
HAL Id: hal-03360642
https://hal.univ-reims.fr/hal-03360642

Submitted on 2 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Effective compressive elastic behavior of rhombic
dodecahedron structure with and without border

constraints
Boning Yu, Yuming Li, Boussad Abbes, Baoyi Yu, Shujun Li

To cite this version:
Boning Yu, Yuming Li, Boussad Abbes, Baoyi Yu, Shujun Li. Effective compressive elastic behavior
of rhombic dodecahedron structure with and without border constraints. Composite Structures, 2021,
259, pp.113500. �10.1016/j.compstruct.2020.113500�. �hal-03360642�

https://hal.univ-reims.fr/hal-03360642
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

Effective Compressive Elastic Behavior of Rhombic Dodecahedron 

Structure with and without Border Constraints 

 

Boning Yu1,2, Yuming Li1,*, Boussad Abbes1, Baoyi Yu2, Shujun Li3 

1 Lab. MATIM, Université de Reims Champagne-Ardenne, Reims, France 
2 Shenyang University of Technology, China 
3Institute of Metal Research, Chinese Academy of Sciences, China 
Email: yuming.li@univ-reims.fr 

 

Abstract 

The effective compressive elastic modulus of the cellular rhombic dodecahedron structure, with 
m×n cells in the X- and Y- directions in matrix, has been studied. The effective compressive elastic 
modulus of the structure without border constraint is a function of m and n; while for the structure 
with border constraints in the X- and Y- directions it is found unique that is independent of m and n, 
and is a function of the porosity of the structure. In order to study and understand the range of the 
effective compressive elastic modulus for the structure without border constraint with explicit 
expression of the structure parameters, an analytical model has been developed to evaluate the 
lower and upper bounds. The analytical model is also valid for the structure with double border 
constraints with a unique modulus. In addition, a finite element method based on beam theory in 
neglecting shearing effect has been developed for both cases, under the specific boundary 
conditions used in a unit cell, including finite and infinite numbers of cells m or/and n. 

As such, the analytical method based on beam theory takes into consideration the finite geometry 
dimensions and the fictive infinite geometry dimensions. The later gives the upper bound of the 
effective compressive elastic modulus. The modulus of the structure composed of finite numbers of 
cells m×n without border constraint is not only a function related to the porosity of the structure, but 
the geometrical parameters d and b. An experimental test has been fulfilled and compared to the 
theoretical one with reasonable agreement. 

1. Introduction 

With the continuous and quick growing of industrial demands, the product design diversification 
and structural complexity have become a prevailing trend. And the porous structure composed of a 
network of interconnected solid struts or flat plates that form the edges and faces of the unit, has 
become one of the promising products [1]. It can achieve complex shape changes to satisfy the 
product performance requirements. For example, according to different mechanical properties and 
shape requirements in multiple directions, the porous structure can be manipulated within the 
controllable range to provide resultantly different structural stiffness, shock resistance, and high 
energy absorption [2-5]. 

With the quick development of additive manufacturing technology, the functionally graded porous 
structures can be customizable and efficiently manufactured. Moreover, these structures have been 
widely used in a variety of fields according to their performance diversity, such as unmanned aerial 
vehicle [6], aerospace [7], and biomedical [8-9]. 

Due to its design characteristics, the functionally graded porous structure is suitable for 
topologically optimization method or periodic arrangement [10-11]. The most typical periodic 
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structure includes a two-dimensional array of polygons such as the honeycomb structure [12], or a 
three-dimensional structure composed of struts [13] or layers [14]. 

Among the above-mentioned porous structures, the rhombic dodecahedron is often employed for 
biomedical application as the substitute for human bones grace to its similarity of porosity and 
density with natural human bones. Additionally the low elastic modulus avoids the stress shielding 
effect and makes it safer as a substitute for human bones [15]. Meanwhile, titanium alloy, especially 
Ti6Al4V alloy, is suitable as an implant material to replace human bones due to its advantages in 
excellent mechanical performance, corrosion resistance, and biocompatibility. As the porosity 
increases and the elastic modulus decreases, Ti6Al4V functional porous structural material implants 
will fasten the rate of tissue generation and integration. Compared to the traditional cast or forged 
products, Ti6Al4V biomedical samples prepared by EBM (Electron beam melting) have no 
significant differences in various mechanical properties [16-18]. 

In recent years, plentiful researches have been done to the rhombic dodecahedron porous structures 
materials fabricated by additive manufacturing. Generally, it was quite challenging to study and 
understand the mechanical properties of three-dimensional rhombohedral dodecahedron porous 
materials. The experimental method, FE modeling and analytical models have been used in the 
research works. 

Cao et al. [19] have proposed a new modified rhombohedral dodecahedron porous structure by 
redefining the cross section of the original struts with an optimizable shape parameter. 
Yang et al. [20] have constructed samples by additive manufacturing with periodical arrangement of 
rhombic dodecahedrons in three directions, and have found the increase in the size of the unit cell 
leads to a decrease in the printability, Young’s modulus, yield strength, and energy absorption 
capability. 

Horn et al. [21] have verified that the flexural modulus and ultimate strength were well fitted to the 
Gibson-Ashby relation by conducting four-point flexure tests on Ti6Al4V prismatic bars composed 
of a rhombic dodecahedron prepared by EBM. 

For artificial bone implant, the effective compressive elastic behavior of the structure is a very 
important factor. The porous Ti6Al4V alloys is a medical friendly material for the bone implant 
applications because its compressive properties can be quantitatively tailored by the porosity in 
order to be compatible with trabecular bone both on the quasi-static condition and in the range of 
physiological strain rate, as Young’s modulus and the strain rate are found to be related to the 
porosity [22]. In the present work, focused attentions have been paid to study the elastic properties 
of the rhomboidal dodecahedron structure under compression. 

In the application of the rhombic dodecahedron structure in the implant, the numerical modelling of 
the structure is too tedious and time consuming due to the complexity of the structure. The 
homogenization of the structure under compression enables to obtain an equivalent homogeneous 
solid with an effective elastic modulus in the compression direction that will make the numerical 
simulations much more efficient. 

Babaee et al. [23] have derived analytical relationships for the effective mechanical properties of an 
open rhomboidal dodecahedron unit cell and tessellated cellular structure with periodic boundary 
conditions by using fundamental concepts of mechanics of materials. In this study, the rhomboidal 
dodecahedron structure is supposed to be periodic with infinite geometry dimension, and the 
effective elastic modulus has been expressed as a function of the porosity, without taking into 
consideration the real dimension of the structure. In fact, the effective elastic modulus may not be a 
function purely related to the porosity, but may be related to the dimension of the structure too 
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according to different application conditions of the structure. When the structure has no border 
constraint, the effective elastic modulus changes gradually from the lower bound to the upper bound 
as the number of cells varies from one to infinite. Only in the case with infinite number of cells, the 
effective elastic modulus is a function of porosity. And when the structure has border constraint in 
the X- and Y- directions in the plane, the effective elastic modulus is a function of porosity, not 
regarding the numbers of cells. 

In the present study, an analytical modeling and FE method based on the beam theory have been 
developed to reveal the compressive effective elastic modulus of the rhomboidal dodecahedron. A 
perfect agreement has been achieved between the results of the analytical model and those of FE 
method. 

