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Abstract

With a turnover of more than 4.2 billion euros in 2020 and a 20% share
in the value of the French wine industry’s exports, the champagne industry
represents a considerable weight in the French economy. In this context
of significant economic development, the issue of climate change has been
added, calling into question the practices and means of production of the
sector. The challenges related to global warming and an ever-increasing
demand for yield can be addressed using the Internet of Things (IoT) and
Artificial Intelligence (AI) technologies to benefit champagne production and
answer these challenges.

This article presents a solution to optimise Vranken Pommery products’
quality and make environmentally friendly decisions by using intelligent
sensors distributed as close as possible to the production and storage facilities
to collect data. These sensors use LoRaWAN technology and protocol to
communicate. The system integrates components capable of hosting artificial
intelligence algorithms and using advanced microcontrollers that allow for
intelligent communication network implementation while reducing power
consumption and deployment costs.
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4.1.1 Introduction

The 21st century has brought a digital transformation in the industrial
sector in which the boundaries between the physical and digital worlds are
blurring to create what we called Industry 4.0. Industry 4.0 will be the place
where employees, machines and products interact, bringing a new set of
technologies to enable the Internet of Things (IoT) and, more specifically,
the Industrial Internet of Things (IIoT).

Industry 4.0 began in manufacturing but has become essential for
all industrial markets such as the food and beverage markets. Like any
business, those within food and beverage manufacturing, such as Champagne
manufacturers, must respond quickly and effectively to change to keep up
with competitors. Industry 4.0 applied to Champagne is a challenge since
today the work in vineyards in Champagne still involves many manual tasks
such as counting grape berries for yield forecasting or visual inspection of
vines for disease detection. These tasks are essential because the quality of
Champagne naturally depends on the quality of the raw material, i.e., grapes.
In addition to the agricultural imperatives, the Champagne is the result of a
long and rigorous industrial manufacturing process, as shown in Figure 4.1.1.
This process starts with the pressing and the first fermentation, continues with
the assembly and the second fermentation, the ageing in the cellar, and ends
with bottling and sending to the end customer.

Figure 4.1.1 Value chain for champagne production.
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Smart manufacturing leveraging on IoT and Cyber-Physical Systems
(CPS) enables different physical sensors, actuators, and controllers to be
locally interconnected and globally connected to cloud computing servers,
forming complex online systems.

The use of IIoT can have an impact all along the manufacturing
process of champagne (and more generally of wine). Indeed, thanks to
sensors distributed in vineyards, it is possible to collect numerous data
such as humidity, temperature or soil parameters: moisture, temperature, and
electrical conductivity. The analysis of these data helps winemakers better
managing and controlling the growth of their cultures. Besides, with the
help of AI, specialised analytics allow growers to continually monitor soil,
plant, and atmosphere to adjust irrigation and fertilisation in response to the
environment. For example, by comparing current data with historical ones,
the creation of predictive models on the best harvest period is now a reality.
Furthermore, beyond the vineyard itself, IIoT can be used in wine cellars
to monitor the ageing and the conservation of the champagne. Temperature
is particularly important as even slight fluctuations impact the oxidation of
the wine, which strongly affects the quality. Thanks to the IIoT, vintners are
able to understand when tiny fluctuations occur and correct them before any
damage is done. Thus, IIoT can help winemakers to achieve more successful
harvests, better control production, and ensure ideal quality during transit and
storage.

With these ideas in mind, this article presents a new environmental
monitoring system enhanced by AI for yield forecasting, disease detection,
fertiliser/pesticide optimisation, quality estimation, etc. This document aims
to explain how the solution works, from the communication part to the
intelligence part, and give insights on how this solution will help champagne
manufacturers.

The article is structured as follows. Section 4.1.2 describes the current
state of the art. Section 4.1.3 introduces the edge intelligence concept.
Section 4.1.4 describes the LoRaWAN system architecture. Section 4.1.5
presents the monitoring system along with the architecture of the end nodes
enhanced by AI. Section 4.1.6 concludes the work.

