Diffusion translationnelle et Résonance Magnétique Nucléaire

28 juin 2018

Journée Scientifique « 80 ans du CNRS »

L'histoire...

- ... commence juste après la soutenance de la thèse présentée par Gérard Liger-Belair
- Le modèle de croissance des bulles dans le Champagne contient, entre autres paramètres, le coefficient de diffusion du CO₂ au sein de la phase liquide.
- Pourquoi ne pas mesurer ce coefficient de diffusion par RMN du ¹³C ?
- Le laboratoire « Isolement, Structure, Transformations et Synthèse » de Substances Naturelles (UMR CNRS 6013) dispose du matériel nécessaire et effectue des mesures de ce type en RMN du ¹H pour l'analyse de mélanges (Diffusion-Ordered SpectroscopY, DOSY).

Diffusion, encre bleue dans l'eau

Et c'est irréversible !

c: Concentration

$$J = -D\frac{\partial c}{\partial x}$$
$$D = \frac{kT}{6\pi r\mu}$$

J : Flux D : Coefficient de diffusion k : Constante de Boltzman T : Température absolue r : Rayon hydrodynamique μ : Viscosité dynamique

$$\frac{\partial c}{\partial t} = \frac{J(x) - J(x + dx)}{dx}$$
$$\frac{\partial c}{\partial t} = -\frac{dJ}{dx}$$
$$\frac{\partial c}{\partial t} = D\frac{\partial^2 c}{\partial x^2}$$

Spectromètre de RMN, console, aimant, sonde

Sonde

Spectromètre de RMN, aimant, échantillon liquide

Echantillon

Cours rapide de RMN

- Spectromètre de RMN
 - Un aimant ($B_0 > 7$ T, typiquement, champ magnétique terrestre ~ 50 μ T)
 - Une sonde, interface entre l'aimant et l'échantillon à analyser
 - Une console (contrôle de **B**₀, émission et réception du signal de RMN, ...)
 - Un ordinateur (PC, contrôle de l'électronique, traitement du signal)
- Principe de base
 - Certains noyau atomiques sont des dipôles magnétiques : ¹H, ¹³C, ¹⁵N, ¹⁹F, ... et sont caractérisé par un nombre quantique de spin s (1/2, 1, 3/2, ...) entier ou demi-entier non nul. Ils ont aussi un rapport gyromagnétique γ.
 - Placé dans le champ B₀, les noyaux d'un échantillon acquièrent une aimantation macroscopique M^{eq}, vecteur colinéaire à B₀.
 - Si *M* est écarté de sa position d'équilibre, il y revient en combinant un mouvement rapide (précession) et un mouvement lent (relaxation)
 - Le signal de RMN est détecté pendant le retour à l'équilibre

Cours rapide de RMN

- Retour à l'équilibre de l'aimantation **M**
 - Rotation rapide autour de Oz à une fréquence qui ne dépend « presque » que du type de noyau et de B₀. Fréquence de précession de Larmor, Fréquence de résonance.
 - La fréquence pour ¹H donne une mesure de B₀ : 500 MHz à 11,7 T soit un tour en **2 ns**. Radiofréquence.
 - Les temps caractéristiques de retour à l'équilibre (disparition de l'aimantation transversale, repousse de l'aimantation longitudinale) sont de l'ordre de 1 s.

Déplacement chimique

- La fréquence de Larmor précise dépend de B₀^{local} au niveau du noyau, modifié par la présence des électrons qui s'interposent entre l'aimant et le noyau.
- Déplacement chimique défini à partir d'une substance de référence, le tétraméthysilane Si(CH₃)₄, pour ¹H et ¹³C.

$$\delta = \frac{\nu - \nu^{\mathrm{TMS}}}{\nu^{\mathrm{TMS}}} \times 10^6$$

 δ exprimé en ppm

Cours rapide de RMN

- Mise hors équilibre
 - Un courant alternatif dans la bobine de la sonde crée un champ alternatif *B*₁ perpendiculaire à *B*₀.
 - La fréquence de variation du champ B₁ (v^{RF}) doit être voisine ou égale à celle de la précession de Larmor pour mettre M en mouvement (résonance).
 - **M** tourne autour d'un axe perpendiculaire à B_0 ($v_1 \approx 25 \text{ kHz}$) qui tourne lui-même autour de l'axe défini par B_0 à la fréquence v^{RF} .
 - Après ≈ 10 μs, *M* est perpendiculaire à *B*₀ : impulsion à 90 degrés.
 - Après \approx 20 µs, **M** est inversée : impulsion à 180 degrés.

