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Abstract

Toxoplasma gondii is a protozoan parasite that uses felids as definitive hosts and warm-

blooded animals as intermediate hosts. While the dispersal of T. gondii infectious oocysts

from land to coastal waters has been well documented, transmission routes to pelagic spe-

cies remain puzzling. We used the modified agglutination test (MAT titre� 10) to detect anti-

bodies against T. gondii in sera collected from 1014 pelagic seabirds belonging to 10

species. Sampling was carried out on eight islands of the Western Indian Ocean: Reunion

and Juan de Nova (colonized by cats), Cousin, Cousine, Aride, Bird, Europa and Tromelin

islands (cat-free). Antibodies against T. gondii were found in all islands and all species but

the great frigatebird. The overall seroprevalence was 16.8% [95% CI: 14.5%-19.1%] but sig-

nificantly varied according to species, islands and age-classes. The low antibody levels

(MAT titres = 10 or 25) detected in one shearwater and three red-footed booby chicks most

likely resulted from maternal antibody transfer. In adults, exposure to soils contaminated by

locally deposited oocysts may explain the detection of antibodies in both wedge-tailed

shearwaters on Reunion Island and sooty terns on Juan de Nova. However, 144 adults

breeding on cat-free islands also tested positive. In the Seychelles, there was a significant

decrease in T. gondii prevalence associated with greater distances to cat populations for

species that sometimes rest on the shore, i.e. terns and noddies. This suggests that oocysts

carried by marine currents could be deposited on shore tens of kilometres from their initial

deposition point and that the number of deposited oocysts decreases with distance from the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255664 August 18, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Poulle M-L, Le Corre M, Bastien M,

Gedda E, Feare C, Jaeger A, et al. (2021) Exposure

of pelagic seabirds to Toxoplasma gondii in the

Western Indian Ocean points to an open sea

dispersal of this terrestrial parasite. PLoS ONE

16(8): e0255664. https://doi.org/10.1371/journal.

pone.0255664

Editor: Vitor Hugo Rodrigues Paiva, MARE –

Marine and Environmental Sciences Centre,

PORTUGAL

Received: December 11, 2020

Accepted: June 25, 2021

Published: August 18, 2021

Copyright: © 2021 Poulle et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: CLe was supported by a "Chaire Mixte

Institut National de la Santé et de la Recherche
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nearest cat population. The consumption of fishes from the families Mullidae, Carangidae,

Clupeidae and Engraulidae, previously described as T. gondii oocyst-carriers (i.e. paratenic

hosts), could also explain the exposure of terns, noddies, boobies and tropicbirds to T. gon-

dii. Our detection of antibodies against T. gondii in seabirds that fish in the high sea, have no

contact with locally contaminated soils but frequent the shores and/or consume paratenic

hosts supports the hypothesis of an open-sea dispersal of T. gondii oocysts by oceanic cur-

rents and/or fish.

Introduction

The land-to-sea transport of the free infective forms of zoonotic protozoa (oocysts or cyst), dis-

persed with the faeces of humans, pets and farm animals has a growing negative impact on

public health and marine life [1, 2]. While several studies have been carried out on faecal con-

tamination of the coastal environment with Cryptosporidium, Giardia and Toxoplasma [3–5],

less attention has been paid to the open ocean, resulting in a critical lack of information on the

transmission routes of protozoan parasites to pelagic species. This gap is particularly problem-

atic for Toxoplasma gondii because this apicomplexan parasite is currently emerging as an

important pathogen in aquatic systems [6–8]. Toxoplasma gondii is responsible for toxoplas-

mosis, one of the most common parasitic infections of warm-blooded animals, including

humans [9]. The finding of acute toxoplasmosis and the detection of antibodies against T. gon-
dii in marine mammals in the Eastern, Central and Western Pacific [10], the Canadian Arctic

[11], the Northeastern and Western Atlantic [10, 12], the Philippine archipelago [13] and the

Mediterranean Sea [14] suggests a worldwide contamination of marine habitats.

