
HAL Id: hal-03352184
https://hal.univ-reims.fr/hal-03352184v1

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Methodology for Evaluating the Energy Efficiency of
Post-Moore Architectures

Pablo Josue Rojas Yepes, Carlos Jaime Barrios Hernandez, Luiz Angelo
Steffenel

To cite this version:
Pablo Josue Rojas Yepes, Carlos Jaime Barrios Hernandez, Luiz Angelo Steffenel. A Methodology
for Evaluating the Energy Efficiency of Post-Moore Architectures. Latin America High Performance
Computing Conference (CARLA) 2021, Oct 2021, Guadalajara, Mexico. �10.1007/978-3-031-04209-
6_4�. �hal-03352184�

https://hal.univ-reims.fr/hal-03352184v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A Methodology for Evaluating the Energy Efficiency of

Post-Moore Architectures

Pablo Josue Rojas Yepes1[0000−0003−1823−7922], Carlos Jaime Barrios Hernan-

dez1[0000−0002−3227−8651] and Luiz Angelo Steffenel2[0000-0003-3670-4088].

1Universidad Industrial de Santander, Cl. 9 # Cra 27, Bucaramanga, Colombia
2Université de Reims Champagne Ardenne, LICIIS – LRC CEA DIGIT Laboratory, Reims,

France

pablo2198162@correo.uis.edu.co

cbarrios@uis.edu.co

angelo.steffenel@univ-reims.fr

Abstract. The improvement of computational systems has been based on

Moore's law and Dennard's scale, but for more than a decade it has started to fall

to a standstill. To maintain the improvement new technologies are proposed, this

has established a Post-Moore era. Currently there are different methodologies to

evaluate emerging devices and technologies, but the results of these methodolo-

gies end up being particular solutions. This paper presents a methodology that

can evaluate Post-Moore devices or technologies in an agile way, characterizing

an application, choosing a device that meets its needs, selecting tests and param-

eters that are executed to meet the objectives set by the methodology. The results

show how to evaluate the energy efficiency of these new technologies, but the

scope of the methodology can cover other needs.

Keywords: Evaluation Methodology, Embedded System, Benchmark, Low-

cost Computing, Edge Computing, Many-core and Heterogeneous Computing.

Introduction

Measuring the performance of computer systems was an art in its beginnings, with the

passage of time certain agreements were reached. Among the approaches that were

adopted to measure the performance of a computational architecture are the time it took

to complete a specific task or the number of operations performed, one of the main

metrics that emerged due to this was FLOPS. One of the main tools to perform these

measurements was HPL [1]. Due to its constant use it became the basis of measurement

of the main HPC machines [2] until it became a standard for HPC hardware.

At the same time, Moore's law was established as the main driver of computational

growth, but its progress started to stagnate in the last decade [3, 4]. To overcome this

barrier, different approaches were presented to address the problem, which triggered a

"Cambrian explosion" [5] of hardware and dubbed the current era as the Post-Moore

mailto:cbarrios@uis.edu.co

2

era [6]. One of the most dominant approaches states that applications determine the

right hardware to run them [6]. Based on this proposition, the premise is formulated:

Applications Choose Devices Carefully.

This paper assumes the premise just proposed and presents a methodology to evalu-

ate the efficiency of selected Post-Moore architectures. This methodology is called

"Applications Choose Devices Carefully" or ACDC for short, It should be clear that

the methodology is aimed at single and low-cost hardware.

The first section presents some of the state of the art of evaluation methodologies,

the second section shows the functioning scheme of the ACDC methodology, the third

section describes each of the steps of the scheme, the fourth section presents a use case

of the ACDC methodology and finally the conclusions of the work are presented.

1 State of the Art

After reviewing the extensive state of the art, three contributions stand out in the last

three years in reference to the evaluation of Post-Moore architectures.

The first contribution [7] studies the applicability of FPGAs to accelerate the core of

the Spectral Element Method (SEM) in many computational fluid dynamics (CFD) ap-

plications. This is evaluated using Stratix 10 GX series FPGAs versus systems such as

ARM ThunderX2, NVIDIA Tesla/Pascal/Volta/Ampere series boards and general pur-

pose many-core CPUs. The methodology consists of configuring the SEM on the FPGA

and using languages such as OpenCL [8, 9] or OpenACC [10] to configure the SEM on

the GPUs and CPUs, the development of the test methodology is implicit in the devel-

opment of the work.

