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Abstract

Small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell
signaling. They are a family of proteoglycans that are present in extracellular matrix and that share in common
multiple repeats of a leucine-rich structural motif. SLRPs have been identified as inhibitors of cancer
progression by affecting MMPs, especially MMP-14 activity. Lumican, a member of the SLRPs family, and its
derived peptides were shown to possess anti-tumor activity. Interestingly, it was demonstrated recently that
lumican interacts directly with the catalytic domain of MMP-14 and inhibits its activity. The aim of this review
was to summarize the interactions between SLRPs and MMPs with a special interest to lumican.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Small leucine-rich proteoglycans (SLRPs) are a
family of eighteen proteoglycans that are present in
the extracellular matrix. SLRPs are important regu-
lators of extracellular matrix assembly and cell
signaling. They have been implicated in the regula-
tion of cancer growth and progression. Some of the
SLRPs were described to regulate MMP-14 activity
by a direct interaction [1,2].
Small leucine-rich proteoglycans

The SLRPs are a family of proteoglycans that
are present in the extracellular matrix and that
share in common multiple Leucine-Rich Repeats
(LRRs).
uthors. Published by Elsevier Ltd. This is
org/licenses/by-nc-nd/4.0/).
The first crystal structure of a leucine-rich protein
was obtained for pancreatic ribonuclease inhibitor
(RNI) [3]. RNI shows an overall right-handed,
solenoid-like morphology, where each turn of the
solenoid corresponds to a single LRR. The crystal-
lographic structure of decorin and biglycan [4,5] is
also solenoid-like, but with an arch shape.
The SLRPs have similar central LRR domain

flanked by conserved cysteine motifs on N- and
C-terminal. This central LRR domain consists of
tandem repeats rich in leucine and other small
hydrophobic residues. These repeats contain a
character ist ic pattern of 11 amino acids
LxxLxLxxNxL (x being any amino acid), where
consensus leucine can be substituted by isoleucine,
valine or less frequently by other hydrophobic amino
acids [6]. Lengths of individual repeats in different
SLRPs vary from 20 to 39 amino acids. The LRR
an open access article under the CC BY-NC-ND license
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class I, II and V show typical model following a short–
long–long regular pattern throughout the entire LRR
domain [4]. The LRR are composed of elements of
secondary structures such as α-helix, polyproline
type II helix, 310 helix, β-turn and β-sheets.
The SLRP family contains 18 members, which can

be classified into five classes based on criteria like
conservation and homology at the protein and genomic
levels, the presence of characteristic N-terminal
cysteine-rich clusters with defined spacing, and chro-
mosomal organization [7].

Classification of SLRPs

- Class I: Decorin, biglycan, asporin and ECM2
belong to this class. All class I SLRPs have a
similar exonic organization (eight exons), with
highly conserved intron/exon junctions. This
class is characterized by a cluster of
N-terminal cysteine signature CX3CXCX6C
that forms two disulfide bonds. Although decorin
and biglycan can be substituted with either one
or two chondroitin/dermatan sulfate chains,
asporin lacks the typical Ser-Gly dipeptide and
flanking amino acids required for glycanation.
ECM2 is characterized by 13 LRRs and 3
N-glycosylation sites.

- Class II: Five members of this class can be
divided into three subgroups based on their
amino acid sequence homology. Fibromodulin
and lumican comprise the first sub-family with
48% identity of the protein sequence, keratocan
and PRELP constitute the second subfamily with
55% homology of structure, while osteoadherin
forms a separate subfamily with 37–42% homol-
ogy with other members of the class II. Their
respective genes have a similar exonic
organization (three exons), with a large central
exon encoding most of LRRs. This class has the
c y s t e i n e - r i c h c on s ensu s sequence
CX3CXCX9C and they contain clusters of
tyrosine sulfate residues at their N terminal
parts that could contribute to the polyanionic
nature of SLRPs. Class II members contain
primarily keratan sulfate (KS) and polylactosa-
mine, an unsulfated form of KS.

- Class III: This class contains opticin, epiphycan
and osteoglycin characterized by a relatively
low number of LRRs (opticin (6 LRRs; 1
N-linked glycosylation site); epiphycan (6
LRRs; 3 O-linked glycosylation and 2 N-linked
glycosylation sites); osteoglycin (7 LRRs; 1
O-linked and 2 N-linked glycosylation sites))
and a genomic organization comprising seven
exons. The members of this class include the
consensus N-terminal cysteine sequence
CX2CXCX6C.

- Class IV: It is composed of chondroadherin,
nyctalopin and tsukushi. This class of SLRPs,
compared to the other classes of SLRPs (I–III),
is not canonical since these SLRPs share
structural homology and functional properties
with other classes but do not contain glycos-
aminoglycan (GAG) and thus are not real
proteoglycans. Also the cluster of N-terminal
cysteine differs between members of this class
(CX3CXCX6-17C).

- Class V: This is another non-canonical class of
SLRPs. It contains two genes, podocan located
on chromosome 1, and a highly homologous
podocan-like protein 1 located on chromosome
19. These two proteins have different
cysteine-rich cluster (CX3-4CXCX9C). Podo-
can is a glycoprotein but not a proteoglycan.