- Série d'écho de spins (Séquence Carr-Purcell-Meiboom-Gill, CPMG)
 - La première décroissance (1) est due à la relaxation (irréversible) et à l'inhomogénéité de B_0 (réversible)
 - Au moment de l'écho de spin 2 l'atténuation réversible est compensée au « sommet » de l'écho. L'atténuation irréversible est liée à la relaxation et à la diffusion révélée par la persistance de l'inhomogénéité de B₀.

$$I(2n\tau) = I(0)e^{-2n\tau/T_2}e^{-\frac{D\gamma^2 G_0^2}{3}2n\tau^3}$$

 T_2 : temps de relaxation transversale **D**: coefficient de diffusion (translation) γ : rapport gyromagnétique G_0 : gradient du champ B_0

Gradient de champ **B**₀ « volontaire »

Ordres de grandeur $G = 0,5 \text{ T.m}^{-1}$ $\tau = 1 \text{ ms}$

Application d'un gradient Gpendant le temps τ :

à la position *z*, **M** tourne de $\gamma G\tau .z$

Τ

Echo de spin avec gradient, sans diffusion

Echo de spin avec gradient, avec diffusion

A la fin de l'écho, les aimantations ne sont pas toutes alignées indépendamment de z Affaiblissement du signal !!

L'équation de Stejskal-Tanner

$$I = I_0 \exp\left[-D\gamma^2 G^2 \delta^2 \left(\Delta - \frac{\delta}{3}\right)\right]$$

Les impulsions de gradient sont espacées du temps Δ et durent un temps δ .

Tous les paramètres sont constants sauf G. L'intensité du signal I est mesurée en fonction de G et décroit selon une loi gaussienne.

L'analyse de la décroissance permet de mesurer le **coefficient de diffusion** *D*.

Application au Champagne

- Comparaison entre valeurs de *D* expérimentales et obtenues par simulation numérique : *J. Phys. Chem. Lett.* **2014**, *5*, 4232–4237.
- Préparation des échantillons
 - Champagne, 0.6 ml
 - (NaH¹³CO₃)_s, 2 mg
 - D_2O + EtOH, 60 µL (87,5 : 12.5) pour la stabilisation de B_0
 - Il est nécessaire d'enrichir les échantillons en ¹³C pour obtenir un rapport signal/bruit correct en un temps raisonnable.
- RMN du ¹³C à 151 MHz (600 MHz pour ¹H)
 - Les signaux observés sont ceux de ¹³CO₂, ¹³CH₃CH₂OH et CH₃¹³CH₂OH
 - δ = 8 ms et Δ = 100 ms, *G* entre 0.01 et 0.52 T.m⁻¹
 - *T* = 4, 8, 12, 16, 20 °C.

Visualisation des données

 $D \approx 10^{-9} \text{ m}^2.\text{s}^{-1}$

Analyse des données

D = 1,38.10⁻⁹ m².s⁻¹

Champagne, sans déboucher

Available online at www.sciencedirect.com

Analytica Chimica Acta 535 (2005) 73-78

ANALYTICA CHIMICA ACTA

www.elsevier.com/locate/aca

Use of magnetic resonance spectroscopy for the investigation of the CO₂ dissolved in champagne and sparkling wines: a nondestructive and unintrusive method

Gwennhael Autret^{a,*}, Gérard Liger-Belair^{b,**}, Jean-Marc Nuzillard^c, Maryline Parmentier^b, Anne Dubois de Montreynaud^b, Philippe Jeandet^b, Bich-Thuy Doan^a, Jean-Claude Beloeil^d

 ^a Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Bât. 27, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
^b Laboratoire d'Oenologie et Chimie Appliquée, Unité de Recherche EA 2069 UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 02, France
^c FRE 2715 "Isolement, Structure, Transformations et Synthèse de Substances Naturelles", IFR 53 "Biomolècules", Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France
^d Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, Rue Charles Sadron, 45071 Orléans Cedex 02, France
Received 24 September 2004; received in revised form 22 November 2004; accepted 22 November 2004

Available online 8 January 2005

- Mesures de coefficients de diffusion dans un imageur IRM pré-clinique
- ½ Bouteille (sans étiquette) au lieu d'un rat ou d'un lapin.

Remerciements

- Nous remercions
 - le CNRS,
 - le Conseil Régional de Champagne-Ardenne,
 - le Conseil Général de la Marne,
 - le Ministère de l'Enseignement Supérieur et de la Recherche
 - et le programme européen FEDER

Pour leur soutien financier au projet CPER PlAneT.

• Nous remercions

• Agathe Martinez et Anthony Robert pour le soin qu'ils portent au bon fonctionnement des spectromètres de RMN de la plateforme PlAneT.