4.1.2 Related Work

Agriculture is seeing fundamental changes due to IoT and AI. In today’s
global warming environment and growing demographics, connected objects
and artificial intelligence are an advantage. Their use allows farmers to
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manage their farms better. Collecting data on the state of crops, weather
forecasts, or even parameters such as temperature or humidity is at the heart
of the intelligent farming concept.

The main contribution of AI and IIoT in agriculture is helping the
industry players make decisions, allowing them to optimise their production
and, therefore, their yield. For example, Farmwave [1] will enable farmers
in the decision-making process concerning their farms. Using vision-based
algorithms and edge AI, this solution can identify pest damage and disease
through photos. Plantix [2] is also a solution to help farmers and agricultural
workers increase their productivity. Thanks to a mobile application,
farmers can take pictures of their crops and get information about them.
Plantix can diagnose infected crops and diseases and propose appropriate
treatments.

Unlike solutions such as Farmwave or Plantix, which rely on images,
some use data collection and AI to provide models and predictions to help
farmers know how to optimise the productivity of their crops. This is the case
of Cropx [3], a solution that measures moisture, temperature, and electrical
conductivity in the soil. Cropx helps farmers monitor their crops and ensure
increased productivity by providing crop-specific recommendations. Thanks
to AI, Cropx uses crop models to learn and understand the behaviour of its
supported crops, depending on the region. Cropx also provides aerial imagery,
topography maps, and soil mapping to help the farmer in the decision-making
process.

Another example could be Microstrain [8] which is a wireless
environmental detection system that monitors vineyards’ key growth
episodes. Information such as soil and leaf moisture, solar radiation and
temperature are collected and merged to monitor vineyards remotely and alert
growers to critical situations.

In addition to providing an answer to purely economical questions, AI and
IoT are being used to provide solutions to more complex problems. Adapting
production methods to climate change is, for instance, one of the challenges
of smart agriculture. The solution aWhere [7] uses AI to give insights about
the weather to help farmers, companies, governments, or agencies adapting to
climate change. More than 1.9 million virtual weather stations are deployed
to turn climate insights into action (as pest and disease modelling, fertiliser
timing recommendations, optimal planting dates, etc.) and create powerful
maps to monitor the weather in a specific area (global to local scale).

The issues raised by the concept of sustainable development also
integrates a social dimension, and some solutions try to respond to this
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problem. For example, PlantVillage Nuru [4] helps farmers from developing
countries diagnose crop diseases, even without an internet connection.
Developed with the UN FAO (Food and Agriculture Organization of the
United Nations) and the CGIAR (Consultative Group on International
Agricultural Research), Nuru is an AI assistant that can diagnose multiple
diseases in Cassava, fall armyworm infections in African Maize, potato
disease and wheat disease. An essential part of the PlantVillage Nuru solution
is also the share of knowledge between smallholder farmers.

Many projects belonging to smart farming concept are based on
servomechanism systems such as robots, drones, or satellites rather than
scattered sensors. For example, Precisionhawk [5] is a solution based on
drones, sensors, and AI. Drones collect high-quality data through sensors to
survey, map, and image farmland. The results are then provided to a web
application.

The Blue River Technology project [6] has developed robots that can
accurately distinguish between “weeds” and cultivated plants using AI. Based
on image processing algorithms, this solution allows farmers to limit spraying
to weeds only, thereby reducing pesticide use.

Finally, Taranis [9] helps farmers monitor their fields. Using satellites,
planes, and drones with vision-based AI, this solution allows workers to
detect and prevent crop loss due to insects, crop disease and weeds. Data are
assembled in reports, graphs, maps, or insights to make the decision-making
process easier for the worker.