Three dimensional structure of SLRPs

The structural and functional analysis of fibromodu-
lin and chondroadherin has been recently reported by
Paracuellos and collaborators [8]. They determined
crystal structures at ~2.2°A resolution of human
fibromodulin and chondroadherin, two collagen-
binding SLRPs and showed that their overall fold
was similar to that of the prototypical SLRP, decorin,
whereas neither fibromodulin nor chondroadherin
formeda stable dimer.SLRPsmorphology (curvature)
seems to be determined by the length of the LRR. The
curvature of the SLRPs defines a convex side and a
concave face to the core protein. The solvent-
exposed concave face provides an ideal surface for
interaction withmacromolecular ligands and has been
shown to be involved in protein-protein interaction of
the leucine-rich protein. GAGs and other glycosyla-
tions are mostly located on the convex side of SLRPs.
The structural characteristics of the four main SLRPs
are presented in Table 1. The glycosylated fibromo-
dulin presented in Fig. 1 is modelized considering the
inner core protein and by grafting on its surface the
classical biantennary glycan structure such as the one
described by [9]. This distribution and orientations of
the glycosylations confer asymmetric conformation to
the molecule and may impact its properties and
interactions. Lumican interaction with MMP-14 is a
good example to illustrate how the post-translational
modifications of lumican as keratan sulfate proteogly-
can (KSPG), or as glycoprotein, or as core protein
alone, will impact its direct effect on MMP-14 activity
[2]. Thus, one can infer that the number of glycans and
their position on the SLRPs surface might affect the
dynamical properties and behaviours of the macro-
molecules and have a crucial role on the overall
structures and function of the SLRPs.

Biological functions of SLRPs

The biological functions of SLRPs were mostly
elucidated by the characterization of mutations
occurring in patients suffering from genetic diseases



Table 1. Structural characteristics of human SLRPs.

Human SLRPs UniProtKB
AC

Length (chain) PDB ID % of identity N-linked
glycosylation

O-linked
glycosylation

Disulfide
bond

Biglycan P21810 368 (38–368) – 94,58
(biglycan bos taurus)

N270
N311

– S42
S47

S180
S198

C63–C69
C67–C76
C321–C354

Decorin P07585 359 (31–359) – 89,44
(decorin bos taurus)

N211
N262

N303 S34 – C54–C60
C58–C67
C313–C346

Fibromodulin Q06828 376 (19–376) 5MX0 – – N127
N166
N201
N291
N341

– – C76–C82
C80–C92
C334–C367

Lumican P51884 338 (19–338) – 39,58
(fibromodulin human)

N88
N160

N127
N252

– – C37–C43
C41–C53
C295–C328

Structural data information concerning SLRPs and their related 3D structures can be found on UniProtKB/Swiss-Prot database (UniProt
Consortium, [155]). The second column gives the accession numbers. The third column gives the number of amino acids contained in the
full length core protein of the SLRPs and that of the protein without the signal or propeptide portion. Among the four SLRPs our study
focuses on, only fibromodulin 3D structure is solved (fourth column). The fifth column gives the percentage of identity between the whole
sequences of the core protein in amino acids and a potential resolved template. N-linked and O-linked glycosylation sites are indicated in
bold (glycosylation sites experimentally evidenced) or in italic (putative glycosylation sites – sequence analysis) characters.
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and of specific SLRP-deficient mice. Mutations of
decorin, fibromodulin, PRELP, opticin or keratocan
lead to ocular symptoms in humans, characterized
by either corneal opacity, high myopia or hyperopia
and astigmatism [10,11]. Mutations can be located
either in the LRR repeats or in other parts of the
SLRP sequences, as demonstrated for keratocan for
instance [12]. Keratocan is responsible for autoso-
mal recessive cornea plana. In this disease, the
forward convex structure is flattened, leading to a
decrease of refraction. Two out of the four reported
mutations are nonsense mutations but the remaining
two mutations affect LRR8 and LRR9 [12]. Mutations
in the decorin gene lead to connective tissue
disorders such as the congenital stromal corneal
dystrophy [13,14]. The heterozygous mutations
affect the ear region of decorin [15] causing bilateral
corneal opacities in patients [13].
Fig. 1. Secondary structure, surface representation and N-g
representation: the fibromodulin backbone is colored accord
residues bearing the N-glycosylations are displayed using oran
were modeled with gray licorice. (B) Surface representation: it
were modeled with gray surfaces.
The deletions of SLRP induced several defects in
mice. In biglycan-deficient mice, a reduced bone mass
was observed with decreased production of bone
marrow stromal cells and larger irregular collagen fibrils
indicating an osteoporosis-like phenotype as well as
spontaneous aortic dissection and rupture [16,17].
Decorin-deficient mice presented skin fragility pheno-
typewith loosely packed collagen networks resembling
Ehlers-Danlos syndrome [18]. In lumican-deficient
mice, skin laxity and corneal opacity were observed
[19]. SLRPs have been long known to be able to bind to
various types of collagens (at least I, II, V and VI)
thereby regulating the kinetics, assembly, and spatial
organization of fibrils in skin, tendons, and cornea
[20–23].
However, the biological functions of SLRPs extend

far beyond their interactions with collagens. SLRPs
interact with various cytokines, including transforming
lycosylation positions on human fibromodulin. (A) Cartoon
ing to the secondary structure of the core protein. The
ge Van der Waals motifs. Bi-antennary glycosylated chains
considers the occupancy of the glycosylated chains which

uniprotkb:P21810
uniprotkb:P07585
uniprotkb:Q06828
uniprotkb:P51884
Image of Fig. 1