The environmental contamination with T. gondii necessarily comes from felids since

domestic cat, Felis catus, and wild felids are the only known definitive hosts in which the sexual

multiplication of T. gondii occurs, resulting in the faecal shedding of oocysts into the environ-

ment [15]. These oocysts are highly resistant and can remain infective in soils for months [16–

18]. All warm-blooded animals can be intermediate host for T. gondii [9]. Once the oocysts

have been ingested by a mammal or a bird, the development of T. gondii continues until the

formation of infecting tissue cysts [19]. These cysts can persist lifelong in the host and IgG

antibodies probably do the same [9, 20]. The prevalence of antibodies to T. gondii is therefore

generally higher in adult than in juvenile populations, both in wild birds [21] and in wild and

domestic mammals [22, 23] due to a longer period of exposure which increases the likelihood

of infection.

Acute toxoplasmosis is rarely reported in terrestrial birds and mammals that have co-

evolved with felids and their parasites, but wildlife species recently exposed to T. gondii can be

severely affected [24, 25]. Fatal toxoplasmosis is notably reported in marsupials and native ter-

restrial birds in Australia [26, 27] and Hawaii [28] where T. gondii was absent until the intro-

duction of the domestic cat. Meningoencephalitis associated with T. gondii also results in

morbidity and mortality in free-ranging sea otters, Enhydra lutris [29], sea lions, Zalophus cali-
fornianus [30] and dolphins [14], especially when associated with poly-parasitism or environ-

mental pollutants [31, 32]. As a result, T. gondii is considered a pathogen of concern for

several marine mammal species [33].

Recent molecular epidemiology studies provide evidence that freshwater can carry T. gondii
oocysts from terrestrial to marine coastal habitats [34–36]. The dilution of oocysts to a low

concentration in the marine environment is compensated by their ability to survive and to

remain infectious for several months in seawater [37], by their filtration and bio-accumulation
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in marine bivalves [38, 39] and their capture by planktonic animals that are a major source of

food for fish and invertebrates [7, 40]. Oocysts can also adhere to kelp grazed by marine snails,

resulting in a high concentration of oocysts in their faecal pellets [41, 42]. In addition, infec-

tious oocysts can be transported in the digestive tract of migratory filter feeding fish [43]. The

consumption of marine fishes and invertebrates that carry T. gondii oocysts (i.e. paratenic

hosts) may therefore be considered as responsible for the contamination of coastal marine

predators like sea otters [34, 44, 45], coastal dolphins foraging in Atlantic Ocean bays and

Mediterranean coasts [46, 47] or beluga whales and seals from the St. Lawrence stream, Can-

ada [48, 49]. Antibodies against T. gondii have also been detected far away from potential con-

tamination sources by cats as in Weddell seals, Leptonychotes weddellii, and elephant seals,

Mirounga leonina, sampled in the Antarctic Peninsula [50, 51], or in pelagic dolphins [14, 46],

as well as in pelagic seabirds breeding on felid-free islands [52–54]. In all these cases, the trans-

port of infectious oocysts by marine currents or by fish have been mentioned as the two likely

routes of transmission of T. gondii to pelagic species but without evidence of the involvement

of one and/or the other in the exposure of the species studied.

The present study aims at exploring the variability in exposure to T. gondii in ten pelagic

seabird species breeding in the Western Indian Ocean in order to elucidate the routes of trans-

mission of this protozoan to “offshore” species. Pelagic seabirds are good models for assessing

the relative importance of T. gondii transmission routes in pelagic environments since they

spend most of their time far at sea, rarely venturing close to land except to breed, and obtain

their food and most of their drinking water from fish, squids and other marine invertebrates

[55]. Serum samples were obtained from seabirds breeding on eight islands, two of which are

colonized by cats and six are felid-free. Based on this sampling, we tested whether the preva-

lence of T. gondii in seabirds varied according to age-class, species, islands and nesting habits.

In particular, we expected a lower prevalence on cat-free islands than on islands where birds

are exposed to oocysts dispersed by resident cats, and a higher prevalence in ground nesters

than in tree-nesters as the latter are assumed to be less exposed to oocyst-contaminated soil.

For species that frequent the coastline (i.e. terns and noddies), we expected a higher prevalence

on islands close to cat populations than on remote islands, as the latter are assumed to receive

lower numbers of oocysts on their shores. Finally, based on the literature on seabird diet, we

discussed the relationship between the prevalence of T. gondii in seabirds and their consump-

tion of paratenic-host fish.