The second contribution [11] proposes a comprehensive open source methodology

for evaluating emerging technologies. To demonstrate its effectiveness, the methodol-

ogy is used to perform end-to-end simulation and analysis of heterogeneous architec-

tures using CNFETs, TFETs and NCFETs, along with multiple hardware designs. The

methodology consists of four main levels of modeling: device models, logic gates, logic

and memory blocks, and architecture. This methodology evaluates CNFET, TFET and

NCFET devices using hardware designs of varying complexity and provides the means

to assess the high-level impact of emerging technologies.

Finally, the third contribution [12] presents a testbed [13, 14, 15, 16] covering net-

working, identity management, resource scheduling and tools along with techniques

they have developed to manage these Post-Moore devices. More than a methodology,

it presents several methods to evaluate different Post-Moore architectures with different

tests. This generates particular evaluation methodologies for different devices.

With this brief presentation, the ACDC methodology will be outlined.

2 ACDC methodology outline

As discussed above, one of the main focusses of the Post-Moore era is that the applica-

tions determine the hardware on which they will be deployed. Furthermore, with the

3

"Cambrian explosion" [5], it is possible to adopt a methodology to evaluate the appli-

cations and the possible hardware that can execute them.

Another approach of the Post-Moore era is that the hardware integrates multiple spe-

cific purpose chips, tailored to the needs of the application [6]. It should be noted that

the hardware to be used for the development of the work is based on traditional manu-

facturing. Hardware for neuromorphic computing, quantum computing [17] or 3D-

Chips will not be taken into account for this methodology. Also note that the method-

ology will not use FLOPS as a metric, even though it is the most reliable metric to

measure performance, the methodology intends to evaluate different types of opera-

tions, not only floating operations. The evaluation will take into account the number of

operations completed in a defined time, their energy consumption, among others.

Fig. 1. is a outline of how the implementation of the ACDC methodology would be

carried out. It consists of nine sequential steps but the penultimate step presents a loop

that may point to step three or four depending on the situation.

Fig. 1. ACDC Methodology Outline

The steps of the ACDC methodology are the following:

1. Selection of the application and definition of its primary needs.

2. Post-Moore device selection.

3. Test settings optimization.

4. Parameterization of the test.

5. Preparation of miscellaneous needs.

6. Running the test and data capture.

7. Data labeling and storage.

8. Repeat the test, select a new test or end the test.

9. Analysis of results.

It is necessary to understand the steps to follow in the application of the ACDC meth-

odology. The following section presents this topic.

3 Description of the ACDC Methodology

3.1 Selection of the Application and Definition of its Primary Needs

As it is the first step, it will be the main guide for the development of the evaluation.

Therefore, the backbone of the methodology is that the applications choose the devices

that can be deployed carefully or the Applications Choose the Devices Carefully

(ACDC). In order to implement this methodology, all hardware that brings together

chips of a specific use and that is manufactured in a traditional way or with traditional

6 4 5 1 2 3 7 8 9

4

technologies such as Post-Moore hardware is considered. When selecting an applica-

tion (the application can be a methodology, a benchmark, a code, etc), a complete char-

acterization of the selection must be made. This characterization defines the main needs

for the implementation, which in most cases are as follows:

 Multiplatform or cross-compiled.

 Define the hardware the application needs (CPU, GPU, NPU, FPGA, etc).

 Identification of dependencies.

 Types of data that the application works.

 Classification of instructions (RISC or CISC).

3.2 Post-Moore Device Selection

In the previous section the application has been chosen, characterized and its main

needs have been defined. To meet these needs, it is necessary that the devices contain

the necessary hardware for the implementation of the application. By characterizing the

application, its behavior is sketched and the hardware needs narrow down the search

for devices, simplifying the selection process. Using the right hardware saves time in

the implementation, improves the performance and efficiency of the application.

This step can reverse its order with the first one, sometimes there is a certain device.

For these cases, the device must be characterized to know its composition. The selected

application must have its main needs oriented to the available hardware.

3.3 Test Settings Optimization

With the application and the device chosen, two possibilities arise to carry out the eval-

uation. The first is to perform synthetic tests, the second is to run the application.

With the application study, profiling can be carried out to see what the main bottlenecks

are.

If choose a set of synthetic tests that simulate bottlenecks. The metrics for these tests

are primarily the number of iterations of the test over a specific time or the amount of

time it takes to perform a certain number of operations. The results of the tests are taken

as metrics to present the conclusions of the evaluation.