274
growth factor-beta (TGF-β) (biglycan, decorin,
lumican), bone morphogenic proteins (biglycan, tsu-
kushi), Wnt-I-induced secreted protein-I (biglycan,
decorin), von Willebrand factor (vWF) (decorin),
platelet-derived growth factor (PDGF) (biglycan,
decorin) and tumor necrosis factor-alpha (TNF-α)
(biglycan, decorin) leading to modulation of their
diverse biological functions [24].
As extracellular compounds, SLRPs can interact

with various signaling receptors, like Toll-like recep-
tors [25], insulin-like growth factor receptor [26],
epidermal growth factor receptor [27], low density
lipoprotein receptor related protein [28], integrin
α2β1 [29–31], and c-Met [32,33], thereby acting as
direct triggers of signal transduction. These interac-
tions result in modulation of cellular growth, prolifer-
ation, differentiation, survival, adhesion and
migration under developmental, physiological and
pathological conditions [7]. In addition, decorin
regulates autophagy [33]. Decorin was reported to
be not only an inducer, but also a prerequisite for
autophagy. It was shown that the stimuli which
induced autophagy provoked simultaneously the
decorin expression both at the mRNA and protein
levels, both in vitro and in vivo, through a transcrip-
tional mechanism via inhibiting the canonical mTOR
signaling pathway. As autophagy is a misleading
process, promoting cell survival under stressful
conditions, but also leading to apoptosis when
apoptotic pathways are not efficient, it may have
an association with cancer [34]. Taking into account
the ability of decorin to induce endothelial cell
autophagy, the anti-cancer features of decorin may
contribute to the regulation of autophagy during
pathological conditions.

SLRPs in cancer

Some SLRPs have been implicated in regulation of
cancer growth and progression (Table 2). The highest
number of reports concerned decorin, lumican, fibro-
modulin and biglycan. Decorin is the most studied
protein. Its expression is almost always suppressed in
cancer cellswhereas it is abundant in activated stromal
fibroblasts [35] Its gene expression was found highly
upregulated in pancreatic cancer tissue in comparison
to normal pancreas [36]. In order to understand the
important association of decorin with solid malignan-
cies, it is worth noticing that the absence of decorin in
breast tumor is an established clinical indicator of
invasive breast cancer [37–39]. On the contrary,
decorin expression is found downregulated by at
least 50% in 2 types of non-small cell lung cancer,
adenocarcinoma and squamous cell carcinoma [40].
Decorin inhibits melanoma cell migration and invasion
[41]. In a mammalian model, treatment with decorin
core protein reduced primary tumor growth and
eliminated metastases [39]. Mechanisms of
decorin-dependent tumor repression are linked to its
ability to potently induce the endogenous synthesis of
p21, a key inhibitor of cyclin-dependent kinases. This is
carried out by soluble decorin binding in a paracrine
fashion to several receptor tyrosine kinases (RTK)
including theepidermal growth factor receptor (EGFR),
insulin growth factor-insulin receptor (IGF-IR) and Met
[37]. Met is an RTK of high affinity, and when decorin
binds it, a cascade of multiple oncosuppressive
properties, i.e.: apoptosis, mediation of cell cycle,
growth inhibition, tumor cell mitophagy, and angios-
tasis are activated [42,43]. Thus, decorin is a natural
RTK inhibitor and systemic delivery of recombinant
decorin inhibits the growth of various tumors [44,45].
The receptor binding activates the initiation of signaling
pathways downstream of vascular endothelial growth
factor receptor 2 (VEGFR2). This process is succes-
sively coupled with Peg3/Beclin 1/LC3-dependent cell
endothelial autophagic program. Another accompany-
ing phenomenon with the newly-introduced autopha-
gic program is the significant effect of decorin on
capillary morphogenesis, tumorigenic growth and cell
migration. Decorin is not only reported as regulator of
the innate immune response, but also to alter the
macrophage function and cytokine secretion, render-
ing this SLRP a pro-inflammatory one [28,32]. More-
over, decorin was shown to be cleaved by MMP-14
during corneal angiogenesis [46]. Altogether, there is
plethora of publications proving the anti-tumorigenic,
anti-angiogenic, and anti-metastatic roles of decorin
both in vivo and in vitro, rendering this SLRP a potent
therapeutic candidate in cancer [32].
Aberrant expression of another member of SLRP,

biglycan, has been linked to a number of pathological
conditions such as osteoporosis, glomerulonephritis,
pancreatic cancer and mesothelioma [47–49]. Signif-
icantly higher expression levels of biglycan were
shown in tumor tissues from the ovary, colon and liver
compared with adjacent normal tissues [50,51]. In
addition, it was found that biglycan is over-expressed
in pancreatic cancer tissues via the induction of
cyclin-dependent kinase inhibitor p27KIP1 [52]. Bigly-
can expression was also found to be higher in tumor
endothelial cells in comparison to normal endothelial
cells [53]. Biglycan is the closest SLRP to decorin,
sharing 63% of identity in amino acid sequence, and
many similar characteristics, like binding to TGFβ
[54,55], inducing the Wnt pathway [56]. With regards
to TGFβ, biglycan was also reported to regulate
differentiation and cell growth via altering TFGβ/
Smad2 signaling pathway [57]. In contrast to decorin,
biglycan is considered as a pro-angiogenic SLRP, as
it binds to VEGFA and subsequently activates the
VEGFR2 signaling pathway [58]. This pro-angiogenic
SLRP is reported to be a pro-inflammatory one,
binding to Toll-like receptors (TLR)-2 and -4. The
high production and secretion of biglycan from the
macrophages render this pro-inflammatory SLRP a
ligand for the (TLR)-2 and -4 of the innate immune
system [25,59,60], resulting in inflammatory damage.



Table 2. Roles of decorin, biglycan, fibromodulin and lumican in cancer.