2. Methodology 

The mechanical properties of the cellular rhombic dodecahedron structure under compression in the 
vertical direction will be studied as shown in Fig. 1.A. The structure is based on the rhombic 
dodecahedron and supposed to be composed of m×n×l identical cellular cells. As shown in Fig. 1.B, 
one unit cell of the structure is a cubic space containing an entire rhombic dodecahedron of 24 struts 
and 8 struts connected to its neighbor cells in all the three directions. This is different from the 
structure whose unit cell volume contains entire rhombic dodecahedrons due to the range choice of 
rhombic dodecahedron’s direction. As the number of layers l in the vertical direction does not 
influence the effective elastic modulus in this direction, l is supposed to be 1 without losing the 
generality. Therefore the structure with m×n cells will be studied and the number of rows m and the 
columns n varies theoretically and mathematically from 1 to infinite. The effective elastic modulus 
of the structure in the vertical direction is a function of m and n. One unit cell gives the lower bound 
of the effective elastic modulus and a structure with infinite numbers of cells in row ( m→∞) or/and 
in column ( n→∞) gives the upper bounds for one direction (row or column) or the upper bound for 
two directions (row and column). 

Two different cases of application conditions of the rhombic dodecahedron structure under 
compression will be studied: 1) without border constraint in the the X-direction and the Y-direction; 
2) with border constraint in the the X-direction and the Y-direction.  

The analytical method and finite element (FE) method both based on beam theory will be used to 
predict the effective modulus: each strut is considered as a beam. As the analytical and the FE 
methods are based on the same theory, these two methods will give the same results. Therefore the 
analytical method is only chosen to calculate the bounds without constraint and the case with border 
constraint that doesn’t need much manual calculation. That is, the analytical method will be used to 
calculate the lower bound (m=n=1) and upper bound for two directions ( ;  m n→∞ →∞ ) of the 

effective elastic modulus for case 1) and the bulking elastic strength for case 2); the FE method will 
be used to calculate any value of m and n for case 1) due to its calculation capacity that can 
establish the graphic of the effective elastic modulus related to m and n. For the upper bound due to 
the infinite number of rows or/and columns, special boundary conditions will be applied with the 
minimum number of cells in both analytical and the FE methods. 

2.1 Geometry of the unit cell 
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A) Fabricated structure                                B) Unit cell                                            C) 1/8 of a unit cell 

Fig. 1. Cell of rhombic dodecahedron structure 

As shown in Fig. 1.B, a unit cell based on the rhombic dodecahedron is composed of 32 cylinder 
struts with the diameter d and length L for each. This cell is framed by a cubic box with the edge 
length b. 

1/8 of a unit cell in a cubic box is taken for the analysis of the upper and lower bounds of the 
effective elastic modulus due to its triple symmetric geometry. The length of the beam L and the 
edge length of the box b holds: 

3

4
L b=  (1) 

As shown in Fig. 1.B and 1.C, the local coordinate system O-xyz shares the same directions of X-, 
Y- and Z-axe in the global coordinate system attached at the center of the cubic box point Og. In the 
1/8 of the unit cell shown in Fig. 1.C, the coordinates of the nodes in the local coordinate system O-
xyz are as follows: 

( ), ,A a a a− − , ( ), ,B a a a , ( ), ,C a a a− − , ( ), ,D a a a− −  (2) 

with / 3a L= . 

And for each beam i (i = A, B, C, D), a local coordinate system attached to the origin point O is 

established and its directional vectors on the axes are designed as i
n
r

, 1it
r

 and 2it
r

, respectively. The 

normal vector i
n
r

 of the beam’s section is given by: 

( )in norm Oi=
uurr

 
(3) 

where the normalization function norm() is defined as: 

( ) /norm u u u=r r r
 

By using Eqs. (2) and (3), the normal directions of the beams are numerically expressed as: 
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Two tangential vectors perpendicular to i
n
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 for beam i (i = A, B, C, D) are chosen as follows: 
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( )( )1i i it norm k n n k= ⋅ −
r rr r r

， 2 1i i i
t n t= ×
r rr

; (5) 

The vectors 1 2, ,  
i i i

n t t
r rr

 serve as unit directional vectors in the three dimensions of the local 

coordinate system of beam i. 

By using Eqs. (4) and (5), the directional vectors of the beams are numerically determined as: 
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It’s worth mentioning that with this choice, the directional vectors 1A
t
r

, 1B
t
r

, 2C
t
r

 and 2D
t
r

 are in the 

symmetric plane X=Y which coincides well with the double symmetry and will simplify the 
expression of forces and moments both in the global and in the local coordinate system. 

2.2 Application conditions of the structure under compression 

Two cases of application conditions of the structure under compression exist: the borders of the 
structure are under constraint in the X-direction or/and the Y-direction or not. When the borders are 
only under constraint in one direction (X- or Y-direction), the effective elastic modulus increases 
considerably with respect to that without constraint. 

1) Application without border constraint in the plane XOgY 

If the structure has no border constraint in the plane XOgY, all borders are free and the effective 
elastic modulus can be calculated related to the number of rows m and that of columns n. The 
effective elastic modulus of the structure may be solved by beam theory without considering the 
shear efforts by using the FE method as a preference due to its strong calculation capacity. When m 
or/and n tend to infinite, the elastic behaviors of the cells become periodic, with non-zero horizontal 
displacement in the constrained direction on the borders of each cell, and special boundary 
conditions will be applied to the structure by using the minimum number of cells. 

Particularly, the analytical method may be also used due to its simplicity in the analysis of the 
structure with one single unit cell without constraint in the plane XOgY. 

2) Application with border constraint in the plane XOgY 

For a structure under compression in the vertical direction, when the borders of the structure are 
constrained by two rigid panels, in the X-direction for example (left and right), the structure is 
periodic in the X-direction. In this case m×n cells (Fig. 2.A) and m×1 cells (Fig. 2.B) have the same 
elastic behavior, therefore one border-constrained structure of m×1 cells can present the border-
constrained structure of m×n cells with any value of n. Different from the periodicity of the 
precedent case without constraint, the displacement in the constrained direction on the borders of 
each unit cell is zero. 

If the structure is constrained in the Y-direction at the same time, 1×1 cell has the same effective 
elastic modulus in the vertical direction as that of m×n cells with any value of m and n.  
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The FE method is a preferential tool to calculate the effective elastic modulus for the structure with 
border constraint, but the effective elastic modulus in this case will be calculated by the analytical 
method too. Because the analytical method gives an explicit expression that allows a better 
understanding of the effective elastic modulus. 

        

                         A) Structure of m×n cells                                                          B) Structure of m×1 cells 

Fig. 2. Presentation of structure under compression 

2.3 Lower and upper bounds of effective elastic modulus by using analytical method 

Due to the triple symmetry of the structure, 1/8 of the unit cell is taken to calculate the lower and 
upper bounds of the effective elastic modulus in the Z-direction by using the beam theory in taking 
into consideration the tension, bending and torsion but neglecting the shearing effect with proper 
boundary conditions. A unit cell under vertical compression with free borders gives the lower 
bound of the effective elastic modulus in the Z-direction, in which m=n=1 as shown in Fig. 3.A and 
the case m → ∞  and n → ∞  gives the upper bound as shown in Fig. 3.B. 