When run the application, it is possible to use general metrics to measure the behav-

ior of the device. In this case, metrics such as execution time acquire greater relevance

and will be the focus of the results and conclusions.

The test configuration can be done in various ways, multiple tests can be performed

with different resource allocations, the configuration that generates the highest perfor-

mance can be chosen, or depending on what the evaluation is looking for, parameters

are defined in the configuration. In this step, data captures are made to measure behav-

ior but are not taken into account in the final results. Preliminary tests should be carried

out to get an idea of the behavior of the test to be performed on the chosen devices.

5

3.4 Parameterization of the Test

The previous step generates a list of parameters that fit the needs of the evaluation and

influence the test results. It is up to whoever performs the evaluation to choose which

results are important for the test on the device.

3.5 Preparation of Miscellaneous Needs

With the parameters established, if the evaluation objectives require it, additional meas-

urement elements should be established for the tests. Items such as consumption mon-

itors, resource monitors or flags are assigned to the tests to facilitate their execution and

data capture.

3.6 Running the Test and Data Capture

With the device, test and monitors synchronized, the test is run. It is advisable to carry

out preliminary tests to verify the operation together. It is not advisable to carry out

tests after turning on the device since the OS may be executing processes in the back-

ground. Monitors must be tracking the device before the test runs, this way a base be-

havior of the device can be set when not in use.

Before the test starts, data capture must begin. In this way, evidence of the base

behavior and during the test is left. The data must be taken according to the metrics that

are set for the evaluation, this work is humdrum and can generate headaches. The best

option is to formulate and follow a roadmap, this simplifies and mechanizes the work.

3.7 Data Labeling and Storage

The captured data must be preserved for later analysis. It is necessary to generate a list

of labels, to segment the data and facilitate its analysis. This process is important for

generating conclusions and meeting objectives.

In the labeling process, ideas can arise that add more value to the research results, it

is recommended to be open to new ideas that reveal new approaches. It is recommended

that the data be stored in the cloud or on a medium that has a backup, the loss may delay

the investigation or canceled. The stored data should use the suggested labels to facili-

tate its handling, using tables, matrixes or dictionaries facilitates their handling.

3.8 Repeat the Test, Select a New Test or End of the Test

This step is a trifurcation in which one must choose between the following paths:

 Repeat the Test: happens when there is insufficient amount of data to identify a

pattern of behavior. Tests can be repeated as many times as deemed necessary, the

number of repetitions may depend on factors such as standard variation or error re-

duction, but it is up to the tester to define this.

6

 Select a New Test: happens when it is considered that it is not necessary to repeat a

test. Proceed to step three and start the process up to step eight, the test is repeated

as above. In this way it is possible to mechanize the process of the methodology and

speed up the acquisition of data in the tests.

 End of the Tests: at the moment when it is considered that there is an acceptable

amount of data and all the tests were performed. The data are analyzed, thus gener-

ating conclusions that will cover the objectives set for the evaluation.

3.9 Analysis of Results

This is the last step, all the data collected must be processed to generate the results that

will evaluate the methodology, the results must be clear for the generation of infor-

mation, comparative tables, etc. They will be used in the conclusions and the fulfillment

of the objectives that are proposed to be covered with this methodology .

The next section proposes the implementation of the ACDC methodology.

4 Execution of the ACDC Methodology

In order to see in a practical way how the ACDC methodology would be implemented,

a hypothetical application is selected, the result is presented below:

4.1 Step 1. Selection of the Application and Definition of its Primary Needs

To simplify the selection, a hypothetical application with the following characteristics

is proposed: the application is compiled for x86 and ARM architectures, it is written to

use the maximum amount of available resources, it uses CPU parallelization, its instal-

lation can be done through package managers and the type of data it handles is floating.

The workload of the application depends on the resources available to the machine,

but the main bottlenecks are:

─ The application generates multiple pthreads (POSIX threads) at runtime.

─ During application execution allocate, reallocate and free memory with malloc,

calloc, realloc and free calls dynamically.

─ The computation operations it performs are floating number ones.

To evaluate the methodology, the following objectives are established:

─ Measure the performance of the selected devices.

─ Measure the energy efficiency of the devices.