4.1.3 Edge Intelligence

AI has started to widen the application potentiality of IoT and CPS,
enriching them with intelligent services used by many users. Deployment
of standalone localised CPS such as the one offered by the ISA-95 model
based on supervisory control and data acquisition (SCADA) system offers
an inefficient solution due to resource wastage, prohibitive costs with the
significant disadvantage of the distributed system nature of data itself.
Thus, centralised approaches based on the cloud have tried to address
these problems by combining data distribution and robust central services.
A significant number of sensor data can be analysed and consolidated in
synthetic format by modern dashboards In these approaches dashboards are
updated in real-time or near real-time to understand the adequate status of
manufacturing processes better.
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Compared to the previous approaches, cloud-based solutions enable
to monitor the actual working conditions of machines and analyse data
to understand what is happening. When deviations occur, using this
approach, it is possible to identify the reasons for variation compared to a
standard procedure. This transparency implies the possibility of subsequent
forecasting events and thus anticipating possible dangerous situations for the
efficiency of the manufacturing production lines. To implement an efficient
correct forecast, it is important to analyse a considerable amount of data
collected during a long period. Then, applying AI with the most appropriate
ML algorithms that model the behaviour of machines, it is possible to
anticipate the future event of the machines and decide the most appropriate
actions. For instance, depending on these events, it is possible to predict
the time of preventive maintenance. Another advantage of these cloud-based
approaches is implementing the digital twin of one machine or an entire
manufacturing line, enabling without human controls to activate the most
appropriate corrective actions within the manufacturing process. Cloud-based
monitoring solutions allow for the improvement of the operative efficiency
of a manufacturing line by decreasing machine downtime and reducing
maintenance periods. The core of the cloud-based monitoring system is to
have an efficient communication infrastructure for each machine and the
overall manufacturing line. Such communication infrastructure must send
efficiently data coming from the sensors towards the cloud. Cloud-based
monitoring systems require smart sensors that include functionalities of
communication and data signal processing.

Data signal processing is required to transform the physical monitored
variable into something meaningful that can be transmitted to the cloud. For
such reasons nowadays, such sensors include Micro Controller Unit (MCU),
analogue and digital interfaces, memories, and communication hardware. The
degree of smartness is related to its decentralised computation capabilities to
perform operations that may include data from many probes connected to the
same smart sensors. Considering the Moore law, it is possible to implement
smart sensors with smaller and more powerful MCUs such as the STM32.

These MCUs can process data from several probes and apply algorithms
more and more complex, including AI. A direct implication of this trend is
that smart sensors are becoming the hub of many probes, thus reducing the
costs associated with communication, processing, latency, and energy.

Communication costs can be reduced since data can be combined, so
less data will be transmitted. Reducing data communication also implies a
reduction of energy since most of the energy of the end node is consumed
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during the data transmission. Time-critical applications imply real-time/near-
real-time computation. These requirements cannot be met using the standard
cloud approach due to the broad latency introduced by the network. With the
increase of computation, it is now possible to move part of the computation
from the cloud to the smart sensors: aka the edge nodes.

Moving computation to the edge, we also address privacy and security.
Data privacy is guaranteed since the MCU can now decide the form of
data to be transmitted to the cloud. Instead, the security will be reinforced
leveraging the hardware security mechanisms provided by modern MCU.
Several research papers focused on the possibility of bringing artificial
intelligence to devices with limited resources [13][14][15][16]. To bring an
AI model to MCU, ML developers should deal with the proper hardware, ML
accelerator and memory set up to fit with the limited resources.

Therefore, to implement ML, two solutions may be used. The first one
is called on-device computation, where Deep Neural Networks (DNNs) are
executed on the end device with no AI on the cloud. The second is referred
to as hierarchical computation, where DNNs are executed on the device and
then on the cloud. In the second solution, the DDNs executed on the device
and the cloud are complementary. Implementing an AI algorithm on MCU is
challenging. And it is still a young technology.

As a result, engineers often must rely on a lot of different tools and
complex workflows. For such reason, tools are essential. An example of
a good tool that enables simple implementation of a DNN on a MCU is
the X-CUBE-AI [17], suitable only for STMicroelectronics MCUs. It is
an expansion of the STM32CubeMX environment that extends the tool’s
potential, allowing an automatic conversion of pre-trained NNs to low
resource hardware. X-CUBE-AI also optimises libraries by modifying layers
and reducing the number of weights to make the network more memory
friendly.

