used two metrics: the distance to the center of the binding site (DCC) metric measures the 

distance either between the center of the real binding site and the closest atom of the predicted site, or between 

the center of the real binding site and the center of the predicted site. In both cases, the site detection is a success 

regarding a threshold fluctuating between 4 Å and 20 Å: the better the success ratio, the better the method. 

The second is the discretized volumetric overlap (DVO) metric, which assesses the overlap between the predicted 

and real binding sites. Authors use the Jaccard Index on the convex hull of the sites. Both volumes are discretized, 

and the ratio between the overlapping volume and merged volume is computed; the closer to 1 the Jaccard Index, 

the better the method. 

We have not provided a table of the performances of binding site detection methods because data are often 

provided as charts without the raw values. However, most recent methods are compared by their authors to older 

methods in their respective papers. 

Concluding remarks 

Here, we have discussed how ML and particularly DL can help us tackle molecular docking challenges. We have 

presented three challenges: sampling, scoring, and computing time. However, in terms of the sampling challenge, a 

ML method that attempts to tackle it has yet to be developed. 

The scoring challenge is, without doubt, the most studied problem. Indeed, ML scoring methods are interesting in 

terms of scoring function space exploration. Many ML methods have been developed, and most outperform classical 

methods. Thus, ML SF can be regarded as a hybrid of knowledge-based and empirical functions. Indeed, similar to 

knowledge-based approaches, ML methods extract statistics from a comprehensive database to build the most 

relevant model. By contrast, ML methods use relatively simple inputs and find links between them. It is even more 

evident for DL methods that aim to optimize the weights of networks, which is similar to the goal of an empirical 

function. Although they are not the main focus of this review, a particular class of ML models called physics-

informed DL have potential because they incorporate physical constraints in the learning process. 

This review has shown that ML methods outperform classic approaches, whether for scoring or classification. 

Moreover, recently proposed GNN methods have interesting performances but remain underexplored. Therefore, 

more in-depth research is required of these methods. 

The last challenge is computing time. No ML scoring methods are compared with others in terms of computing time 

required, which makes it difficult to discuss the capacity of ML in terms of time reduction. However, a delimited 

search can be used to reduce time; some ML methods to predict binding sites are presented herein and outperform 

classical binding site detection methods, according to their authors. Therefore, we consider GNNs as an interesting 

approach for improving current ML methods. 

One general drawback is that most methods have not been proposed and assessed in a complete docking pipeline; 

thus, it would be interesting to compare classical methods, such as AutoDock, with the ML workflow. Moreover, the 

training and inference times of ML methods are rarely mentioned by authors. We believe that this information 

should be included in future studies because it provides invaluable insights into the complexity of these models. 
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Figure 1. Types of docking. (a) classic docking process, which involves finding the optimal ligand for a given 
protein. (b) inverse docking process involves finding the optimal target for a given ligand. 

Figure 2: A simplified workflow of the molecular docking process with sampling and scoring subprocesses. 
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Tables 

Table 1: Examples of molecular docking software and their sampling and scoring methods.a 

aBased on: R. Vasseur, PhD thesis, Université de Reims Champagne-Ardenne, 2015. 
bScoring functions only. 

Software Year Sampling Scoring Refs 

ICM 1994 Stochastic (MC) Force field (ECEPP) 100 

GOLD 1995 Stochastic (GA) Force field (AMBER) 101 

SANDOCK 1998 Shape matching Empirical 102 

MultiScoreb 2001 – Consensus 103 

LigandFit 2003 Stochastic (MC) Empirical 104 

DrugScoreb 2005 – Knowledge based 105 

DFireb 2005 – Knowledge based 106 

Glide 2006 Stochastic (MC) Empirical 107 

PLANTS 2006 Stochastic (AC) Empirical 108 

SODOCK 2007 Stochastic (PSO) Force field (AMBER) 109 

eHiTS 2007 Systematic (FB) Empirical 110 

KScoreb 2008 – Knowledge based 111 

AutoDock 4 2009 Stochastic (GA) Force field (AMBER) 35 

AutoDock Vina 2010 Stochastic (GA) Empirical 112 

VoteScoreb 2011 – Consensus 113 

FRED 2011 Systematic (IM) Customizable 114 

D-Scoreb 2013 – Force field (Tripos) 115 

FlexAID 2015 Stochastic (GA) Empirical 116 

MOLS 2.0 2016 Systematic (IM) Force field (AMBER) 117 

DINC 2.0 2017 Systematic (FB) Empirical 118 
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Table 2: Machine learning methods for ligand–protein docking.a 
aMethod developed for a specific type of target. 

Name Year Input Usage Refs 

Linear regression 

TABA 2020 Mass-Spring system Scoring 61 

Random Forest 

RF-Score 2010 Set of descriptors Scoring 62 

RF-Score-v2 2014 Set of descriptors Scoring 119 

RF-Score-v3 2015 Set of descriptors Scoring 63 

RF-Score-VS 2017 Set of descriptors VS 64 

SIEVE-Score 2019 Energy vectors VS 65 

Gradient boosting trees 

AGL-Score 2019 Multiscale weighted colored subgraphs Scoring, VS 66 

Support vector machines 

SVR-KB 2011 Pairwise potential vector Scoring 67 

SVR-EP 2011 Set of descriptors Scoring 

ID-Score (SVR) 2013 Set of descriptors Scoring 68 

PLEIC-SVM 2017 PLEIC Fingerprint Target-specific VSa 69 
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Table 3: Deep learning methods for ligand–protein docking. 
aBased on CNN terminology, channels are used to represent descriptors. 
bIndicates end-to-end methods. 