4.2 Step 2. Post-Moore Device Selection

The application uses only the CPU and is compiled for ARM and x86-64, this opens

the possibility to use any device at hand. In this case, an Nvidia Jetson Nano [18] and

7

a desktop PC are selected. The desktop PC's dimensions (H x W x D) are 497 x 250 x

511 mm, while for the Jetson Nano are ~30 x 100 x 80 mm. These devices are consid-

ered Post-Moore because they have many cores and heterogeneous. Both have an

Nvidia GPU but for the use case it is not necessary and is not taken into account. With

the chosen devices the optimization of the test setup can be performed.

The Device column presents the name to be given to each device, the Jetson Nano is

labeled Nano and the desktop PC is named PC. The CPU column describes the CPU of

each device, the GPU column explains the GPU of each device, the GPU of the PC is

a GTX 1050ti with 4GB of independent memory, while the Nano shares its memory

between the CPU and GPU. The RAM column details the memory in both devices.

Table 1. Devices selected

Device CPU GPU RAM

Nano

ARM Cortex-A57

Quad-Core

@~1.5GHz

Nvidia Maxwell

128 CUDA-Cores

~921 MHz

4 GB

LPDDR4

@1600MHz

PC

AMD Ryzen 5

3600

Hexa-Core

@3.6~4.2GHz

Nvidia Pascal

768 CUDA-Cores

1350~1800 Mhz

16 GB

DDR4

@3200MHz

Both devices meet the needs of the hypothetical application. It should be emphasized

that the tests will only focus on the CPU due to what was stated in Step 1.

4.3 Step 3. Test Settings Optimization

For this case, the option of synthetic tests is taken, so that focused tests can be per-

formed. The three bottlenecks are: Generation of multiple Pthreads, memory manipu-

lation and operations with floating numbers. To deal with them, the following synthetic

tests are proposed [19]:

 pthread: start N workers that iteratively creates and terminates multiple pthreads

(the default is 1024 pthreads per worker). In each iteration, each newly created

pthread waits until the worker has created all the pthreads and then they all terminate

together.

 cfloat: 1000 iterations of a mix of floating point complex operations

 malloc: start N workers continuously calling malloc, calloc, realloc and free. By

default, up to 65536 allocations can be active at any point. Allocation, reallocation

and freeing are chosen at random; 50% of the time memory is allocation (via malloc,

calloc or realloc) and 50% of the time allocations are free'd. Allocation sizes are

default size being 64K. The worker is restarted if it is killed by the out of mememory

(OOM) killer.

The way to measure the results in these tests are as follows Operations or Ops for sim-

plicity. Another facility provided by these tests is that they can be run for a set amount

of time. Preliminary tests show that the Ops increase with a greater amount of time and

8

with a greater availability of cores, but the amount of Ops per second or Ops/s remains

independent of the allotted time. As a result of this behavior, Ops/s is defined as a metric

and the number of cores is taken into account as a parameter to measure the scalability

of the application. The pretests also show that Pthreads and Malloc consume all the

resources available to the device. The Cfloat test allows the variation of the number of

cores. One of the objectives of the evaluation, to measure the performance of the chosen

devices, is fulfilled.

4.4 Step 4. Parameterization of the Test

The Ops/s are maintained in spite of the time variation, for this reason it is not relevant

to mention the time allotted.

The pthread test is executed with 4 jobs and 1024 threads per job, in the preliminary

tests, a higher number negatively impacts the test results on the Nano due to its scarcity

of resources.

The malloc test runs 4 jobs with the default parameters, 64K in size and 65536 allo-

cations, as in pthreads there is a negative impact on the Nano due to the lack of re-

sources.

The cfloat test is run with 1, 2, 3 and 4 jobs, unlike the previous two, this test only

takes the amount of CPU allocated and not the total resources available. In this way is

possible to see how the application scales when computational resources are allocated

on an individual device.

4.5 Step 5. Preparation of Miscellaneous Needs

The second objective of the evaluation and the main goal of the methodology is deter-

mining the energy efficiency of the devices. To meet this objective, energy efficiency

is defined as the amount of energy consumed by the operations performed during a

given time. Ops/s provides the number of operations in a given time. The energy con-

sumed is determined by a consumption monitor [20], this monitor captures the data

during the time the test is performed.

During the preliminary tests a consumption before and after the test is evidenced,

this consumption is taken as the base consumption. The total consumption during the

test is subtracted from the base consumption. The energy consumed during the test is

averaged, thus obtaining the energy consumed during the test or W/s. The energy effi-

ciency for the evaluation is determined by the number of operations over the consump-

tion or Ops/W.