4.1.4 Communication Technology – LoRaWAN

The numerous IoT applications impose constraints on the choice of the
network architecture to be implemented. Depending on the use of a connected
object, the organisation of the communication network will be different. To
meet the required specifications and use cases, a network using IoT must find
a compromise between the following four constraints:

• Range
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• Data transmission rate
• Power consumption
• Cost of deployment

There are many different technologies available for this purpose.If the
communication must be done over short distances (a few metres to a hundred
metres), it is possible to use Wi-Fi, Bluetooth, RFID or Zigbee connectivity.
These technologies allow sending data at a fast rate with reasonable
energy consumption, but the communication can only be done at short
range [10].

If the use case requires sending data over a hundred metres, then cellular
connectivity technologies (2G, 3G, 4G or 5G) seem more appropriate.
Cellular technologies allow for the transmission of large amounts of data over
vast distances, which can be advantageous in the industrial sector.

However, there are IoT use cases where these technologies are not
adapted. Indeed, these technologies are energy-intensive and have a high
deployment cost. In some applications, such as in the field of connected
agriculture or smart cities, the connected devices used need to transmit little
data over large distances but are powered by simple batteries that do not
provide much energy [10].

LPWAN (Low Power Wide Area Network) technologies are designed to
transmit over large distances and maintain sound signal propagation even
in more challenging environments. In an open environment, communication
can be established over several tens of kilometres. In a more constrained
environment (e.g., in urban areas), the range of LPWAN technologies is
a few kilometres. LPWANs consume very little energy and allow devices
to reach a lifetime of 10 years or more depending on the battery used. In
addition, LPWANs allow covering a large area with few communicating
devices. Indeed, the long range of LPWAN technologies and the network
structure itself allows deploying fewer devices than cellular technologies
while maintaining optimal efficiency.

Finally, since LPWANs do not have to handle complex waveforms (such
as a voice call, for example), the transmit/receive module does not have to be
very elaborate, which saves on hardware and production techniques.

Thus, the exponential growth of the IoT and the possibilities offered by
LPWAN technologies are very interesting for enterprises.

The number of deployed connected objects (excluding phones, tablets,
and computers) was indeed 7 billion in 2018 and is expected to reach
21.5 billion in 2025. Of all these devices, 25% belonged to LPWAN
deployments [10].
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Therefore, some companies have invested in establishing LPWAN
networks and offer their own technology solution.

The Figure 4.1.2 summarises the characteristics of different communi-
cation technologies [11][12].

The LoRaWAN protocol was born under the impetus of the LoRa
Alliance, which brings together various players in the IoT. It allows realising
an LPWAN network that benefits from the advantages of LoRa technology
while providing a solution to some IoT requirements, such as mobility and a
large capacity of module connections.

The LoRaWAN uses a star-of-stars topology in which gateways relay
messages between LoRa modules and a LoRa server. Figure 4.1.3 shows the
overall architecture of a LoRaWAN network, which can be broken down into
four parts.

The End Nodes part groups all the LoRa modules that communicate
with the gateways. These are the ones that contain all the sensors necessary
for data acquisition. They have a LoRa radio that allows them to send the
collected data to all the gateways within the communication range. The data
transmission is done using LoRa technology.

The Concentrator/Gateway part gathers all the gateways that have been
deployed. They ensure the link between the connected devices and the LoRa
server. They listen to all the communication channels. They convert LoRa
frames into messages understandable by the server and vice versa. They
can handle many LoRa modules, giving the LoRaWAN network a high load
capacity.

The Network Server receives, via TCP/IP communication, the messages
transmitted by the LoRa gateways. It also manages incoming and outgoing

Figure 4.1.2 Comparative range, data rate, energy efficiency characteristics of
communications technologies [11][12].
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Figure 4.1.3 LoRaWAN architecture [19].

communications between the application part of the network and the
gateways. For example, it will delete messages received in duplicate (several
gateways can send the same data if they are in the range of the same LoRa
node) and will take care of the authentication of data sent and received by
LoRa nodes.