Materials and methods

Ethical approval

Procedures were evaluated and approved by an ethic committee (agreement # A974 001,

Comité d’éthique du CYROI # 114; Cyclotron Réunion Océan Indien, Sainte Clotilde, La

Réunion, France), and authorized by The French Ministry of Education and Research (refer-

ence number APAFIS#3719-2016012110233597v2). Sample collection on Reunion Island,

Europa, Juan de Nova and Tromelin was conducted under the approval of the Direction de

l’Environnement, de l’Aménagement et du Logement de la Réunion and the Terres Australes

and Antarctiques Françaises. Fieldwork and collection of biological material in the Seychelles

were approved by the Seychelles Bureau of Standards and the Seychelles Ministry of Environ-

ment, Energy and Climate Change.

Study sites and sample collection

Sampling was conducted on eight oceanic islands of the Western Indian Ocean (Fig 1):

Reunion Island is part of the Mascarenes Archipelago; Aride, Bird, Cousin and Cousine are
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part of the Seychelles Archipelago; Tromelin lies between the Mascarenes Archipelago and the

Seychelles Archipelago; Juan de Nova and Europa are in the Mozambique Channel.

The sampled islands have different histories regarding the presence of cats (Table 1). Cats

were likely introduced to Reunion Island in the 17th century and now occupy all habitats on

the island [57]. Cats were introduced on Juan de Nova in the 20th century and their population

was significantly reduced between 2006 and 2011, but not eradicated at that time [58]. In the

Fig 1. Location of the eight Western Indian Ocean islands where seabird populations were sampled for the detection of Toxoplasma gondii antibodies

between 2011 and 2015. The orange lozenges correspond to islands inhabited by cats, the green dots to islands free of cats. Blue arrows indicated surface

marine currents. SEC = South Equatorial Current, NEMC = North-East Madagascar Current, SEMC = South-East Madagascar Current, EACC = East African

Coastal Current, SECC = South Equatorial Counter Current. Dashed arrow in the Mozambique Channel shows eddy circulation. Source: Schott et al. (2009).

https://doi.org/10.1029/2007RG000245 [56].

https://doi.org/10.1371/journal.pone.0255664.g001
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Seychelles Archipelago, cats used to be present on Bird [59, 60], Aride [61] and Cousine but

were eradicated several decades ago [62]. Cousin, Europa and Tromelin have always been free

of cats [62, 63]. In addition, Cousin, Cousine, Aride and Bird are approximately 2 km, 5 km, 9

km and 80 km from Praslin, the nearest cat-inhabited island of the Seychelles archipelago,

Table 1. Information on the 1014 seabirds sampled in the Western Indian Ocean between 2011 and 2015 whose sera were tested for the detection of Toxoplasma
gondii antibodies (MAT� 10).

Island Presence/absence of felids Species Age-class No

tested

No

positive

%

Aride 4˚12’46”S,

55˚39’53”E

Domestic cats used to be present but eradicated several decades

ago. Approximately 9 km away from the nearest island inhabited by

cats.

Wedge-tailed

shearwater

Ardenna pacifica Adults 8 0 0

Sooty tern Onychoprion
fuscatus

Adults 33 12 36.4

Bird 3˚53’S 55˚12’E Domestic cats used to be present but eradicated several decades

ago. Approximately 80 km away from the nearest island inhabited

by cats.