𝑂𝑝𝑠/𝑠

𝑊/𝑠
= 𝑂𝑝𝑠/𝑊 (1)

The consumption monitor provides the consumption data and the tests present a sum-

mary with the relevant data at the end of each test. This is how the two evaluation

metrics are defined, Ops/s and Ops/W.

9

4.6 Step 6. Running the Test and Data Capture

To run the tests, the consumption monitoring should be started before the tests, it is

recommended that the device has been on for some time to avoid consumption peaks.

The test is executed with the parameters assigned in step 4, once the test is completed

the data obtained must be stored.

4.7 Step 7. Data Labeling and Storage

The data collected during step 6 are organized as shown in Table 2.

Table 2. Data Labeling and Storage

Device Test Core Ops Ops/s W/s Ops/W

Nano Pthread 4 1159500 19325 5,8 349286

Nano Cfloat 1 268145 4469 1,1 235215

Nano Cfloat 2 535617 8927 2,1 252650

Nano Cfloat 3 796733 13279 3,1 257011

Nano Cfloat 4 793350 13223 3,8 206602

Nano Malloc 4 241772479 4029541 5,2 71109553

PC Pthread 4 6987682 116461 41,2 170089

PC Cfloat 1 296587 4943 14,8 19995

PC Cfloat 2 590779 9846 19,8 29787

PC Cfloat 3 884458 14741 24,9 35664

PC Cfloat 4 1171197 19520 29,0 40340

PC Malloc 4 1595115864 26585264 39,2 40739188

Table 2 shows the following information: The Device column presents two labels,

Nano for the Jetson Nano device and PC for the desktop PC. The Test column shows

the different tests performed on the devices. The Core column lists the number of cores

used in the test. The OPS column stores the number of operations performed during the

test execution. The OPS/s column represents the number of operations performed per

second. The W/s column shows the average power consumption per second during the

test run, obtained from the difference between the power consumption during the test

and the base power consumption of the card. Finally, the OPS/W column is the relation

between OPS/s and W/s, this result does not show the energy efficiency of each device.

The data obtained is stored in a spreadsheet. It should be clarified that the values shown

by Table 2. are averages to save space.

4.8 Step 8. Repeat the Test, Select a New Test or End of the Test

Each test was performed three times in a preliminary way, in order to evaluate how the

different parameters affected the tests. The cfloat test is the only one to which resources

can be allocated, after three iterations a pattern of behavior is seen and it is run a total

of five times per core to have a good database. The pthreads and malloc tests use all

available resources, run fifteen iterations per test to have a database similar to cfloat.

10

Once the assigned number of iterations is completed, a new test is conducted and

configured with the parameters set by the preliminary tests. When all the tests are com-

pleted, the data is preprocessed.

Table 2 shows the averaged results of all tests performed with its respective labels.

The standard deviation in the pthread test is 0.752% for the Nano and 0.253% for the

PC. For the malloc test it is 0.246% for the Nano and 0.202% for the PC. Finally, the

standard deviation in the test cfloat has four results for each device, for the Nano it is

0.032% with one core, 0.015% for two cores, 0.020% for three cores and 0.241% for

four cores. For the PC case they are 0.339% with one core, 0.140% for two cores,

0.006% for three cores and 0.124% for four cores. A total of approximately 100 pre-

liminary and final tests were realized.

4.9 Step 9. Analysis of Results

When analyzing the data, the objectives that were set for the development of the meth-

odology, in this case the following objectives should be remembered: measure the per-

formance of the selected devices and measure the energy efficiency of the devices.

With the data collected in Table 2, graphs are generated to give a better understand-

ing of the conclusions of the work. The graphs are presented pointing to two topics: the

performance measurement of the devices is carried out by a comparison between the

Ops/s of the Nano and the PC in the different tests, and the measurement of energy

efficiency is shown by means of a graph that compares the Ops/W of the two devices.

Fig. 2 show the performance of the devices in the Pthread.

Fig. 2. Devices Performance in the Pthread Test

The results in Fig. 2 show a performance of about six times higher for the PC. It

should be mentioned that the ARM CPU has 4 cores, maximum frequency of 1.5 Ghz,

16 nm lithography and manages to execute 4838 Ops/s while the x86 CPU has 6 cores,

maximum frequency of 4.2 Ghz, 7 nm lithography and manages to execute 19410

Ops/s. It can be assumed that an ARM CPU with the same characteristics as an x86

would have similar performance. Fig. 3 displays the performance in malloc test.