The Application Server takes care of the encryption and decryption of
messages passing through the network. In most cases, the Application Server
is followed by a Web Application part, grouping the web applications that
will use the data collected by the LoRa modules. This part does not belong to
the LoRaWAN protocol and is implemented by the user, but one of the roles
of the Application Server is to dissociate the different web applications that
want to connect to the network and transmit the instructions coming from
them to the LoRa terminals.

Communication within a LoRaWAN network is bidirectional. It can be
uplink (from the terminals to the server) or downlink (from the server to
the endpoints). Most transmissions in a LoRaWAN network are uplink. It
is also possible to realise a LoRaWAN network implementing only uplink
connections to reduce the complexity of the network if the use case allows it.

In addition to the energy benefits of LoRa technology, the LoRaWAN
protocol has implemented a class system to reduce network consumption.
Thus, a LoRa module can be class A, B or C depending on its ability to
communicate in the downlink as presented in Figure 4.1.4.

All LoRa devices must be able to implement class A. This mode is the
least power consuming. At each transmission of the terminal, two reception
windows are opened to receive downlink communications.
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Figure 4.1.4 Operation of the different classes of a LoRaWAN [18].

These reception windows depend on a fixed duration, frequency, and data
rate. If the device receives communication in the RX1 window, then the
second window is not opened, and the device goes back to standby.

A downlink communication can only be done after an uplink transmission
has been done. This mode consumes very little energy, as the device is mainly
on standby but imposes a significant gateway/module communication latency.

Class B is a mode that seeks a compromise between energy consumption
and downlink communication latency. It has the same operation as class
A (2 reception windows after each transmission) and implements reception
windows that open periodically. To allow synchronising the reception
windows between the LoRa module and the concentrator, the concentrator
must send a beacon and a ping. The LoRa device can therefore receive
instructions without having first sent a message. This mode reduces the
latency of downlink communications but increases the terminal’s power
consumption.

Class C is a mode adapted to specific LoRa modules. Indeed, in this mode,
the terminal continuously listens to downlink communications, except when
it transmits. Class C eliminates any latency in the transmission but is not
energetically viable for a battery-powered device. It is, therefore, suitable for
modules connected to the mains.

One of the major drawbacks of LoRa technology is the lack of means
to secure communication. The LoRaWAN protocol offers a solution to
overcome this problem. Any communicating object wanting to join a network
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must be identified. To achieve this identification, it is necessary that the device
is activated.

The security within a LoRaWAN network is ensured using three essential
elements:

• Device Address (DevAddr): address of the device on the network, acts
as an IP address

• Network Session Key (NwkSKey): AES128 key shared between the
terminal and the Network Server, used for authentication

• Application Session Key (AppSKey): AES128 key shared between the
terminal and the Application Server, used for data encryption

• Each module knows three elements necessary for its identification by
the LoRa server:

• Device EUI (DevEUI): defines the device ID
• Application EUI (AppEUI): defines the ID of the application to which

the device is attached
• Application Key (AppKey): a key that allows deriving the security

keys

The transmission data rate depends on two parameters: the Spreading
Factor (SF) and the Bandwidth (BW). The LoRaWAN protocol normalises
the associations of these two parameters and names Data Rate (DR) an
SF/BW pair. LoRaWAN lists seven DRs (from DR0 to DR6) for a LoRa
modulation.

As the LoRaWAN protocol is based on LoRa technology, communication
is carried out in the same frequency bands (from 863 MHz to 870 MHz in
Europe). The LoRaWAN server defines several channels that can be used
for uplink and downlink communications within this band. The LoRaWAN
protocol requires the LoRa device to know the channels 868.1 MHz,
868.3 MHz, and 868.5 MHz from DR0 to DR5. LoRaWAN protocol also
implements an algorithm named Adaptative Data Rate (ADR) that allows the
Network Server to automatically calibrate the optimal DR for communication
with the device, using Signal to Noise Ratio (SNR) and Received Signal
Strength Indication (RSSI) [20].