SLRPs Roles in cancer References

Decorin Regulator of the innate immune response [28]
Pro- inflammatory role, by altering the macrophage function and cytokine secretion [28,32,43]
Natural RTK inhibitor [44,45]
Potential induction of the endogenous synthesis of p21 [37]
Inhibition of melanoma cell migration and invasion [41]
Reduction of primary tumor growth and elimination of metastasis [39]
Binding to Met and activation of multiple oncosuppressive properties, i.e.: apoptosis, mediation of cell
cycle, growth inhibition, tumor cell mitophagy and angiostasis

[32,42,43]

Biglycan High expression in tumor tissues of ovarian, colon and liver cancer [50,51]
Overexpression in pancreatic cancer tissues via the induction of p27KIP1 inhibitor [52]
High expression in tumor endothelial cells, compared to normal endothelial cells [53]
Regulation of differentiation and cell growth via altering TGFβ/Smad2 [57]
Pro-angiogenic property, by binding to VEGFA, and subsequent activation of VEGFR2 signaling
pathway

[58]

Pro-inflammatory property, by binding to (TLR)-2 and -4 [59,60]
Substrate of MMP-13 [63]

Fibromodulin Promotion of angiogenesis both in vitro and in vivo [60,76]
Binding to EGFR and VEGFR, due to its N-terminal domain [73]
Binding to TGFβ, and specifically to the collagenous part of C1q complement, activating the classical
pathway of the complement

[74,75]

Alteration of the balance of fluids in the tumor stroma, influencing the chemotherapy response [67]
Lumican Downregulation of apoptosis of stromal cells in Lum−/− mice [99]

Decrease in p21WAF/CIP1 expression, and a consequent increase in cyclins A, D1, and E in Lum−/−

fibroblasts
[100]

Downregulation of p53 in Lum−/− fibroblasts [100]
Suppression of tumorigenic transformation of rat fibroblasts, induced by v-src and v-K-ras and
decrease of subcutaneous tumor formation in vivo, with a simultaneous decrease of cyclin D1
expression

[101]

Inhibition of tumor growth in an in vivo mouse model [30]
Increase in cell adhesion
Binding to β2 integrin and promotion of neutrophils migration [105]
Inhibitory role in prostate cancer is mediated via α5β1 integrin [103,104]
Direct binding to the catalytic domain of MMP-14 and inhibition of its activity [2,111]
Direct binding to α2β1 integrin, leading to inhibition of melanoma cell migration, and activating FAK [31,106]
Alteration of cell migration of the EMT-like B16F1 cells, induced by elevated level of Snail expression [111]
Regulation of migration of human colorectal cells [110]
Correlation of pancreatic cancer expression with advanced stage of retroperitoneal and duodenal
invasion

[119]

Exhibition of angiostatic properties and inhibition of endothelial cell invasion, angiogenic sprouting and
vessel formation in mice

[109,117]

Inhibition of invasion of human pancreatic cells [119]
Regulation of osteosarcoma cell [121,122]
Attenuation of cell functional properties, i.e.: proliferation, migration and invasion in breast cancer cell
models of different estrogen receptor status, provoking EMT reprogramming and affection of major
MMPs expression

[123]
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Gathering all these data, biglycan could be used as a
biomarker of inflammation [61] and asa tool withmany
possible applications in innate and adaptive immunity,
in tumorigenesis and in inflammation [62]. Biglycan is
also described to be a substrate of MMP-13 [63].
Fibromodulin is also homologous to decorin (48%of

identity in amino acid sequence) and its mRNA has
been detected in a variety of clinical malignancies,
such as lung, breast, and prostate carcinomas
[64–66]. Fibromodulin is associated with dense
collagen matrix in tendons and ligaments, as well as
in fibrotic tissues, tumors and atherosclerotic plaques
[67–69]. In fibromodulin-deficient mouse tendons,
collagen fibrillogenesis is dysregulated: collagen
fibrils are misassembled in parallel to altered lumican
deposition [70]. Thesemice also exhibit an increase in
lysyl oxidase-mediated cross-linking of tendon colla-
gen I [71]. More recenty, fibromodulin was shown to
interact with collagen cross-linking sites and to
activate lysyl oxidase [72]. Furthermore, it might be
added that a role in collagen II cross-linking has been
suggested for chondroadherin [8].
The role of the N-terminal tyrosine sulfated domain

of fibromodulin in collagen fibril formation and the
inhibitory effect of its isolated leucine-rich repeat
domain on fibril formation was described [73]. The
tyrosine-sulfated domain and the leucine-rich repeat
domain both bound to three specific sites along the
collagen type I molecule, at the N terminus and at
100 and 220 nm from the N terminus. The N-terminal
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domain shortened the collagen fibril formation lag
phase and tyrosine sulfation was required for this
effect. The isolated leucine-rich repeat domain
inhibited the fibril formation rate, and full-length
fibromodulin showed a combination of these effects.
The fibrils formed in the presence of fibromodulin or
its fragments showed more organized structure.
Fibromodulin and its tyrosine sulfate domain
remained bound on the formed fibre. Taken together,
this suggests a novel, regulatory function for tyrosine
sulfation in collagen interaction and control of fibril
formation [73]. As known, functionality depends on
structure and in the case of fibromodulin, its charged
N-terminal domain may contribute to collagen
cross-linking, and eventually binds to growth factors,
such as EGF and VEGF or inflammatory cytokines
during pathophysiological conditions [73].
Fibromodulin as homologous to decorin, binds to

TGFβ [54] and specifically to the collagenous part of
the complement C1q, but exceptionally activates the
classical pathway of the complement [74,75]. In the
case of solid malignancies, fibromodulin alters the
balance of fluids in the tumor stroma, by enhancing
the extracellular fluid and decreasing the interstitial
one and consequently influencing the chemotherapy
response [67]. Recent findings reveal that fibromo-
dulin promotes angiogenesis both in vitro and in vivo,
a property associated with wound repair, cancer cell
growth and embryonic development. Under specific
circumstances of enhanced levels of collagen I and
III, angiopoetin (Ang)-2 and VEGFR, accompanied
by decreased ratio of Ang-1/Ang-2, fibromodulin
favored an angiogenic behavior. All these data
introduce fibromodulin as potent therapeutic effector
in cases of impaired angiogenesis [60,76]. Fibromo-
dulin is also described to be degraded by MMP-13
[77].
Lumican

Lumican was identified for the first time in the
cornea as a keratan sulfate proteoglycan [78].
However, lumican is expressed in the extracellular
matrix of different tissues. It was detected in arteries
[79], skin [19], kidney [80], lung [81], breast [82],
colon [83], pancreas [84], bone [85], intervertebral
disc [86], and cartilage [87]. Its structure varies not
only according to the tissues but also during ageing
[88,97]. In addition, growth factors and cytokines can
modulate the molecular form of lumican [89].