     

A) Modeling for 1×1 cell                B) Modeling for ∞×∞ cells                C) Modeling for border constraint 

Fig. 3. Modeling for dodecahedron structure with m×n cells 

In both cases with free borders and the case with border constraint, the equilibrium of forces holds: 
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 (7A) 

and that of moments at point O holds: 
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1) Modeling for lower bound of effective elastic modulus 
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geometrical symmetry plane and the imposed displacement W in the Z-direction at the points A and 
B, the constant displacement boundary conditions hold as shown in Table 1: 

point A 0;  ;  0A A A Ax Ay AzU V W W θ θ θ= = = = = =  point B B
W W=  

point C 0;  0C C Cx Cy CzU W θ θ θ= = = = =  point D 0;  0D D Dx Dy DzV W θ θ θ= = = = =  

Table 1. Displacement boundary conditions: 

As four beams share the same origin point O and the connection between any two beams are rigid-
rigid, the complementary non-constant displacement boundary conditions are: 

( ) ( ) ( ) ( )0 0 0 0
OA OB OC OD

θ θ θ θ= = =
r r r r

 

By considering the double symmetry of the unit cell in the plane XOgY and the equilibrium shown 
in Eq. (7A), the forces on the 1/8 of the unit cell are supposed to be as shown in Fig. 3.A. In detail, 
as the points A and B are in the symmetric plane X=Y and point B is free in the X-direction and the 

Y-direction, 
AP
r

 and 
BP
r

 are supposed to be: 
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r
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r
 (8A) 

CP
r

 and 
DP
r

 share the same force in the Z-direction because the points C and D are symmetric with 

respect to the plane X=Y; And as the points A and C are in the symmetric planes X=0, thus 

( ) 0A CP P i+ ⋅ =
r r r

, and as the points A and D are in the symmetric planes Y=0, thus ( ) 0A DP P j+ ⋅ =
r r r

, 

therefore 
CP
r

 and 
DP
r

 are supposed to be as follows as to satisfy the equilibrium Eq. (7A): 
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And still by using the triple symmetry, the exterior moments on the boundary nodes are supposed to 
be: 
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In Eqs. (8A), (8B) and (9) there are in total 7 unknown variables. By using Eqs. (4), (8A), (8B) and 
(9) in Eq. (7B), Eq. (7B) is simplified as follows: 

( ) ( ) 2

6
2 2 0

3Ax Cx Cy A B AM M M P P H L t
 

+ − + − − = 
 

rr
 (A-1) 

The simplified moment equilibrium Eq. (A-1) indicates that the bending moment components (the 
sum is zero) are only in the 2A

t
r

 direction that is perpendicular to the symmetric plane X=Y. Thus Eq. 

(A-1) is degraded to be a scalar equation. 

For the beams OA and OB, by using the Eqs. (4), (8A), 
A

M
r

 and 
B

M
r

 in Eq. (9), the moments in the 

beam’s section at distance s from O can be expressed respectively as: 
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( ) ( ) ( ) ( ) 2

6
2

3OA A A A Ax A AM s M L s n P M P H s L t
 

= + − × = − − − 
 

r r r rr
 (10A) 

and 

( ) ( ) ( ) 2

6

3OB B B B B BM s M L s n P P s L t= + − × = − −
r r r rr

 (10B) 

Eqs. (10A) and (10B) show that in a section of the beams OA and OB, there are only bending 

moments in 2A
t
r

 and 2B
t
r

directions, respectively.  

For beam OA, the displacement ( )OAy s  in the 1A
t
r

 direction caused by the moment in the 2A
t
r

 

direction in Eq. (10A) holds: 

( ) ( )( )6
2

3OA Ax AEIy s M P H s L′′ = − − −  (11A) 

And two successive integrations of the above equation give: 

( ) ( )( )26
2

6OA Ax A AEIy s M s P H s L C′ = − − − +  (11B) 

and 

( ) ( )( )322 6

2 18OA Ax A A AEIy s M s P H s L C s D= − − − + +  (11C) 

It is assumed that in the local coordinate system of each beam, the original point O doesn’t move, 
that is, the local displacement is 0. 

For beam OA there is no rotation at point A as shown in Table 1. Therefore the following two 
boundary conditions hold: 

( ) ( )0 0OA OAy y L′= =  (B1-1) 

By using the above two boundary conditions in Eqs. (11B) and (11C), the unknown coefficients A
C  

and A
D  can be found and then these two Eqs. are rewritten as follows: 

( ) ( ) ( )( )26
2

6OA Ax AEIy s M s L P H s L′ = − − − −  (11B_1) 

( ) ( ) ( ) ( )3 32 6
2

2 18OA Ax AEIy s M s s L P H s L L = − − − − +
 

 (11C_1) 

By using Eq. (11B_1) the rotation vector of beam OA at point O is expressed as: 

( ) ( ) ( ) 2
2

1
1 3

0 0 1
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0
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EI

θ
 
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And for beam OB, the displacement ( )OBy s  in the 1B
t
r

 direction and the moment in the 2B
t
r

 direction 

given in Eq. (10B) hold: 

( ) ( )6

3OB BEIy s P s L′′ = − −  (13A) 
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where E is the Yong’s modulus of the beam, 4

64
I d

π=  is the quadratic moment of the section. 

And two successive integrations of the above equation give: 

( ) ( )26

6OB B BEIy s P s L C′ = − − +  (13B) 

and 

( ) ( )36

18OB B B BEIy s P s L C s D= − − + +  (13C) 

As point B is free, there is only one displacement boundary condition for beam OB: 

( )0 0OBy =  (B1-2) 

By using the above boundary condition in Eq. (13C), the coefficient DB can be found and the 
equation can be then rewritten as follows: 

( ) ( )3 36

18OB B BEIy s P s L L C s = − − + +
 

 (14) 

As the rotation of beam OA and OB at the point O is equal due to their rigid-rigid connection, that is 

( ) ( )2 20 0OA A OB By t y t′ ′=
r r

, and 2 2A B
t t= −
r r

 as shown in Eq. (6), the following displacement (rotation) 

compatibility holds: 

( ) ( )0 0 0OA OBy y′ ′+ =  (B1-3) 

By substituting Eqs. (11B_1) and (13B_1) into Eq. (B1-3), the following is obtained: 

( ) 26
2

6B Ax A BC M L P P H L= + + −  (15) 

By neglecting the shearing effect of the beams, the global displacement at the points A and B from 
point O due to the bending and compression are expressed as follow: 

( ) ( )1A OA A A A A

L
u y L t P n n

ES
= + ⋅

rrr r r
 (16A) 

( ) ( )1B OB B B B B

L
u y L t P n n

ES
= + ⋅

rrr r r
 (16B) 

Substituting Eqs. (4), (6), (8A), (11C), (14) and (15) into Eqs. (16A) and (16B), these last two Eqs. 
can be rewritten as follows 

( ) ( )2
1 1

23 1
1 1

6 18 3
2 1

A

A Ax A

P H LL
u M P H L

EI ES

− −   
  − −   = − − − − + −    
     −   

r
 (17A) 

( )
2

1 1
3 1

3 2 3 1 1
3 18 3

2 1

B
B Ax A B

P LL
u M P P H L

EI ES

   
     = + + − −    
     −   

r
 (17B) 
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For beam OA and OB the following displacement compatibility holds: 

A B
W W=  (B1-4) 

By using the above equation and the values in Eq. (17A) and (17B), the following is obtained: 

( ) ( )9 3 2 2 2 3 2 0Ax A B A B

I
M P P H L P P H

SL
+ + − − − + =  (A-2) 

By using moment equilibrium for beam OC and the modeling in Fig. 3.A, the moment on the 
section is found in three dimensions: 

( ) ( ) 1 2OC C C C OCxl C OCyl C OCzl CM s M L s n P M n M t M t= + − ∧ = + +
r r r r rr r

 (18) 

with 

( )

( ) ( )

( )( ) ( )

3
;

3

2 6
2 ;