Brown noddy Anous stolidus Adults 51 9 17.6

Lesser noddy Anous
tenuirostris

Adults 22 0 0

Sooty tern Onychoprion
fuscatus

Adults 100 13 13.0

White-tailed

tropicbird

Phaethon lepturus Adults 13 4 30.8

Cousin 4˚19’S 55˚

39’E

Never colonized by felids Approximately 2 km away from the

nearest island inhabited by cats

Brown noddy Anous stolidus Adults 29 13 44.8

Lesser noddy Anous
tenuirostris

Adults 22 4 18.2

Bridled tern Onychoprion
anaethetus

Adults 17 9 52.9

White-tailed

tropicbird

Phaethon lepturus Adults 18 0 0

Wedge-tailed

shearwater

Ardenna pacifica Adults 31 1 3.2

Cousine 4˚21’S 55˚

38’E

Domestic cats used to be present but eradicated several decades

ago. Approximately 5 km away from the nearest island inhabited by

cats

Brown noddy Anous stolidus Adults 28 8 28.6

Lesser noddy Anous
tenuirostris

Adults 31 1 3.2

Wedge-tailed

shearwater

Ardenna pacifica Adults 24 0 0

Juan de Nova 17˚

03’S 42˚45’E

Domestic cats introduced in the 20th. Population reduced between

2006 and 2011 but not eradicated at that time

Sooty tern Onychoprion
fuscatus

Adults 98 20 20.4

Chicks 57 0 0

Reunion Island 21˚

22’S, 55˚34’E

Domestic cats introduced in the 17th and they occupy all habitats at

that time

Wedge-tailed

shearwater

Ardenna pacifica Adults 50 5 10.0

Chicks 23 1 4.3

Europa 22˚20’S 40˚

22’E

Never colonized by felids. Approximately 300 km away from the

closest feline population.

Great frigatebird Fregata minor Adults 14 0 0

Chicks 22 0 0

Red-footed

booby

Sula sula Adults 36 3 8.3

Chicks 17 2 11.8

Red-tailed

tropicbird

Phaethon
rubricauda

Adults 34 2 5.9

Sooty tern Onychoprion
fuscatus

Adults 138 45 32.6

Chicks 30 0 0

White-tailed

tropicbird

Phaethon lepturus Adults 31 6 19.4

Tromelin 15˚53’S

54˚31’E

Never colonized by felids. Approximately 430 km away from the

closest feline population.

Red-footed

booby

Sula sula Adults 8 0 0

Chicks 10 1 10.0

Masked booby Sula dactylatra Adults 5 2 40.0

Juveniles 14 9 64.3

Total 1014 170 16.8

https://doi.org/10.1371/journal.pone.0255664.t001
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while Europa and Tromelin are approximatively 300 km and 430 km away from the closest

feline population (Table 1).

In total, 1014 individuals belonging to ten seabird species were included in this study

(Table 1 and S1 Table). Most samples were collected between 2011 and 2013 as part of a previ-

ous study [64] except on Cousin and Cousine where samples were collected in 2015. The sam-

pling strategy was designed to include a maximum number of species on each island. This

sampling was adjusted in relation to local geographic, safety and ethical constraints that

restrict access to bird colonies, such as in highly mountainous regions (e.g. Reunion Island) or

for species highly sensitive to human disturbance (e.g. great frigatebird, Fregata minor). Birds

were captured with bare hands or hand nets. Individual birds were categorized as chicks (non-

flying birds fully dependent on parental feeding), juveniles (sexually immature flying birds), or

adults (sexually mature birds, breeding or non-breeding). Whole blood (maximum of 1.0% of

body weight) was collected from the medial metatarsal or basilic veins, as appropriate for each

species. In the field, blood samples were collected in 2 ml micro-tubes placed in a cooler with

ice packs and centrifuged within 12 hours after collection. Sera were transferred in cryogenic

tubes and stored at -20˚C. Samples were shipped to the laboratory in Reunion Island within a

week and held at -20˚C until tested.

Serological assay

Sera were examined by the Modified agglutination test (MAT) described by Dubey and Des-

monts [65]. This serological assay is the most sensitive, specific and used for the detection of

IgG antibodies against T. gondii in birds [66, 67]. MAT antigen consisted of formalinized

tachyzoïtes produced at the Laboratory of Parasitology, National Centre on Toxoplasmosis,

Reims, France. Sera were first screened using 1:6, 1:10 and 1:25 dilutions in phosphate-buff-

ered saline solution (PBS, pH 7.2). Those agglutinating the antigen at one (or more) of these

screening dilutions were further tested in a serial 2-fold dilution, to a maximum dilution of

1:12800. Serum samples with agglutination at MAT titre�10 (i.e. serum dilution� 1:25) were

considered positive for the presence of T. gondii antibodies [67, 68]. Samples showing aggluti-

nation at further dilution were also mentioned to allow comparisons with literature data based

on different dilution thresholds.