Thus, LoRaWAN provides a suitable answer to most of the issues
raised by the IoT. Its range of several kilometres, its energy efficiency and
the robustness of its communications make LoRaWAN one of the most
used solutions in the LPWAN market. The Table 4.1.1 summarises the
characteristics of different LPWAN technologies.
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Table 4.1.1 LPWAN technologies comparison.
Sigfox LoRaWAN NB-IOT LTE-M

Modulation UNB, GFSK CSS QPSK 16QAM
Flow 100 bps uplink

600 bps
downlink

0,25 to 50
kbps

100 kbps 1 Mbps

Range (open
environment)

To 50 km To 20 km To 10 km To 5 km

Cost =C =C=C =C=C=C =C=C=C
Lifetime More than 10

years
More than 10

years
To 10 years Less than 10

years
Payload (Bytes) 12 uplink

8downlink
Up to 250 1600 More than

1000
Security None AES128 LTE LTE

Quality of
Service

None Definable but
complicated

Definable Definable

Latency Downlink
communication

limited

Depends on
the class used

1 second 10
milliseconds

Mobility and
localization

No Yes Limited
mobility, no
localization

Mobility, no
localization

Deployment Sigfox operator Private
operators and

networks

Operators Operators

4.1.5 Environmental Monitoring System

It is widely recognised that the digitalisation of French wine and champagne
grape production can bring significant economic, environmental, and social
benefits. The future of the Champagne and Wine sector implies an
exponential increase to observe and monitor key aspects of production cost
effectively. For a company like Vranken Pommery, the production starts at
the vineyards and ends at the bottling. At each step, the data sources are
diverse, spanning from simple environmental data to complex images. The
environmental monitoring system manage the production operations and to
reduce the waste by improving Vranken-Pommery operational efficiency.

Fungi cause the most common vine diseases. Different species can infect
grapevines. Black rot (Guignardia bidwellii), Powdery mildew (Uncinula
necator), and Grey mold (Botrytis cinerea) are examples of diseases that
can affect grape quality. Each fungus develops under certain environmental
conditions.



274 Innovative Vineyards Environmental Monitoring System

The environmental monitoring system is based on data collected
by different industrial sensors (e.g., TEROS, STMicroelectronics, etc.)
connected to STM32WL enhanced by a machine learning core enabling
continuous monitoring of the environment, the soil, meteorological
conditions, and/or plant performances. The STM32WL System-On-Chip
integrates both a general purpose microcontroller and a sub-GHz radio
on the same chip. Built on Arm® Cortex®-M4 and Cortex®-M0+ cores
(single- and dual-core architectures available), STM32WL microcontrollers
support multiple modulations- LoRa®, (G)FSK, (G)MSK, BPSK - to ensure
flexibility in wireless applications with LoRaWAN®, Sigfox, W-MBUS,
mioty® or any other suitable protocol in a fully open way. Sensors will
be able to acquire and merge underground and climate data. Many sensors
are today available on the market but in order to accurately understanding
the percentage of water in a soil has been a complex, costly, and laborious
process. Soil moisture is highly variable over short distances, at different
depths in the soil profile, and in different soil types and densities. Today
only few of sensors provide the right degree of precision and low percentage
of sensor-to-sensor variability in their measurements. In the environmental
monitoring system in order to meet the functional and not functional
requirements provided by Vranken-Pommery for the soil moisture sensors,
the TEROS12 sensor from METER Group has been selected since it provides
sensor-to-sensor variability (less than 1%), at a reasonable cost. Thus, the
TEROS12 sensors along with other types of sensors are used to make
precise, informed decisions and better manage Vranken-Pommery, labour,
equipment, and chemical usage. Technological advancements introduced by
the STM32WL enables ML and efficient communication directly at the edge.
To improve the power efficiency an innovative approach has been chosen:
to enrich with a machine learning core to the STM32WL. The adopted
solution give the possibility to implement ML directly to the STM32WL
and/or to the machine learning core. The Machine Learning Core provided
by the LSM6DSOX comprises a set of configurable parameters and decision
trees able to implement AI algorithms in the sensor itself. The kinds of
algorithms suitable for the Machine Learning Core can be implemented by
following an inductive approach, which involves searching patterns from
observations.