0,0E+0

3,0E+4

6,0E+4

9,0E+4

1,2E+5

Pthread

O
p

s/
s

Pthread Test

Nano PC

11

Fig. 3. Devices Performance in the Malloc Test

The malloc test (Fig. 3) exercises the memory of the devices, the PC achieves almost

6.6 times the performance of the Nano. As in the previous case, the memory resources

on the Nano are much lower, causing this result. It is emphasized that if the Nano had

similar capabilities to the PC the results would be very similar. Fig. 4 illustrates the

performance of the devices in the cfloat test.

Fig. 4. Devices Performance in the Cfloat Test

The results in Fig. 4 show the performance of the CPUs when working with float

operations. The difference between the ARM and x86 CPU is 9.6% on cores 1, 2 and

3. The core 4 of the ARM CPU suffers a bigger difference. The drop in core 4 is due to

the resource competition between the test and the Operating System (OS) on the Nano.

It is evident that the computational capacity of ARM CPUs are similar to x86 CPUs

even though they have inferior characteristics. It is possible that the Nano OS does not

have a good management in the pthreads and malloc tests generating the exposed re-

sults, it should also be taken into account that the ARM CPUs have a reduced set of

operations and this negatively impacts the results of the tests. With the exposed in the

three figures (Fig. 2, Fig. 3 and Fig. 4) the objective of measuring the performance of

the devices is covered. Fig. 5 presents the energy efficiency of the devices.

0,0E+0

1,0E+7

2,0E+7

3,0E+7

Malloc

O
p

s/
s

Malloc Test

Nano PC

0,0E+0

5,0E+3

1,0E+4

1,5E+4

2,0E+4

1 2 3 4

O
p

s/
s

Cores

Cfloat Test

Nano PC

12

Fig. 5. Devices Energy Efficiency in the Pthread Test

In terms of energy efficiency, the behavior changes, the ARM CPU demonstrates

twice the efficiency of the x86 CPU. This is because the Cortex A57 is focused on

giving the best performance for the lowest power consumption. Fig. 6 illustrates the

energy efficiency of the memory of the devices.

Fig. 6. Devices Energy Efficiency in the Malloc Test

In the malloc test, the efficiency of the Nano is 1.7 times that of the PC, but the

performance of the PC is 6 times higher. The same happens in the pthreads test. This

opens the discussion between performance or energy efficiency when deploying an ap-

plication, opting for one or the other depends entirely on the deployment context. For

this reason, a decision is not made in this paper as it is not the objective of this work.

Fig. 7 presents the energy efficiency of the cfloat test.

Fig. 7. Devices Energy Efficiency in the Cfloat Test

0,0E+0

2,0E+5

4,0E+5

Pthread

O
p

s/
W

Pthread Test

Nano PC

0,0E+0

2,0E+7

4,0E+7

6,0E+7

Malloc

O
p

s/
W

Malloc Test

Nano PC

0,0E+0

7,0E+4

1,4E+5

2,1E+5

2,8E+5

1 2 3 4

O
p

s/
W

Cores

Cfloat Test

Nano PC

13

The difference in energy efficiency of floating point computing of ARM CPUs is

abysmal, approximately 11 times higher than that of x86 CPUs. This tips the balance

in favor of embedded devices in the efficiency area. Reinforcing the point made in Fig.

4, ARM CPUs and embedded devices would be a good choice for implementing appli-

cations that have a strong computational component and, if budget or power consump-

tion is a constraint, makes them excellent candidates. But in general, the PC best im-

plements the application. Still the main objective of this paper is not to decide which is

better but to demonstrate the benefits of the ACDC methodology.

Once all the steps of the methodology have been completed, the conclusions of the

work are presented, but in this case the conclusions generated by the methodology are

presented.

Conclusions

The exercise presented in section 4 shows how the methodology allows a detailed ob-

servation of the application and the selected devices, equally it is possible to tailor the

development of the methodology to meet the needs of the application, the devices that

meet the needs of the application and the objectives that are set to evaluate the applica-

tion or the devices.

The ACDC methodology seeks to generalize the steps to follow to evaluate a Post-

Moore architecture, in the first step an application, benchmark, methodology or testbed

is selected, it is characterized to know its needs and the proposed steps are followed.