Statistical analyses

Pearson Chi square test (χ2) were used to investigate the effect of the bird species, island, bird

age-class (adult versus chick), and nest type (tree-nesting vs ground-nesting, S1 Table) on the

probability of successful detection of T. gondii antibodies. Juveniles (N = 14) were excluded

from the analysis because of the very low number of sampled birds as compared to chicks

(N = 159) and adults (N = 841). Analyses were conducted in R 3.6.3 [69].

Results

Antibodies against T. gondii were detected on all islands and all species, except the great friga-

tebird (Table 1). The overall seroprevalence was 16.8% [95% CI: 14.5%-19.1%]. MAT titres for

the 170 seropositive birds ranged from 10 to 400 (Table 2).

The prevalence of T. gondii antibodies varied according to bird species (χ2 = 69, df = 990,

p< 0.001), islands (χ2 = 17, df = 992, p< 0.05) and bird age class (χ2 = 36, df = 998,

p< 0.001). However, differences between bird age classes should be interpreted cautiously

because of the low number of chicks as compared to adults, and of the uneven distribution of

the sampled chicks for each species (Table 1). The probability of detection of T. gondii
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antibodies varied between bird species in both chicks (χ2 = 10.3, df = 155, p< 0.05) and adults

(χ2 = 66, df = 831, p< 0.001; Fig 2).

In adults, T. gondii prevalence was 5.3% ± 4.1% in wedge-tailed shearwater, 5.8% ± 7.9% in

red-tailed tropicbird, 6.7% ± 5.6% in lesser noddy, 6.8% ± 7.4% in red-footed booby, 24.4% ±
4.4% in sooty tern, 27.7% ± 8.4% in brown noddy, 40% ± 43% in masked booby, and 52.9% ±

Table 2. Number of samples tested positive for Toxoplasma gondii antibodies per species, age-class and titre of the Modified Agglutination Test (MAT). In brackets:

corresponding dilution.

Species Age class MAT titre

� 10 (1:25) � 25 (1:50) � 50 (1:100) � 100 (1:200) � 200 (1:400) � 400 (1:800)

Bridled tern (Onychoprion anaethetus) Adult 9 6 0 0 0 0

Sooty tern (Onychoprion fuscatus) Adult 90 56 31 9 3 1

Brown noddy (Anous stolidus) Adult 30 13 3 1 0 0

Lesser noddy (Anous tenuirostris) Adult 5 4 2 0 0 0

White-tailed tropicbird (Phaethon lepturus) Adult 10 4 0 0 0 0

Red-tailed tropicbird (Phaethon rubricauda) Adult 2 2 0 0 0 0

Masked booby (Sula dactylatra) Adult 2 1 0 2 0 0

Juvenile 9 9 3 0 1 0

Red-footed booby (Sula sula) Adult 3 1 0 0 0 0

Chick 3 1 0 2 0 0

Wedge-tailed shearwater Ardenna pacifica Adult 6 2 2 0 0 0

Chick 1 1 0 0 0 1

Total 170 93 40 13 4 1

https://doi.org/10.1371/journal.pone.0255664.t002

Fig 2. Seroprevalence of antibodies to Toxoplasma gondii per species in the adult seabirds sampled in the Western Indian Ocean (sample

size and percentage with 95% confidence intervals). Colours indicate bird orders (blue: Charadriiformes, red: Phaethontiformes, yellow:

Suliformes, green: Procellariformes).

https://doi.org/10.1371/journal.pone.0255664.g002
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23.7% in bridled tern. Prevalence of T. gondii in adults was significantly lower in tree-nesting

than ground-nesting species (6% ± 4% versus 21% ± 3%, χ2 = 21, df = 839, p< 0.001). The

probability of detection of T. gondii antibodies in adults varied significantly between islands

(χ2 = 16, df = 833, p< 0.05; Fig 3) but prevalence on islands inhabited by cats (Reunion and

Juan de Nova) did not significantly differ from prevalence on cat-free islands (χ2 = 0.38,

df = 839, p< 0.53).

Differences in the prevalence of T. gondii in adults were also detected between populations

(i.e. islands) of the same species (Fig 4) in brown noddy (χ2 = 6.7, df = 105, p< 0.05), sooty

tern (χ2 = 16, df = 365, p< 0.001), lesser noddy (χ2 = 7.1, df = 72, p< 0.05) and white-tailed

tropicbird (χ2 = 8.2, df = 59, p< 0.05) but not in red-footed booby (χ2 = 1.3, df = 42, p = 0.26)

and wedge-tailed shearwater (χ2 = 5.6, df = 109, p = 0.14).