Lumican structure

The transcript of human lumican (1014 bp) en-
codes a protein of 338 amino acids including a 18
amino acids signal peptide (permitting secretion of
this SLRP into the ECM) and three major domains
[87,90]: a negatively charged N-terminal domain
containing sulfated tyrosine and cysteine residues; a
central part which contains 9 leucine-rich repeats; a
C-terminal domain of 66 amino acids which contains
two conserved cysteines and two LRRs.
Chakravarti and collaborators [90] described 11

LRRs motifs (LxxLxLxxNxL) in human Lumican. The
alignment of lumican sequences from different spe-
cies shows that the central part is highly conserved.
Four potential sites for the substitution by N-linked KS
or oligosaccharides are situated at position 87, 126,
159, 251 of the core protein of human lumican [90–93].
The secondary and tertiary structures of lumican are
characteristics of the SLRPs [4,5]. LRRs are charac-
terized by a common molecular architecture adapted
to protein-protein interactions. More recently, Yama-
naka et al. [94] showed that lumican could interact with
the TGF-β receptor-1 (ALK5). Moreover, they con-
firmed that these effects of lumican did not depend on
its glycanmoiety. They also showed that a fragment of
the lumican core protein, composed of its last 13
amino-acids (named LumC13 or lumikine), repro-
duced the stimulating effects of the complete lumican
molecule on corneal epithelial wound healing in vitro
and in vivo. Recently, this same group demonstrated
that LumC13 forms a stable complex with ALK5 and
confirmed that instillation of this peptide on mice eyes
significantly promoted corneal epithelium wound
healing [95].
Lumican presents a high molecular heterogeneity

according to the tissue and to glycosylation. There are
four structural forms of lumican: the core protein of
38 kDa which is a non-glycosylated form, a form
(57 kDa) possessing short N-linked oligosaccharides,
a form in which the oligosaccharides are substituted
with polylactosamine chains, and a form in which
sulfation of the polylactosamine chains occurs to give
KS [96].

Biological roles and mechanisms of action

Many SLRPs, including members of class I (i.e.
decorin, biglycan) and II (i.e. lumican, fibromodulin)
are known to interact with ECM collagen [20]. It was
shown that the LRR7 of lumican is involved in its
binding to collagen type I. The well described
function of lumican is to regulate collagenous matrix
assembly. Lumican also protects against collagen
matrix degradation, masking the cleavage sites for
collagenases MMP-1 and MMP-13 [23]. Lumican-
null mice showed abnormal collagen fibril assembly,
with large and abnormally shaped collagen fibrils
and an extremely loose and fragile skin [19].
Moreover, a strong decrease of lumican expression
in aged skin was observed [97]. Lumican was
detected in numerous normal tissues. Lumican is
involved in the regulation of cell functions such as
cell proliferation, adhesion, migration, invasion and
differentiation in addition to its role in ECM structural
organization [98].
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Proliferation/apoptosis

Some of the biological functions of lumican were
elucidated by the characterization of lumican-deficient
mice. In lumican knockout (Lum−/−) mice, apoptosis of
stromal cells was down-regulated. The function of
FasL on intra-ocular tumors was determined by the
microenvironment in conjunction with the form and
level of FasL expressed [99]. The Lum−/− fibroblasts
have decreased p21WAF/CIP1 expression, a univer-
sal inhibitor of cyclin-dependent kinases, and a
consequent increase in cyclins A, D1, and E. The
tumor suppressor p53, an upstream regulator of p21,
is down-regulated in Lum−/− fibroblasts. The regula-
tion of p21 by lumican is a p53-dependent pathway
[100]. Lumican overexpression suppresses tumori-
genic transformation of rat fibroblasts induced by v-src
and v-K-ras and decreases subcutaneous tumor
formation in vivo, with a concomitant decrease of
cyclin D1 expression [101]. Lumican was described to
associate with CD14 on the surface of macrophages
and neutrophils, and to promote CD14-TLR4 mediat-
ed response to bacterial lipopolysaccharides (LPS)
[102].
Membrane proteins mediating lumican activities

Lumican does not bind just one integrin. It was
reported that the lumican inhibitory role in prostate
cancer was mediated via α5β1 integrin [103,104]. On
the surface of neutrophils, lumican was shown to bind
to β2 integrin and promote the migration of these cells
[105]. The inhibition of the melanoma cell migration
was mediated by α2β1 integrin, to which lumican
binds directly [31]. The interaction of lumican with
integrins in melanoma cell was proposed to activate
signaling pathways via focal adhesion kinase (FAK)
which participates in focal adhesion turnover and actin
cytoskeleton reorganization [106,107]. Overexpres-
sion of lumican has been shown to affect themigration
of human colon cancer cells through up-regulation of
gelsolin and filamentous actin reorganization [108].
Lumican inhibitory effect on the migration of endothe-
lial cells was associated with a regulation of the
expression and activity of MMP-9 and MMP-14 by
integrins [109]. Similarly to decorin, lumican can be
cleaved by MMP-14 [110]. In contrast to decorin, it
was demonstrated that lumican can bind directly to the
catalytic domain of MMP-14 to inhibit its activity
[2,111]. The postulated key partners of the action of
lumican to modulate key cellular functions are
displayed in Fig. 2.