2 6

6 2

6 2

OCxl Cx Cy Cz

OCyl Cx Cy Cz

OCzl A B Cx Cy

M M M M

M H s L M M M

M P H P s L M M

= − − +

= − + − −

= + + − − +

  

And by using the same method for beam OD, and keeping the component expressions of ( )OC
M s
r

, 

the following is obtained: 

( ) ( ) 1 2OD D D D OCxl D OCyl D OCzl DM s M L s n P M n M t M t= + − ∧ = − − +
r r r r rr r

 (19) 

By using Eq. (16) for beam OC, the displacement ( )OCy s  in the 1C
t
r

 direction and the moment in 

the 2C
t
r

 direction give: 

( ) ( ) ( )( )2 6

2 6OC OCzl Cx Cy A BEIy s M M M P H P s L′′ = = − + + + + −  (20A) 

Two successive integrations of the above equation will give: 

( ) ( ) ( ) ( )22 6

2 12OC Cx Cy A B CyEIy s M M s P H P s L C′ = − + + + + − +  (20B) 

and 

( ) ( ) ( )( )322 6

4 36OC Cx Cy A B Cy CyEIy s M M s P H P s L C s D= − + + + + − + +  (20C) 

By using the displacement boundary conditions in Table 1, and the assumption that point O is fixed 
in the local system, the following boundary conditions hold： 

( ) ( )0 0OC OCy y L′= =  (B1-5) 

By substituting the above boundary conditions into Eqs. (20B) and (20C) respectively, the unknown 
coefficients 

Cy
C  and 

Cy
D  can be found and then these two Eqs. become: 
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( ) ( )( ) ( )( )22 6

2 12OC Cx Cy A BEIy s M M s L P H P s L′ = − + − + + + −  (20B_1) 

( ) ( ) ( ) ( ) ( )3 32 6
2

4 36OC Cx Cy A BEIy s M M s s L P H P s L L = − + − + + + − +
 

 (20C_1) 

By using Eq. (18), the displacement ( )OCz s−  in the 2C
t
r

 direction and the moment in the 1C
t
r

 

direction give:  

( ) ( ) ( )6 2
2

6 2OC OCyl Cx Cy CzEIz s M M M M H s L′′− = = − − + −  (21A) 

And then two successive integrations of the above equation give: 

( ) ( ) ( )26 2
2

6 4OC Cx Cy Cz CzEIz s M M M s H s L C′− = − − + − +  (21B) 

and 

( ) ( ) ( )326 2
2

12 12OC Cx Cy Cz Cz CzEIz s M M M s H s L C s D− = − − + − + +  (21C) 

By using the boundary conditions in Table 1 and the assumption that point O has no displacement 
in its local coordinate system, the following two boundary conditions hold： 

( ) ( )0 0OC OCz z L′= =  (B1-6) 

By substituting the above boundary conditions into Eqs. (21B) and (21C), the unknown coefficients 

Cz
C  and Cz

D  can be found and these two equations become: 

( ) ( )( ) ( )26 2
2

6 4OC Cx Cy CzEIz s M M M s L H s L′− = − − − + −  (21B_1) 

( ) ( ) ( ) ( )3 36 2
2 2

12 12OC Cx Cy CzEIz s M M M s s L H s L L − = − − − + − +
 

 (21C_1) 

For beam OD, in comparing the moment’s components in Eqs. (18) and (19), the beams’ 

displacements in the 2D
t
r

 and 1D
t
r

 directions due to the bending moments in the 1D
t
r

 and 2D
t
r

 

directions, respectively hold: 

( ) ( )
( ) ( )

OD OC

OD OC

y s y s

z s z s

=


= −
 (22A) 

and 

( ) ( )
( ) ( )

OD OC

OD OC

y s y s

z s z s

′ ′=
 ′ ′= −

 (22B) 

The torsion angle OC
α  at point C from point O due to the torsion moment OCxl

M  in Eq. (18) can be 

determined as follows： 
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( )1
OC OCxl OCxl CO

O

L L
M M

GI EI
α ν α= = + = −  (23) 

By using Eq. (19), the torsion angle at point D from point O can be expressed as follows: 

OD OC
α α= −  (24) 

By using Eqs. (4), (6), (20B_1), (21B_1) and (23), the global rotation angle vector at point O of 
beam OC can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )1 20 0 0 0 0 0
OC OC C OC C CO C OCx OCy OCz

z t y t n i j k′ ′= − + + = + +θ α θ θ θ
rr r rr r r

 (25) 

With 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

3
0 2 1

3 4

3
0 2 1 2

3 4

3
0 2 1

3 2

OCx Cx Cy Cz Cx Cy Cz A B

OCy Cx Cy Cz Cx Cy Cz A B

OCz Cx Cy Cz Cx Cy Cz

L
M M M M M M P P L

EI

L
M M M M M M P H P L

EI

L
M M M M M M HL

EI

θ ν

θ ν

θ ν

  
= − + − − + − + − +   

  


  = − + + + + − + − + +   
 


  = − − − + − + −    

 

With the same method for beam OD and by using Eqs. (4), (6), (20B_1), (21B_1), (22B), (23) and 
(24), and compared to Eq. (25), the global rotation angle vector at point O of beam OD can be 
expressed as: 

( ) ( ) ( ) ( ) ( ) ( )1 20 0 0 0 0 0
OD OD D OD D DO D OCy OCx OCz

z t y t n i j k′ ′= − + + = − − −θ α θ θ θ
rr r rr r r

 (26) 

And beam OC and OD have the same global rotation vector at point O: 

( ) ( )0 0
OC OD

θ θ=
r r

 (B1-7) 

As the points C and D are symmetric with respect to the plane X=Y, by using the above boundary 
condition in Eqs. (25) and (26) and, the following two conditions hold: 

( ) ( )0 0 0OCx OCyθ θ+ =  (B1-7A) 

( )0 0OCzθ =  (B1-7B) 

By using Eq. (25) in Eqs. (B1-7A) and (B1-7B) respectively, the following holds: 

( ) ( )2 3 0Cx Cy A BM M P H P L+ + + + =  (A-3)

( ) ( ) ( )2 2 2 1 3 0Cx Cy Cz Cx Cy CzM M M M M M HLν− − − + − + − =  (A-4) 

By considering the bending, compression but neglecting the shearing effect, and using Eqs. (4), (6), 
(8B) , (21C_1) and (22A), the global displacement of point C from point O is obtained: 
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( ) ( ) ( )

( )

( )

2 1

2 3

2 3

1
1 3 1

2 1
12 12

0

1 1
21 3

1 1
12 36 6

2 1

C OC C OC C C C C

Cx Cy Cz

A B A B

Cx Cy

L
u z L t y L t P n n

ES

M M M L HL
EI

P H P P H PL
M M L L

EI ES

= + + ⋅

− 
  = − − − − + −   
  

 

−   
 + + − +   + + + − −     
    − −   

rr rr r r

 (27) 

As point C is on the symmetric plane X=0, therefore, 

A CU U=  (B1-8) 

And the imposed displacement in the Z-direction at point A holds: 

A A CW W W W= − =  (B1-9) 

By using the displacement boundary condition Eq. (B1-8) in Eqs. (17A) and (27), the following is 
obtained: 

( ) ( ) ( )6 3 6 6 6 0Ax Cy Cz A B A B

I
M M M P P H L P P H

SL
− − − + − + + + − + − =  (A-5) 

By using Eqs. (B1-9) in Eqs. (17A) and (27), the following is obtained: 

( ) ( ) ( ) 2 2
3 3 2 3 3 3 2 18Ax Cx Cy A B A B

I W
M M M P H P L P H P L

SL L
+ + + − + − + + =  (A-6) 

Another computability condition is: 

( ) ( )0 0
OC OA

θ θ=
r r

 (B1-10) 

In which three dimensions will be satisfied, respectively as follow: 

( ) ( ) ( ) ( ) ( ) ( )0 0 ;  0 0 ;  0 0OCx OAx OCy OAy OCz OAzθ θ θ θ θ θ= = =  

It is noted that ( )0 0OAzθ = , therefore ( )0 0OCzθ = , which is already used in Eq. (B1-7B). 