Discussion

Based on the analysis of 1014 seabirds belonging to ten species sampled in the Western Indian

Ocean, we found an overall prevalence of 16.8% of seabirds carrying antibodies against T. gon-
dii. This prevalence was higher than the one reported with the same threshold in the masked

booby, the brown booby (Sula leucogaster) and the red-billed tropicbird (Phaethon aethereus)
sampled in the Abrolhos archipelago, the south of Bahia State (Brazil) in the Atlantic Ocean

(5.8% at MAT titre� 10) [53]. If we had considered only MAT titres� 25, T. gondii preva-

lence would have been of 9.17% (93/1014), thus also higher than prevalence reported for other

seabird species such as the Galapagos penguin (Spheniscus mendiculus) and the flightless cor-

morant (Phalacrocorax harrisi), both sampled in the Galapagos Archipelago (Ecuador) in the

Pacific Ocean (2.3% at MAT titre� 25) [54]. In birds, clinical signs associated with toxoplas-

mosis include anorexia, diarrhoea and respiratory distress, and may occasionally result in

death [24, 25, 66]. Fatal toxoplasmosis has notably been reported in captive penguins [70, 71]

and in a free-ranging red-footed booby died of disseminated toxoplasmosis on a Hawaiian

Fig 3. Seroprevalence of antibodies to Toxoplasma gondii per islands in the adult seabirds sampled in the Western

Indian Ocean (sample size and percentage with 95% confidence intervals). Reunion and Juan de Nova are the only

islands inhabited by cats.

https://doi.org/10.1371/journal.pone.0255664.g003
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Fig 4. Seroprevalence of antibodies to Toxoplasma gondii per species and island in the adult seabirds sampled in the Western

Indian Ocean (sample size and percentage with 95% confidence intervals). Sample sizes are indicated above bars. Colours indicate

bird orders (blue: Charadriiformes, red: Phaethontiformes, yellow: Suliformes, green: Procellariformes). Juan de Nova and Reunion
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island [72]. The relatively high exposure to T. gondii in the Western Indian Ocean therefore

raises questions about the risk of induced mortality in seabird populations, although all birds

sampled in this study were apparently healthy. Further investigations could be performed to

detect clinical toxoplasmosis on these populations from necropsies and molecular analysis

conducted on freshly dead birds, in particular in colonies with high T. gondii prevalence and/

or in species susceptible to this infection, such as the red-footed booby.

As expected, the prevalence of T. gondii in seabirds sampled in the Western Indian Ocean

varied significantly by age class, species and island, and was higher in ground nesting birds

than tree-nesting birds confirming that ground-contact is a risk factor for seabirds to T. gondii.
Of the species we sampled, the wedge-tailed shearwater has the most contact with the ground

as it nests in a burrow [73]. On Reunion Island, wedge-tailed shearwaters burrow in cliffs fre-

quented by cats. Those that tested positive for T. gondii antibodies had most likely ingested

oocysts while preening their feathers stained with oocyst-contaminated soil. For sooty terns,

the prevalence of anti-T. gondii antibodies was higher on Aride (where cats were eradicated

several decades ago) than on Juan de Nova (where cats were present at the time of our sam-

pling) raising the question of how long T. gondii oocysts can persist in the environment after

cat eradication. Experimentally, the proportion of oocysts surviving in soil after 100 days is

around 7% under dry conditions and 44% under damp conditions [17]. In Baja California,

Mexico, the rate of recent human exposure to T. gondii (estimated via IgM detection) was 12–

26% on five islands inhabited by cats and only 1.8% on the island where cats were eradicated

seven years earlier [74]. The persistence of infectious oocysts for decades after eradication of

the cats on Aride therefore seems unlikely. This implies that seabirds testing positive for T.

gondii antibodies on Aride as well as Cousine and Bird (where cats were also eradicated several

decades ago) were necessarily exposed to oocysts that were not produced locally and therefore

dispersed from their shedding site. The medium to long-range dispersal of oocysts from land

or islands inhabited by felids may also explain why we did not find a higher prevalence of T.

gondii in seabirds on islands inhabited by cats than on cat-free islands.