Lumican in cancer

ECM degradation and proteoglycans play a major
role in the control of tumor progression. Lumican is
expressed in various tumor tissues but both positive
and negative correlations with tumor aggressiveness
have been reported [96]. Lumican expression in
pancreatic cancer correlates with an advanced stage
and retroperitoneal and duodenal invasion [84]. The
expression of lumican protein did not correlate with
prognostic factors in breast carcinoma [82,112] but
reduced lumican protein expression (40–175 kDa) is
associated with poor outcome in breast cancer [38].
Data from our laboratory demonstrated antitumor
properties of lumican in vivo in a mouse model of
melanoma [113] and lung metastasis [114]. Melanoma
cells were capable to adhere to lumican [30], resulting
in the remodeling of their cytoskeleton and preventing
their migration [106,107]. The above data were
confirmed recently in an in vivo mice model, where
lumican inhibited the tumor growth and was presented
as a protagonist of ECM coherent assembly [115].
The antitumor mechanism of action of lumican was

partially identified in our laboratory. Integrin α2β1 was
characterized as a direct lumican receptor on melano-
ma cells [31]. The expression of lumican was
preferentially located at the periphery of the tumor in
stromal dermal fibroblasts [116]. In addition, it was
shown that lumican exhibited angiostatic properties
and inhibited endothelial cell invasion, angiogenic
sprout ing, and vessel format ion in mice
[109,114,117]. In lung cancer tissues, lumican was
localized in the cytoplasm of cancer cells and/or
stromal tissues adjacent to cancer cells [118]. In lung
adenocarcinoma the expression level of lumican in
cancer cells correlated with pleural invasion and larger
tumor size. In squamous cell carcinoma, the expres-
sion level of lumican in cancer cells correlated with
formation of a keratinized pattern, and stromal lumican
expression correlated with vascular invasion. In squa-
mous cell carcinoma and lung adenocarcinoma, the
expression level of lumican in cancer cells did not
correlate with patient prognosis. In pancreatic cancer,
lumican protein was strongly localized in cancer cells,
and in acinar and islet cells in chronic pancreatitis-like
lesions adjacent to the tumor tissue [84]. It was also
localized in fibroblasts and on collagen fibres close to
cancer cells. Yamamoto and collaborators have shown
that secreted 70 kDa lumican stimulated growth but
inhibited invasion of human pancreatic cancer cells
[119]. In colorectal cancer tissues, lumican was
strongly localized in cancer cells in 75% of the cancer
cases. The lumican protein was also localized in
epithelial cells with mild reactive dysplasia and
fibroblasts adjacent to cancer cells. These findings
may indicate that the lumican protein synthesized by
cancer cells, fibroblasts and epithelial cells with mild
reactive dysplasia found adjacent to cancer cells may
affect the growth of human colorectal cancer [83].
Overexpression of lumican has been shown to affect
the migration of human colon cancer cells [108].
Humanosteosarcomacell lineswere shown to express
and secrete lumican, with the ability to regulate the
growth andmotility of these cells [120]. Lumican is able
to regulate osteosarcoma cell adhesion [121,122].



Fig. 2. Schematic diagram demonstrating postulated mediators of the action of lumican in modulating key cellular
functions. (A) The interaction of lumican with integrins was proposed to activate signaling pathways regulating cell growth,
apoptosis, adhesion, cell motility, invasion, EMT and metastasis. Lumican is also involved in the inhibition of MMP-14
activity via a direct binding to the catalytic domain regulating cell motility, invasion, EMT and metastasis. (B) Lumican was
shown to interact with TGF-β, sequestering the growth factor in the ECM, in a way that modulates TGF-β binding to the
respective receptors and resulting in regulation of cell adhesion and EMT. (C) Lumican was also reported to interact with
CD14 on macrophages, enhancing phagocytosis, or to interact with lipopolysaccharide and Toll-Like Receptor-4,
regulating the immune response. (D) Lumican was also shown to interact with Fas-Fas ligand, mediating apoptosis and the
immune response. Hpx, hemopexin domain. Adapted from a figure originally published in FEBS J, Brézillon et al. [96].
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It was previously established that the altered activity
of MMP-14 can serve as a potential mechanism of
action of the anti-tumorigenic lumican [1,2,96]. Spe-
cifically, it was proven that the cell migration of the
epithelial-mesenchymal transition (EMT)-like B16F1
cells, induced by elevated level of Snail expression,
was altered by lumican [111]. This proposed mecha-
nism can be even more complex, as MMP-14 affects
cell migration, not only by adjusting the activity of
downstream MMPs, but also by activating migration–
implicated molecules, such as integrins and many
related pathways. The direct synergism of membrane
MMPs, especially of MMP-14 and integrins, was
previously reported as a hallmark in tumor invasion
and angiogenesis [109,111].
Besides the existing reports concerning the

anti-cancer effect of lumican, its mechanism of
action has not been fully elucidated. Lumican was
shown to significantly attenuate cell functional
properties including cell proliferation, migration and
invasion in breast cancer models of different
estrogen receptor status. It provokes an EMT
reprogramming and affects the expression of major
MMPs, implicated in breast cancer [123]. The effects
of lumican may be due to different levels of action,
concerning either its interactions with ECM mole-
cules or intermediation in the activity of membrane
receptors [96,120] and MMP-14 [2,111] (see Fig. 2).
Matrix metalloproteinases

Matrix metalloproteinases are a large family of
proteases secreted by tumor and microenvironmen-
tal cells that are directly linked with invasion and
metastasis through ECM. Moreover, they are asso-
ciated with other carcinogenesis steps like tumor
growth and promotion of angiogenesis [124–126].