 Name  Year Input Usage Refs 

Multilayer perceptrons 

NNscore  2010 
Set of descriptors VS 70 

NNscore 2.0  2011 Set of descriptors Scoring  

Deep docking  2020 2D fingerprints VS 72 

Convolutional neural networks 

AtomNet  2015 3D grid with descriptors VS 75 

DeepVS 2016 Set of descriptors VS 76 

Ragoza2017 2017 3D grid of 34 channels VS 77 

Atomic CNN 2017 3D structure Scoring 78 

DeepSitea 2017 3D grid of eight channels Binding-site detection 79 

DenseFS 2018 3D grid of 34 channels VS 80 

Pafnucy 2018 3D grid of 19 channels Scoring 82 

DeepAffinity 2019 Fingerprints Scoring 83 

DeepBindRG 2019 2D matrix Scoring 84 

OnionNet 2019 64 descriptors for each shell Scoring 86 

FRSitea 2019 3D grid of eight channels Binding site detection 87 

Francoeur2020 2020 3D grid of 28 channels Scoring 89 

Kalasantya 2020 3D grid of 18 channels Binding site detection 90 

DeepSurfa 2020 3D grid of 18 channels Binding site detection 92 

Graph neural networks 

PotentialNet 2018 Atom bond graph Scoring 93 

Lim2019 2019 Atom bond graph VS 94 

Torgn2019a 2019 Residue graph of target + Ligand graph VS 95 

Tanebe2019a 2019 Residue graph of target + ligand graph VS 97 

Tsubaki2019a 2019 Sequence of target + ligand graph VS 98 

Morrone2020 2020 Ligand bond graph + contact graph VS 55 
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Table 4: Assessment of VS methods with DUD, DUD-E, and MUV data sets. 
aListed scores are sometimes in supplemental information. 
The same method can have different performances on the same data set and with the same docking engine, because of the impact of data 
preparation and docking engine settings. 

 

Presented 

method 

Docking 

engine 

Assessed 

method 

1st Used 

dataset 

AUC 2nd Used 

dataset 

AUC Refa 

PLEIC-SVM Glide Gscore DUD 0.82   69 

PLEIC-SVM 0.93  

NN-Score 

methods 

Vina Vina DUD 0.70   70 

NNScore-v1 0.78  

NNScore-v2 0.76  

DeepVS Dock 6.6 Dock 6.6 DUD 0.48   76 

DeepVS 0.74  

Vina Vina DUD 0.62 

DeepVS 0.81  

RF-Score-VS Vina Vina DUD-E 0.74   64 

RF-Score-V3 0.67  

RF-Score-VS 0.84  

Dock 6.6 Dock 6.6 DUD-E 0.61 

RF-Score-V3 0.66  

RF-Score-VS 0.80  

AtomNet Smina Smina DUD-E 0.696   75 

AtomNet c 0.895  

Ragoza’s 

method 

Smina Smina DUD-E 0.716 MUV 0.549 77 

RF-Score 0.622 0.512 

NN-Score 0.584 0.441 

Ragoza’s method 0.868 0.522 

DenseFS Vina Vina DUD-E 0.703 MUV 0.546 80 

Ragoza’s method 0.862 0.507 

DenseFS 0.917 0.534 

Lim’s method Smina Smina DUD-E 0.689 MUV 0.533 94 

AtomNet 0.855  

Ragoza’s method 0.868 0.518 

Lim’s method 0.968 0.536 

Torgn’s 

method 

 Vina DUD-E 0.716 MUV 0.538 95 

RF-Score 0.622 0.536 

NNScore 0.584 0.454 

Ragoza’s method 0.868 0.567 

Torgn’s method 0.886 0.621 

Morrone’s 

methods 

Vina Vina DUD-E 0.70   55 

Morrone L 0.82  

Morrone LP 0.65  

Morrone L+LP 0.81  
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Table 5: Assessment of SF methods. 
aListed scores are sometimes in supplemental information. bValues = (Rp)2. 

Presented method Dataset Assessed SF Rp SD Refa 

RF-Score PDBbind 2007 Core Set ChemScore 0.441 2.15 62 

GoldScore 0.295 2.29 

RF-Score 0.776 1.58 

RF-Score-v2 PDBbind 2007 Core Set RF-Score-v2 0.803 1.54 119 

RF-Score-v3 PDBbind 2007 Core Set RF-Score-v3 0.803 1.42 63 

SVR-KB 

and 

SVR-EP 

CSAR-SETI1 SVR-KB 0.59b  67 

SVR-EP 0.55b  

CSAR-SETI2 SVR-KB 0.67b  

SVR-EP 0.50b  

ID-Score PDBbind 2007 Core Set ID-Score 0.753 1.63 68 

Atomic CNN PDBbind 2015 Core Set Atomic CNN 0.448b  78 

PDBbind 2015 Refined Set Atomic CNN 0.529b  

Pafnucy PDBbind 2016 Core Set Pafnucy 0.78 1.37 82 

CASF-2013 Pafnucy 0.70 1.61 

DeepBindRG CASF-2013 Vina 0.5725  84 

DeepBindRG 0.6394  

AGL-Score CASF-2007 ID-Score 0.753  66 

Vina 0.554  

AGL-Score 0.830  

CASF-2013 AGL-Score 0.792  

OnionNet PDBbind 2013 Core Set AutoDock 0.54 1.61 86 

Vina 0.54 1.60 

ChemScore 0.592 1.82 

Pafnucy 0.70 1.61 

RF-Score-V3 0.74 1.51 

AGL-Score 0.792 1.45 

OnionNet 0.78 1.45 

PDBbind 2016 Core Set Pafnucy 0.78  

RF-Score-V3 0.80  

AGL-Score 0.833  

OnionNet 0.816  

Francoeur’s method PDBbind 2016 Core Set Francoeur 0.733  89 
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