If the ACDC methodology is compared to others, it’s much easier to implement dif-

ferent measurement mechanisms. Each step in the methodology generates results that

contribute to improve the evaluation results

Further works

The work focused only on CPU, in future studies it’s intended to extend the synthetic

testbed to other types of hardware such as GPU or FPGA. The methodology was tested

on single devices, but it’s interesting to see its implementation on agglomerated de-

vices. If the catalog of tested embedded devices is increased, implementation guidelines

can be developed that simplify the deployment of the application on Post-Moore de-

vices.

References

[1] J. Dongarra and P. Luszczek, "LINPACK Benchmark," Encyclopedia of

Parallel Computing, 2011.

14

[2] E. Strohmaier, J. Dongarra, H. Simon and M. Meuer, "Top 500 The List.,"

Prometeus GmbH, [Online]. Available:

http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html. [Accessed

20 5 2021].

[3] M. M. Waldrop, "The chips are down for Moore's law," Nature, no. 530, p.

144–147, 2016.

[4] T. N. Theis and H.-S. P. Wong, "The End of Moore’s Law: A New

Beginning for Information Technology," Computing in Science &

Engineering, vol. 19, no. 2, p. 41–50, 2017.

[5] S. Matsuoka, "Cambrian Explosion of Computing and Big Data in the Post-

Moore Era," In Proceedings of the 27th International Symposium on High-

Performance Parallel and Distributed Computing (HPDC '18), 2018.

[6] S. Matsuoka et al, "From FLOPS to BYTES: disruptive change in high-

performance computing towards the post-moore era," CF '16: Proceedings of

the ACM International Conference on Computing Frontiers, p. 274–281,

2016.

[7] M. Karp, A. Podobas, N. Jansson and T. Kenter, "High-Performance

Spectral Element Methods on," IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pp. 1077-1086, 2021.

[8] I. Kuon, R. Tessier and J. Rose, "FPGA Architecture: Survey and

Challenges," Now Publishers Inc, 2008.

[9] T. S. Czajkowski et. al, "From OpenCL to high-performance hardware on

FPGAs," 22nd international conference on field programmable logic, p. 531–

534, 2012.

[10] S. Lee, J. Kim and J. S. Vetter, "OpenACC to FPGA: A Framework for

Directive-Based High-Performance Reconfigurable Computing," 2016 IEEE

International Parallel and Distributed Processing Symposium, p. 544–554,

2016.

[11] D. Vasudevan, G. Michelogiannakis, D. Donofrio and J. Shalf,

"PARADISE - Post-Moore Architecture and Accelerator Design Space

Exploration," IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 139-140, 2019.

[12] J. S. Young et al, "Experimental Insights from the Rogues Gallery," IEEE

International Conference on Rebooting Computing (ICRC), 2019.

[13] J. S. Young et al, "A microbenchmark characterization of the emu chick,"

CoRR, 2018.

[14] S. Lloyd and M. Gokhale, "In-memory data rearrangement for irregular

data-intensive computing," Computer, vol. 48, no. 8, p. 18–25, 2015.

[15] M. Shantharam et al, "Performance evaluation of scale-free graph

algorithms in low latency non-volatile memory," 2017 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), p.

1021–1028, 2017.

15

[16] A. D. Bader et al, "Graph500 Benchmark 1 (search) Version 1.2,"

Graph500 Steering Committee, Tech, 211.

[17] J. S. Vetter, E. P. DeBenedictis and T. M. Conte, "Architectures for the

Post-Moore Era," IEEE Micro, vol. 37, no. 4, p. 6–8, 2017.

[18] Nvidia, "Nvidia Jetson Nano," [Online]. Available:

https://www.nvidia.com/es-la/autonomous-machines/embedded-

systems/jetson-nano/. [Accessed 6 junio 2021].

[19] C. King and A. Waterland, "Ubuntu Manuals, Stress-ng," Canonical Ltd,

22 February 2018. [Online]. Available:

http://manpages.ubuntu.com/manpages/bionic/man1/stress-ng.1.html.

[Accessed 10 February 2021].

[20] VTA, "Manual del Usuario VTA-84630," VTA, [Online]. Available:

https://www.vta.co/wp-content/uploads/2019/09/VTA-

84630_manual_bn.pdf. [Accessed 15 Febrero 2021].