MMPs function in cancer progression

MMPs play key roles in physiological ECM remod-
eling, but also in cancer progression as they are
implicated in invasion and metastasis [127]. There are
several reports about cancer-promoting as well as
cancer-inhibiting functions of MMPs, which are
involved not only in invasion and metastasis, but also
in other steps of carcinogenesis. MMPs can promote
growth and survival of cancer cells by cleaving FAS
ligand or growth factor binding proteins. Theymay also

Image of Fig. 2
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participate to the shedding of transmembrane precur-
sors, i.e. TGF-α.
MMPs also control proliferation signals by regulat-

ing the ECM composition, which promotes growth
indirectly through interactions between ECM mole-
cules and integrins. MMPs can inhibit cancer-cell
growth by activation of TGF-β and promote apoptosis,
probably indirectly by changing the ECM composition,
which influences integrin signaling [127]. MMPs
display dual role in tumor angiogenesis, acting as
positive and negative regulators. MMPs can promote
angiogenesis by increasing the bioavailability of the
pro-angiogenic growth factors, like VEGF, FGF-2, and
TGF-β, which stimulate proliferation and migration of
endothelial cells. They were shown to liberate FGF-2
by cleavage of perlecan [128]. In addition, MMPs
promote invasion of endothelial cells by cleaving
structural components of the ECM, such as collagen
types I, IV andXVIII, and fibrin. However, fragments of
ECM produced by MMPs can in the same time serve
as angiogenic inhibitors [129,130]. Cleavage of
plasminogen by MMPs produces angiostatin and
cleavage of collagen XVIII generate endostatin and
both of them can reduce angiogenesis [131]. Specif-
ically, the MMPs promote invasion and migration by
cleaving laminin 332 and the adhesion molecules
CD44 and E-cadherin. The released part of
E-cadherin might then bind and inhibit the function of
other uncleaved E-cadherin molecules. In addition,
docking of MMP-9 to CD44 is required for cancer-cell
invasion. MMPs might inhibit metastasis by cleavage
of CXCL12, a chemokine of the CXC family that
promotes breast cancer metastasis. MMPs promote
the EMT that is associated with malignant behavior -
by cleaving the cell-adhesion molecule E-cadherin
and by liberating TGF-β [132].
Reactive inflammatory cells provide someof the key

MMPs involved in cancer progression, but MMPs also
inhibit immune reactions against the cancer cells.
MMPs cleave the interleukin-2 receptor-α on T
lymphocytes, thereby inhibiting their proliferation.
MMPs cleave various members of the CC and CXC
chemokine families which are then unable to attract
leukocytes [131].

Matrix metalloproteinase 14

MMP-14 (MT1-MMP) was the first characterized
membrane-type matrix metalloproteinase. It plays an
important role in cell migration, not only by regulating
the activity or expression of downstream MMPs but
also by processing and activatingmigration-associated
molecules such as integrins, ECM and a variety of
intracellular signaling pathways [133]. During migration
and invasion, MMP-14 localizes at lamellipodia, the
migration front of the cells [134]. This localization is
achieved by interaction of MMP-14 with CD44. It was
also shown that MMP-14 can be co-localized with β1
integrin [135]. MMP-14 was found to be highly
expressed in different cancers and its expression was
shown to promote migration, invasion and metastasis
of cancer cells in vitro as well as in vivo [136]. MMP-14
has a broad range of substrates, including the ECM
components, like type-I, II, III collagen, fibronectin,
laminins, vitronectin, decorin, lumican, elastin and
aggrecan as well as non-ECM proteins including
CD44, integrins, syndecan-1 and ICAM-1 [137,138].

Structure of MMP-14

In addition to a specific transmembrane domain,
MMP-14 (Fig. 3A) is characterized by multidomain
structure consisting of a signal peptide, a pro-peptide, a
catalytic domain, a hinge region, and a hemopexin
domain. These domains are common with other MMP
family members and like other MMPs, the enzyme is
producedasa zymogenand requires anactivation step
to remove the pro-peptide proteolytically. Thus, activa-
tion of MMP-14 takes place during secretion in the
Golgi and the enzyme is expressed on the cell surface
as the active form [139]. Tochowicz and collaborators
[140] described the complex dimerization ofMMP-14; a
critical step for the promotion of cellular invasion. As
referred above, homodimerization is a prerequisite for
the activation of proMMP-2 and the cell-surface
degradation of collagen. The key domain leading this
function is hemopexin (Hpx) domain, and the underly-
ing mechanism was investigated through the analysis
of its crystal structure. Mutagenesis in the monomers
resulted in weakening of the dimer interactions of Hpx
domain and in the long-term, inhibition of the exclu-
sively dimer-dependent functions, like proMMP-2
activation and 3D invasion [140]. It was also demon-
strated that the dimerization of MMP-14 Hpx domains
was occurring during 3D-collagen invasion. Fluores-
cence resonance energy experiments showed that the
dimerization is a constant and dynamic process
occurring at the main edge of migrating cells, and is
regulated by the actin cytoskeleton reorganization,
mediated by the small GTPases, Cdc42 and Rac1
[141]. MMP-14 is located at the leading edge of
migrating cells. In addition, a specific sequence, called
MT-LOOP, was identified in the catalytic domain of
MMP-14 [142]. It is critical for the enhancement of
cellular invasion by regulating the cleavage of
proMMP-2 to MMP-2 [141,143]. The deficiency of the
MT-LOOP leads to the delocalization of the enzyme
from β1-integrin-rich cell adhesion complexes at the
plasma membrane, and consequently inhibits both the
dimer-dependent and independent functions of
MMP-14 [142]. It is worth noticing that the localization
of MMP-14 from the apical to the basal surface of
epithelial cells enhances the collagen degradation
[144,145].
The hemopexin-like domain of MMP-14 comprises

the conserved domains responsible for dimerization of
MMP-14 and its association with CD44. CD44 in turn is
associated with F-actin through its cytoplasmic domain