As indicated in Eq. (B1-7A) ( ) ( )0 0 0OCx OCyθ θ+ = , and point A is on the symmetric plane 

( ) ( )0 0 0OAx OAyθ θ+ = , therefore, ( ) ( )0 0OCx OAxθ θ=  or ( ) ( )0 0OCy OAyθ θ=  are linear related. Anyone 

of them can be chosen as the boundary condition. 

By using the condition ( ) ( )0 0OCx OAxθ θ=  in Eq. (B1-10), Eq. (12) and Eq. (25): 

( ) ( )( ) ( )3
3 2 1 2 0

4Ax Cx Cy Cz Cx Cy Cz A BM M M M M M M P P H Lν− + + − + + − + + − + + =  (A-7) 

Eqs. (A-1) to (A-7) form a system of linear equations with the 7 unknown variables PA, PB, H, MAx, 

MCx, MCy, and CzM , thus PA+PB is a function of W and it can be found by solving these equations. 

And the effective elastic modulus can be obtained as follows: 
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( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2
2

3 2

2

1440 2592 5844 6804 385 441
6

8640 15552 38232 46008 10890 12582 496 567

eff A B
E P P

E EbW

ν φ ν φ ν
βρ

ν φ ν φ ν φ ν

+
= −

+ + + + +
=

+ + + + + + +

 (28) 

with 
3

18
β

π
= ;

2

2

2 3 d

b

πρ =  and φ βρ= . 

ρ  is the density of the structure. Only when ρ  is very small, the relative effective elastic modulus 

can be approximated as 2ρ . 

2) Modeling for upper bound of effective elastic modulus 

The upper bound of effective elastic modulus in the Z-direction is obtained by imposing m → ∞  

and n → ∞ . The forces, moments and boundary conditions will be imposed in 1/8 cell to replace 
m → ∞  and n → ∞ . The boundary conditions with constant displacement in the global coordinate 
system are given in Table 2: 

point A 0;  ;  0A A A Ax Ay AzU V w W= = = = = =θ θ θ  point B ;  0B Bx By BzW W= = = =θ θ θ  

point C 0;  0C C Cx Cy CzU W θ θ θ= = = = =  point D 0;  0D D Dx Dy DzV W= = = = =θ θ θ  

Table 2 Constant displacement boundary conditions for ∞×∞ cells structure 

By considering the double symmetry of the unit cell, and four beams shear point O as origin with 
the rigid-rigid connection one another, the complementary boundary conditions with non-constant 
displacement are: 

 ;  
B D B C

U U V V= =  

( ) ( ) ( ) ( )0 0 0 0
OA OB OC OD

θ θ θ θ= = =
r r r r

 

For the forces, because of the double symmetry in the plane OXY and two pairs of parallel mirrors 
in the X-direction and the Y-direction respectively, the points A and B have the same solicitation P 

in the Z-direction, and the points C and D have the same resultant P in the Z-direction. Therefore, 

;  
A B C D

P P Pk P P Pk= = − = =
r rr r r r

 (29) 

As there are no forces in the plane xOy, the moment in the Z-direction doesn’t exist at the points A, 
B, C and D. Taking into consideration double symmetry in the plane XOgY, the moments at the 
points as shown in Fig. 3.B are supposed as follows: 

,  ,  ,  
A B C D

M M M M
M M M M

M M M M

− −       
= = = =       − −       

r r r r
 (30) 

The force and moment equilibrium Eqs. (7A) and (7B) are verified by Eqs. (29) and (30). 

The moments on the section of beam OA and OB can be found as follow: 

( ) ( ) 2OA A A A OA A
M s M n L s P M t= + − × =
r r r rr

 (31A) 

with ( )6
2

3OAM P s L M= − − + , and 
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( ) ( ) 2OB B B B OA B
M s M n L s P M t= + − × =
r r r rr

 (31B) 

Furthermore, the moments on the section of beam OC and OD can be found as follow: 

( ) ( ) 2OC C C C OA C
M s M L s n P M t= + − ∧ = −
r r r rr

 (31C) 

and 

( ) ( ) 2OD D D D OA D
M s M L s n P M t= + − ∧ = −
r r r rr

 (31D) 

In Eqs. (31A) to (31D), the four beams have the same bending deformation determined by OA
M . By 

using (31A) for beam OA, the displacement ( )OAy s  in the 1A
t
r

 direction and the moment in the 2A
t
r

 

direction hold: 

( ) ( )6
2

3OA OAEIy s M P s L M′′ = = − − +  (32A) 

And two successive integrations give: 

( ) ( )26
2

6OA AyEIy s P s L Ms C′ = − − + +  (32B) 

( ) ( )3 26 2

18 2OA A y A yEIy s P s L Ms C s D= − − + + +  (32C) 

It is supposed in their local coordinate system the beam OA has no displacement at point O and it 
has no rotation at point A. The displacement boundary conditions are as follows: 

( ) ( )0 0OA OAy y L′= =  (B2-1) 

By using the above boundary conditions in Eqs. (32B) and (32C), they become: 

( ) ( ) ( )26
2

6OAEIy s P s L M s L′ = − − + −  (33A) 

( ) ( ) ( )3 36 2
2

18 2OAEIy s P s L L Ms s L = − − + + −
 

 (33B) 

As beam OB has the same moment expression in 2B
t
r

 as that of beam OA in the 2A
t
r

 direction, the 

following holds: 

( ) ( )OB OAy s y s′ ′=  (34A) 

and  

( ) ( )OB OAy s y s=  (34B) 

By neglecting the shear effect of the beams, the global displacement at point A due to the bending 
and compression is expressed as: 

( ) ( )1A OA A A A A

L
u y L t P n n

ES
= + ⋅

rrr r r
 (35) 
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By using Eqs. (4), (6), (29) and (33B) in Eq. (35), Eq. (35) is expressed numerically: 

2 3

1 1
1 2 6 1 1

1 1
2 18 6 3 3

2 1
A

PL
u ML PL

EI ES

− −   
  −   = − − − + −      
     −   

r
 (36) 

As the rotation angle vector of beam OA and OB at point O is equal due to the rigid-rigid 
connection,  

( ) ( )2 20 0OA A OB By t y t′ ′=
r r

 (37) 

and as 2 2A B
t t= −
r r

 indicated in Eq. (6), and ( ) ( )OB OAy s y s′ ′=  indicated in Eq. (34A), the following 

holds by using the above equation: 

( )0 0OAy′ =  (B2-2) 

By using Eqs. (33A) and (B2-2), the following equation holds: 

6 3 0M PL+ =  (B-1) 

As beam OC has the same moment expression in 2C
t−
r

 as that of beam OA in the 2A
t
r

 direction, the 

following holds: 

( ) ( )OC OAy s y s= −  (38) 

Therefore, by using Eq. (33B) and (38) the following holds: 