The idea behind the Machine Learning Core is to use the accelerometer,
gyroscope, and external sensor data (readable through the I2C master
interface) to compute a set of statistical parameters selectable by the user
(such as mean, variance, energy, peak, zero crossings, etc.) in a defined time
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window. In addition to the sensor input data, some new inputs can be defined
by applying some configurable filters available in the device.

The Machine Learning Core parameters are called “Features” and can be
used as input for a configurable decision tree that can be stored in the device.
The decision tree, which can be stored in the LSM6DSOX, is a binary tree
composed of a series of nodes. A statistical parameter (feature) is evaluated
against a threshold to establish the evolution in the next node and this in
each node. When a leaf (one of the last nodes of the tree) is reached, the
decision tree generates a readable result through a dedicated device register.
Using this innovative architecture, we can target from 10 to 1000 times energy
saving.

The environmental monitoring system exploits the range of State-of-the-
art IoT sensor nodes and communication protocols to deliver data to Vranken
Pommery to aid the decision-making process. As described above, the IoT
sensor node provided includes different sensing technologies to provide real-
time data related to weather, soil, crop water status, soil salinity. With the
latest development of wireless communication technologies, sensor data can
be accessed rapidly and at a relatively low cost, saving Pommery potentially
significant amounts of time and money.

Since IoT sensor nodes are battery-powered, the right combination
of low-power sensors and communication networks is imperative for the
environmental monitoring system. In addition, the sensors used in this demo
require low bandwidth due to the small size of the transmitted data packets.
Thus, LPWANs are the best suited wireless communication protocols for this
demo due to their low power consumption and long communication distance.
LoRaWAN is one well-established protocol in the LPWAN family, it uses
Long-Range (LoRa) modulation in its physical layer, and it is characterised
by extended and significant coverage and low data rate with low complexity
assuring optimal power consumption. Using LoRaWAN, a large volume of
data from multiple sensor types installed in multiple vineyards of Vranken-
Pommery are generated. Therefore a data management system composed of
a distributed data system formed by the IIoT nodes previously described and
a centralised data system collecting sensor data from the distributed data
system and providing access to data via ad-hoc methods is required. This
system aims to enable time-series data collection, processing, and storage. In
order to have a user-friendly approach to managing the acquired data, it is also
crucial to present and visualise data via a complete end-to-end infrastructure
based on Grafana. Using Grafana, we can pull data from the database,
allowing us to create customised and attractive charts and graphs. Dashboards
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provide the real value of the monitoring parameters and use computational
models and algorithms to translate data to useful information to Vranken-
Pommery to make actionable decisions. The introduction of an efficient and
scalable data management system allows managing larger datasets that may
cover multiple Vranken-Pommery vineyards. Managing the collected datasets
effectively makes it possible to exploit further prediction (AI) opportunities
in the Cloud that are infeasible with smaller siloed datasets.

4.1.6 Conclusion

This article presents a monitoring system demonstrating how an AI-based
energy-efficient IIoT solution using LoRaWAN connectivity can be used in
Champagne production. The trends in moving computation from the cloud to
the edge are summarised, and the implication of IIoT end nodes design and
architecture is discussed. It is crucial to connect many sensors to each IIoT
end node to give the flexibility to address several use cases in champagne
production. We have also proposed to deploy machine learning on IIoT end
nodes. The article described the way to enable the execution of machine
learning models on hardware with low performances based on STM32
MCU to reduce the network data transmission by allowing computations
to be performed close to the sensor data sources, preserving privacy in
uploading data, and reducing power consumption for continuous wireless
communication to cloud servers. Finally, the article describes the deployment
of a system monitoring infrastructure based on LoRaWAN for the monitoring
of environmental conditions within the vineyards of Vranken Pommery.
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