Fig. 3. Structure of MMP-14. (A) Domain structure of MMP-14 (MT1-MMP). (B) Surface representation of MMP-14
catalytic domain. The coordinates extracted from the pdb structure 1BQQ present a catalytic site (green) and the
MT-LOOP (red). The Asn229 is highlighted in yellow as a possible N-glycosylation site.
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by interacting with Ezrin/Radixin/Moesin proteins.
Thus, MMP-14 interacts indirectly with F-actin. Chang-
es in the level of MMP-14 lead to intracellular
cytoskeleton rearrangements and the processing of
migration and invasion machinery, including proteoly-
sis of proMMP-2 by MMP-14 [143]. Glycosylation of
matrix metalloproteinases and tissue inhibitors was
also reported. MMP-14 is O-glycosylated at Thr291,
Thr299, Thr300, and/or Ser301 in the hinge region, and
this modification was shown to be essential for the
proMMP-2 activation on the cell surface. Incomplete
glycosylation of MMP-14 stimulates extensive autocat-
alytic degradation and self-inactivation of enzyme
[146]. The catalytic sites of MMPs do not contain
O-linked glycans, but instead possess a conserved
N-linked glycosylation site [147]. Thus, the interactions
between SLRPs and MMPs might be regulated by the
post-translational modifications of these two mole-
cules. One can assume that the molecular interactions
are mainly modulated through protein-protein inter-
faces but also through glycan-protein and
glycan-glycan interfaces. Molecular modeling could
be used to propose and test some interaction models
and thus decipher the atomistic processes driving to
the formation of these macromolecular complexes.
Proteolytic processing of MMP-14

It has been shown that the 60 kDa active MMP-14
undergoes further processing to 44–45 kDa forms by
MMP-2 or MMP-14 itself. This removes the catalytic
domain of MMP-14 making it inactive. Paradoxically,
accumulation of this 44 kDa form has been associated
with increased enzymatic activity via an inhibition of
endocytosis of active MMP-14 [148]. A high level of
45 kDa form coincides with high proMMP-2 activation
whereas no proMMP-2 activation occurs when 45 kDa
form is not detected besides full length, mature
MMP-14 on the cell surface. In some cells, the whole
ectodomain of MMP-14 was shown to be shed. When
the cleavage occurs at Val524-Ile bond, functional
MMP-14 is released from the cell surface [149].
The 3D structure of the catalytic domain of

MMP-14 is illustrated in Fig. 3B. On this surface
representation, three zones may be depicted: (i) the
catalytic zone (in green) containing residues known
to interact with TIMP2, (ii) the MT-LOOP area (in red)
mentioned previously and (ii i) a potential
N-glycosylation site (in yellow).
Trafficking and intracellular regulation of MMP-14

MMP-14 was shown to be internalized by clathrin
dependent and caveolae-dependent pathways [139].
This internalization from the cell surface suggests a
mechanism of downregulation. Paradoxically, the
internalization process appears to be essential for
the enzyme to promote cell migration [150]. This may
be connected with recycling of MMP-14 and insertion
of recycled protease at the leading edge of migrating
cells. Clathrin dependent internalization of MMP-14 is
mediated by the C terminal cytoplasmic tail. MMP-14
is also internalized through caveolae. It was demon-
strated that caveolae-mediated internalization of
MMP-14 also plays an important role in MMP-14
mediated endothelial cell migration on a collagen
substratum [151].
Inhibition of MMP-14 activity

The inhibition of the active form presented at the cell
surface is one of the critical steps to regulate its activity.
MMP-14 is inhibited by endogenous inhibitors TIMP-2,
-3, and 4, but not by TIMP-1 [152]. RECK (reversio-
n-inducing-cysteine rich protein with Kazal motifs), a
GPI-anchored glycoprotein, is another inhibitor for
MMP-14 [153]. Chondroitin/heparan sulfate proteogly-
cans, testican 1 and 3 and a splicing variant of testican
3, N-Tes, have also been shown to inhibit MMP-14
[154].

Image of Fig. 3
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Lumican and its derived peptides were previously
shown to regulate MMP-14 expression and activity
[1,2]. The effect of lumican and decorin on MMP-14
activity was compared. In contrast to decorin,
glycosylated form of lumican was able to significantly
decrease the MMP-14 activity in B16F1 melanoma
cells. Our results suggest that a direct interaction
occurs between lumican and MMP-14. Lumican
behaves as a competitive inhibitor which leads to a
complete blocking of the activity of MMP-14. It binds
to the catalytic domain of MMP-14 with moderate
affinity (KD ~275 nM) [2]. Lumican may protect
collagen against MMP-14 proteolysis, thus influenc-
ing cell-matrix interaction in tumor progression.
Conclusion

In silico data, more particularly docking simula-
tions, will be required to better understand the direct
interactions between SLRPs and the catalytic
domain of MMP-14. It seems crucial nowadays to
use research protocols combining both in silico and
in vitro methodologies. The procedure that aims at
combining these complementary approaches will
allow foreseeing great potentialities to decipher the
interactions between various SLRPs and MMP-14.
The challenges to be addressed in future studies will
include taking into account the effect of glycosyla-
tions and other post-translational modifications in the
fine description and characterization of the interac-
tions. Taken together, the literature suggests that
lumican via its direct interaction with the catalytic
domain of MMP-14 could be considered as a good
candidate in the future for potential therapeutic
application.
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