( ) ( ) ( ) ( )3 36 2
2

18 2OC OAEIy s EIy s P s L L Ms s L = − = − + − −
 

 (39) 

By neglecting the shear effect, the global displacement of point C due to the bending and 
compressing can be expressed by: 

( ) ( )1C OC C C C C

L
u y L t P n n

ES
= + ⋅

rrr r r
 (40A) 

And numerically,  

2 3

1 1
1 3 1 1

1 1
6 18 3

2 1
C

PL
u ML PL

EI ES

−   
    = + − −     
    − −   

r
 (40B) 

The imposed displacement holds: 

A C
W W W− = ,  (B2-3) 

By using Eqs. (36), (40B) and (B2-3), the following is obtained: 

2 36 3 2 6 9
IL

ML PL P EIW
S

+ − =  (B-2) 
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Eqs. (B-1) and (B-2) form a system of linear equations with M and P as unknown variables. And the 
effective elastic modulus in the Z-direction can be obtained and expressed as a function related to 
the density ρ  of the structure by using Eqs. (1), (B-1) and (B-2): 

24 6

1 6

Upper

Eff
E P

E b EW
= − =

+
βρ

βρ
 (41) 

3) Modeling for structure with border constraint 

For the structure with border constraint, the boundary conditions with constant displacement in the 
global coordinate system are in Table 3:  

point A 0;  ;  0A A A Ax Ay AzU V W W θ θ θ= = = = = =  point B 0; ;  0B B B Bx By BzU V W W= = = = = =θ θ θ  

point C 0;  0C C C Cx Cy CzU V W θ θ θ= = = = = =  point D 0;  0D D D Dx Dy DzU V W= = = = = =θ θ θ  

Table 3 Constant displacement boundary conditions for structure with border constraint 

As in other cases, the complementary boundary conditions with non-constant displacement are: 

( ) ( ) ( ) ( )0 0 0 0
OA OB OC OD

θ θ θ θ= = =
r r r r

 

For the forces due to the double symmetry of the unit cell in the plane OXY and two pairs of parallel 
rigid panels at the borders in the X-direction and the Y-direction respectively, the points A and B 
have the same solicitation P in the Z-direction, and the points C and D have the same resultant P in 
the Z-direction. Therefore the force solicitations and reaction are supposed to be as follows in 
satisfying Eq. (7A): 

;  ;  ;  ;A B C D

H H H H

P H P H P H P H

P P P P

− −       
       = = − = − =       
       − −       

r r r r
 (42) 

As there are no forces in the plane Oxy, the moment in the Z-direction doesn’t exist at the points A, 
B, C and D. Taking into consideration of double symmetry in the plane XOY, the moments at the 
points as shown in Fig. 3.C are supposed as follows: 

,  ,  ,  
A B C D

M M M M
M M M M

M M M M

− −       
= = = =       − −       

r r r r
 (43) 

The moment equilibrium Eq. (7B) is also verified by Eq. (43). 

The moments on the section of beam OA and OB can be found as follow: 

( ) ( ) ( ) ( ) 2

3
2

3OA A A A A
M s M L s n P M s L P H t

 
= + − × = − − − 

 

r r r rr
 (44A) 

and 

( ) ( ) ( ) ( ) 2

3
2

3OB B B B B
M s M n L s P M s L P H t

 
= + − × = − − − 

 

r r r rr
 (44B) 

For beam OA, the displacement ( )OAy s  in the 1A
t
r

 direction and the moment in the 2A
t
r

 direction 

have: 
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( ) ( )( )6
2

3OAEIy s P H s L M′′ = − − − +  (45A) 

And two successive integrations give: 

( ) ( )( )26
2

6OA AyEIy s P H s L Ms C′ = − − − + +  (45B) 

( ) ( )( )3 26 2

18 2OA A y A yEIy s P H s L Ms C s D= − − − + + +  (45C) 

It is supposed in their local coordinate system the beam OA has no displacement at point O and it 
has no rotation at point A. The displacement boundary conditions are as follows: 

( ) ( ) ( )0 0 0OA OA OAy y y L′ ′= = =  (B3-1) 

By using the above boundary conditions in Eqs. (39B) and (39C), the following are obtained: 

( ) ( )( ) ( )26
2

6OAEIy s P H s L M s L′ = − − − + −  (46A) 

( ) ( ) ( ) ( )3 36 2
2

18 2OAEIy s P H s L L Ms s L = − − − + + −
 

 (46B) 

and  

( )6 3 0M P H L+ − =  (C-1) 

The global displacement of point A shares the same expression in Eq. (35). Thus by using Eqs. (4), 
(6), (42) and (46B) in Eq. (35), Eq. (35) is expressed numerically as follows: 

( ) ( )2 3

1 1
21 2 6 1

1 1
2 18 36

2 1
A

P H L
u ML P H L

EI ES

− −   
  − +   = − − − − + −    
     −   

r
 (47) 

The moment in the section of beam OC are found to be: 

( ) ( ) ( )( ) 2

3
2

3OC C C C CM s M L s n P M P H s L t
 

= + − × = − + − − 
 

r r r rr
 (48) 

( ) ( ) ( ) ( )3 32 6
2

2 18OCEIy s Ms s L P H s L L = − − + − − +
 

 (49) 

By neglecting the shear effect, the global displacement of point C due to the bending and 
compressing can be expressed by: 

( ) ( )1C OC C C C C

L
u y L t P n n

ES
= + ⋅

rrr r r
 (50) 

By using Eqs. (4), (6), (42) and (49) in Eq. (50), Eq. (50) is expressed numerically as follows:  
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( ) ( )2 3

1 1
1 2 6 1 1

1 2 1
2 18 36

2 1
C

L
u ML P H L P H

EI ES

−   
     = + − − − +      
     − −   

r
 (51) 

The imposed displacement in the Z-direction holds: 

A C
W W W− =  (B3-2) 

And as point C is on the symmetric plane X=0, the following holds: 

0
C

V =  (B3-3) 

By using Eqs. (B3-2), (47) and (51), the following is obtained: 

( ) ( ) 2 2
6 3 2 6 2 9

I I
M P H L P H EW

SL L
+ − − + =  (C-2) 

By using Eqs. (B3-3) and (51), the following is obtained: 

( ) ( )3 3 6 2 0
I

M P H L P H
SL

+ − + + =  (C-3) 

By using Eqs. (C-1), (C-2) and (C-3), the effective elastic modulus in the Z-direction can be 
obtained and expressed related to the density ρ of the structure: 

( )4 1
1 24

9

Upper

EffE P

E EbW
βρ ρ= − = +  (52) 

2.4 Finite element modeling by using beam theory 

The finite element method taking into consideration the tension/compression, bending and torsion 
without shearing effect has been used. Therefore the stiffness matrix contains three kinds of 
stiffness: tension/compression, bending and torsion. A beam consisting of point i and j has 12 
general displacement variables , , , , , , , , , , ,

i i i ix iy iz j j j jx jy jz
u v w u v wθ θ θ θ θ θ  accordingly in the beam 

(local) coordinate system. 

1) Stiffness matrix of a beam in the local coordinate system [24] 

For the uniaxial tension or compression of a beam, by using f Ku= , the unidimensional stiffness is: 

ES
K

L
=  (53) 

For homogenous bending, that is / 2
y z O

I I I I= = = , by using the bending theory of a beam 

element shown in Eqs. (A1) – (A7) in the annex, the stiffness matrix for bending around the Z-

direction is: 

[ ]
11 12 13 14

2 2
21 22 23 24

3
31 32 33 34

2 2
41 42 43 44

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

Z Z Z Z L L

Z Z Z Z L L L LEI
Z

Z Z Z Z L LL

Z Z Z Z L L L L

−   
   −   = =
   − − −
   −    

 (54) 
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The bending deformation around the Y-direction is from x to z, the rotation is clockwise. By 

considering the rotation direction and by using the expressions in the stiffness matrix [ ]Z , the 

stiffness matrix for bending around the Y-direction can be expressed as: 

[ ]
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Z Z Z Z

Z Z Z Z
Y

Z Z Z Z

Z Z Z Z

− − 
 − − =
 − −
 − −  

 (55) 

For the torsion with M T= θ , the unidimensional stiffness is: 

/
O

T GI L=  (56) 

The global elemental element displacement-force matrix Eq. is therefore obtained from Eqs. (53-56) 
and has the expression as follows: 

11 12 13 14

11 12 13 14

22 23 24

22 23 24

33 34

33 34

44

44

ixi

iyi

i iz

ix ix

iy

iz

j

j

j

jx

jy

jz

Fu
K K

Fv
Z Z Z Z

w F
Z Z Z Z

MT T

Z Z Z

Z Z Z

uK

vZ Z

sym Z Z w

T

Z

Z

θ
θ
θ

θ
θ
θ

 −   
   
   
 − −  
   −   
 −  
      =  

  
  
  −   
  
  
  
       

iy

iz

jx

jy

jz

jx

jy

jz

M

M

F

F

F

M

M

M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (57A) 

The items in the cases that are not filled in the above matrix are zero. And the above matrix Eq. can 
be simplified as: 

[ ] { } { }
l ll

K u f=  (57B) 

where [ ]
l

K  is the global stiffness matrix, { }
l

u is the displacement vector and { }
l

f  is the exterior 

force vector in the beam’s local coordinate system. 

2) Stiffness matrix of beam in the global coordinate system  

For any vector the transformation matrix from the local coordinate system to the global one is 

composed of the directional vectors are n
r

, 1t
r

 and 2t
r

: 

[ ] 1 2R n t t=   
r rr

 (58) 

By considering one beam with two nodes, there are 12 degrees of freedom (DOF) considered as 4 

vectors, thus the complete transformation matrix [ ]CR  for the 12 DOF is then expressed as: 
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[ ]12 12

0 0 0

0 0 0

0 0 0

0 0 0

C

R

R
R

R

R

×

 
 
 =
 
 
 

 (59) 

By using the transformation matrix in Eq. (59), as showed in Eq. (A8) in the annex, the global 
stiffness matrix is found as follows: 

[ ] [ ][ ] [ ]T

C Cg l
K R K R=  (60) 

In the elemental global stiffness matrix, the distribution of zero elements are in the following 
positions shown in Fig. 4 that can be served for the sparse matrix of the whole structure: 

* * * *

* * *

* *

* * 0 * * * * 0 * *

* * * 0 * * * 0

* * * 0 * * * 0
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Fig. 4 Zero-value element positions in elemental matrix 

3) Upper bounds of the effective elastic modulus Eeff of an m n×  structure 

In order to study the upper bounds of the effective elastic modulus that is a function of m and n for 
the m n×  structure, without loss of generality, it is supposed that the number of rows m is constant, 
and the number of columns n varies from 1 to infinite. And each couple (m, n) gives an effective 
elastic modulus. The upper bound of the effective elastic modulus can be given by using the infinite 
number of cells ( n → ∞ ). And for the whole structure without fixing m, the upper bound can be 
found by using the infinite number of cells in rows and columns ( ;  m n→∞ →∞ ). 

         A) Infinite m                                        B) Infinite m and infinite n 

Fig. 5. Mirror settings for infinite numbers of cells 

In the m×n structure, any two vertical parallel mirrors placed in the X- or the Y-direction will give 
an infinite number of cells in the direction that is perpendicular to the parallel mirrors. For example 
as shown in Fig. 5.A the symmetric plane (mirror) at Xmin and the mirror at Xmax will give an infinite 
number of cells in the X-direction and it doesn’t depend on the values of n. That is, any value of n 
will give the same value of the effective elastic modulus. As shown in Fig. 5.B, two pairs of vertical 
mirrors in the X- and the Y-directions will give an infinite number of cells in both directions. 

4) Boundary conditions for infinite n structure 
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In general, the choice of m or n is fixed is the same methodology. It is supposed that m is constant. 
For any constant m of m×n structure, n → ∞  gives the upper bound of effective elastic stiffness. In 
finite element method, n → ∞  is ensured by the boundary conditions by using a mirror at Xmax. As 
any value of n with the mirror at Xmax. gives the infinite assumption, n=1 is chosen. 

For any point on the symmetrical plane (mirror) at Xmin, the displacement boundary conditions are: 

0;  0
i iy iz

U θ θ= = =  (61) 

As all the points on the mirror at Xmax move conjointly in the X-direction, point i is chosen as the 
reference point, and the displacement boundary conditions for the points on this mirror are: 

( );  0j i jy jzU U i j θ θ= ≠ = =  (62) 

where the displacement i
u  or the reference point is unknown. As the mirror at Xmax is not a free 

border of the structure, a supplementary force equilibrium boundary condition will be used: 

0ixF =∑  (63) 

where i denotes all the nodes on the mirror at Xmax. 

For the boundary conditions for infinite m and infinite n structure, in addition to the boundary 
conditions in the X-direction, the boundary conditions in the Y-direction will be adopted by using 
the same method. 

5) Stiffness matrix, displacement vector and force vector modification 

The global stiffness matrix [ ]
g

K  is singular. It becomes nonsingular by modifying it according to 

the boundary conditions. The global stiffness matrix and the displacement vector in the matrix Eq. 

[ ] { } { }
g

K U F=  will be modified at the same time. This matrix Eq. is regarded as Nequ normal Eqs. 

where Nequ×Nequ is the dimension of the stiffness matrix. Initially, the force vector { }F  is set as 0
r

 

and the modification is executed in the following order: 

a) For a constant displacement boundary condition 
q

U C=  

This boundary condition concerns the points on the symmetric plane and the points on at Zmax. The 
coefficients in the qth Eq. are rewritten: 

( )
( )

1

0qr

q r
K

q r

==  ≠
 (64A) 

For the case 0C ≠ , the following coefficients in the qth Eq. are modified: 

q
F C=  (64B) 

In order to use the sparse matrix resolution method, more coefficients may be modified. Other 
directions denoted as r of the concerned points in which 0

rq
K ≠  is used and 

q
F  is modified as: 

q q rq qF F K U→ −∑  (64C) 

and then Krq is reset as zero. 
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0
rq

K =  (64D) 

b) For a conjoint movement boundary condition 
j i

U U=  

This boundary condition concerns the points on the mirror at xmax. In this case 
j i

U U−  is used as 

the new unknown variable at the place of 
j

U . 

In the kth equation ( k j≠ ), originally it is: 

; 
kA A ki i kj j k

A i A j

K U K U K U F
≠ ≠

+ + =∑  (65) 

In order to use 
j i

U U−  as the new unknown variable the above equation is rewritten as follows: 

( ) ( )
; 

kA A ki kj i kj j i k

A i A j

K U K K U K U U F
≠ ≠

+ + + − =∑  (66) 

For those Eqs. in which 0
kj

K ≠ , ki
K  is rewritten as: 

ki ki kj
K K K→ +  (67) 

and in the jth equation, 

( )
( )

1

1jl

j l
K

j l

==  ≠
 (68) 

c) For the supplementary force equilibrium boundary condition 

This boundary condition concerns the X-direction of all the points on the mirror at Xmax. In the ith 
equation, the force equilibrium boundary condition in Eq. (63) is used. The X-direction of a 
concerned point is denoted as k, and the Y-direction of the concerned points is denoted as l, the 

coefficients il
K  are modified as follows: 

il klK K→∑  (69) 

After the resolution of the modified matrix equation, 
j

U  is reset as i
U  at the place of 

j i
U U− . 

2.5 Effective elastic modulus under compression with border constraint 

As shown in Table 3, the problem of compression with border constraint has only constant 
displacement boundary condition. A normal solution of FE will give the effective elastic modulus 
under compression. The stiffness matrix is modified by using Eqs. (64A) to (64D) with the imposed 
constant displacement boundary conditions in order to dispose of its singularity. 

3. Results and discussions 

The sample of the rhombic dodecahedron structure in study has the following geometrical and 
mechanical parameter: b =5 mm; d =0.5 mm; 0.3=ν . E =110 GPa. The porosity of this structure is 
0.89. As the relative effective elastic modulus Eeff/E is independent of Young’s modulus, Young’s 
modulus E is not necessary to calculate the effective relative modulus. The relative effective elastic 
modulus in the Z-direction has been calculated by the FE method using beam theory neglecting 
shearing effect due to the capacity and efficiency of FE method. The upper and lower bounds given 
by analytical method are the same as those given by the FE method. 
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For the give geometrical parameters, the porosity of the structure remains the same independent of 
the number of cells. All the results in Fig. 6 are based on the same porosity. 

Fig. 6.A, 6.B and 6.C show the individual relative effective elastic modulus Eeff/E for the structure 
with m=1, m=5 and m=40, and n varies from 1 to 40. For each case, the lower bound of Eeff/E is 
given by m×1 structure and the upper bound is given by m×∞ structure. All the curves start from the 
lower bound and tend to the upper bound. At the beginning, the curves increase rapidly, and then 
slows down. At the same time 99% and 98% of the upper bound are designed to indicate the range 
of application conditions. From these three Figures, it is observed that not all the values are in the 
range 98%-100% of the upper bound, especially for a small value of n, the value is far from the 
given range. In another way, the accurate homogenization of the structure is valid only for the 
structure with infinite number of cells, therefore it cannot be established based on a single cell. In 
practice, as infinite number of cells doesn’t exist, an error range can be designed, such as 98% or 
other values according to the application request. And as m increases, the dimension of the structure 
increases, more values are out of the range 98%-100% of the upper bound. Therefore, the minimal 
value of m and n can be chosen as the reference m and the maximum as n to better predict the 
behavior in a designed range. 

A) 1×40                                                                                          B) 5×40 

C) 40×40                                                                                              D) m×40

Fig. 6 Relative compressive effective elastic modulus without border constraint 

Fig. 6.D shows the relative effective elastic modulus Eeff/E for the structure for different constant m 

from 1 to 40, and in each case n varies from 1 to 40. The global lower bound is given by 1×1 
structure and the upper bound is given by ∞×∞ structure. As all the structures with different m and 
n have the same porosity, the relative effective elastic modulus Eeff/E cannot be expressed as a 
function purely related to the porosity, excepting for the global lower and upper bounds. The lower 
and upper bounds given by the FE method and analytical method are exactly the same. 
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Fig. 7 Relative compressive effective elastic modulus with/without border constraint vs porosity 

In Fig. 7, the upper bound of relative compressive effective elastic modulus without border 
constraint given by Eq. (41), and the relative compressive effective elastic modulus with border 
constraint given by Eq. (52) are presented. It is observed that these two curves tend to 0 when the 
porosity tends to 1. In practice, the value with border constraint is much higher than the upper 
bound without border constraint.  

 

A) Fabricated Ti6Al4V structure of 4.75×4.75 cells             B) Compression test of fabricated structure 

Fig. 8 Experimental relative compressive effective elastic modulus 

Fig. 8.A shows the parameters of experimental structure with 4.75×4.75 cells and height of 28.2mm. 
The specimen was manufactured using an Arcam A1 EBM system with a fine powder Ti6Al4V 
provided by Acram AB(Sweden). The average particle size of the powder was 76 �� . The 
specimen consists of a rhombic dodecahedral unit cell periodically arranged in three directions 
along the spatial coordinate axis and becomes a porous structure material with a cuboid frame. The 
relevant geometric parameters are the side length of the unit cell (b), the diameter of the struts (d), 
and the outer dimensions of the specimen. Table 4 shows the morphological characteristics and 
mechanical properties of the specimen. The compression test was carried out on a WGW-100H 
electronic universal testing machine with an initial strain rate of 0.001 mm/s at room temperature. 
The stress-strain relationship and elastic modulus were obtained according to the force-
displacement relationship of the compression test. 

Fig. 8.B shows the experimental relative compressive effective elastic modulus by the approximate 
line that gives the effective elastic modulus Eeff =187.49 MPa. By using the elastic modulus E=110 
GPa in Fig. 6.B, the Eeff is found to be 219.2 MPa. Compared to the experimental data, the 
analytical value is bigger, and error 16.7% has been found. This may due to the fact that the control 
of the strut diameter is very difficult and the toughness may have an influence too. 
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structure [mm] [mm] [mm] 
24.6×24.6×28.2 0.5 5 110  0.3 

Table 4 Morphological characteristics and mechanical properties of Ti-6Al-4V RD-lattice-structure 
specimen 
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Annex: 

For a bending beam deformed around z-direction, the nodal displacements and rotation angles are 
used as the unknown variables as shown in Fig. 9. 

 

Fig. 9 beam element 

By considering 4 boundary conditions on the two nodes of a beam, the displacement in the Y-

direction for a beam in bending around z-direction is supposed to be a polynomial with 4 
coefficients to determine as follows: 

( ) 3 2
v x ax bx cx d= + + +  (A1) 

With small elastic deformation, the rotation angle is supposed as follows: 

( ) ( ) ( ) 2tan 3 2x x v x ax bx cθ θ ′≈ = = + +  (A2) 

With the following boundary conditions: 

( ) ( ) ( ) ( )0 ;  ;  0 ;  i j i jv v v L v Lθ θ θ θ= = = =  (A3) 

Using Eqs. (A2), (A3) and (A4): 
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( ) [ ]{ }1 2 3 4v x N N N N u=  (A4) 

with { }    
T

i i j j
u u v vθ θ⇒ = = , and 

( )
( )

2 3 2 3
1 2

2 3 2 3
3 4

1 3 2 ;   2

3 2 ;    ;   

N x x N L x x x

x
N x x N L x x x

L

= − + = − +

= − = − + =
 

Strain energy of the beam is: 
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202

LEI v
U dx

x

 ∂=  ∂ 
∫  (A5) 

And assuming the strain energy in form of matrix: 

[ ]{ }1

2
U u K u=  (A6) 

Using Eq. (A5) in Eq. (A6), and comparing to Eq. (A7): 
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 (A7) 

In which: 
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The transformation from local coordinate system to global one is: 

[ ] { } { } [ ][ ] [ ] { }( ) [ ] [ ] { }( )
[ ][ ] [ ] { } { } [ ] [ ][ ] [ ]

T T

C C C Cl ll l

T T
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K u f R K R u R R f

R K R U F K R K R

= ⇒ =

⇒ = ⇒ =
 (A8) 