Our data broadly suggest that birds visiting the shore are the most exposed to T. gondii.
Indeed, the highest seroprevalence was observed in bridled terns, sooty terns and brown nod-

dies (Charadriiformes) which nest close to the sea. In New Caledonia, bridled terns nest at less

than five meters above the high tide level and at less than eight meters away from the water

mark [75]. In the Seychelles, sooty terns nest on open sand or on sand with scattered low vege-

tation above the high tide level [76, 77]. Similarly, brown noddies nest both on the ground and

in trees and often rest and collect nest material on the ground and on shores. Lesser noddies

only nest in trees but spend time on the ground and shore, sunbathing during the day and col-

lecting soil-borne materials for nesting (e.g. sticks and leaves) as well as material floating on

the sea. In the Seychelles, the prevalence of T. gondii in sooty tern and noddy populations

decreased with distance from the nearest cat population: for brown and lesser noddies, it was

significantly higher on Cousin and Cousine islands (2 km and 5 km from Praslin) than on

Bird island (80 km from Praslin); For sooty tern, it was higher on Aride island (9 km from Pra-

slin) than on Bird. This pattern of T. gondii prevalence decrease with distance to cat popula-

tions was not observed for the white-tailed tropicbird, a more inland species than sooty tern

and noddies. Taken together, these observations advise that T. gondii oocysts produced on cat-

inhabited land could be transported by oceanic currents and deposited on distant shorelines,

thereby contributing to the exposure of birds exploiting these habitats, such as terns and

are inhabited by cats; Aride, Cousin and Cousine are less than 10 km away from the nearest island inhabited by cats; Bird, Europa

and Tromelin are 80 km to 430 km away from the nearest feline population.

https://doi.org/10.1371/journal.pone.0255664.g004
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noddies. Shapiro et al. [40] suggested that the attachment of T. gondii oocysts to marine aggre-

gates may significantly influence the water transport of this terrestrial parasite. This association

of oocysts with marine aggregates may also presumably facilitate their transport from islands

colonised by cats. On arrival at distant shores, oocysts may be retained by high-water mark

since they adhere to kelp [78]. The habit of noddies to collect seaweed for incorporation into

their nests could prolong their exposure to T. gondii.
However, the detection of T. gondii antibodies in species that usually do not spend time in

coastal habitats (tropicbirds, shearwater and boobies) suggests that a third source of contami-

nation could also be involved in the transmission route of T. gondii to pelagic seabirds. Infec-

tious T. gondii oocysts and/or T. gondii DNA have been detected in the intestines or tissues of

Mullidae (goatfish), Carangidae (trevally, mackerel), Engraulidae (anchovies) and Clupeidae

(herrings, shads, sardines) [43, 79]. Clupidae, Carangidae and Clupidae fishes are preyed by

Tursiop truncatus and Delphinus delphis [80, 81] which are the two dolphin species most

exposed to T. gondii in the Mediterranean Sea [46]. In the Seychelles, Carangidae and Engrau-

lidae fishes are the secondary prey of white-tailed tropicbirds [82]. Similarly, on Europa, the

red-tailed tropicbird and the red-footed booby occasionally take Carangidae and/or Mullidae

fish [83, 84]. Therefore, the few white-tailed tropicbirds that tested positive on Bird and

Europa, as well as the red-tailed tropicbirds and red-footed boobies that tested positive on

Europa, may have been exposed to T. gondii by feeding on Carangidae or Mullidae fish carry-

ing infectious oocysts. In the same way, the high T. gondii prevalence in sooty terns and brown

noddies sampled in the Seychelles and the Mozambique Channel may not only result from

their use of the shore but also to the significance of Mullidae and Carangidae in their diet,

which also occasionally includes Clupeidae and Engraulidae [82, 83, 85]. Interestingly, compa-

rable prevalence of T. gondii were detected in the Aride and Europa sooty tern populations

(36.4% and 32.6%) which also have major similarities in diet composition [86]. Taken together,

these observations suggest that Mullidae and Carangidae, and possibly Clupeidae and Engrau-

lidae, may serve as biotic carriers for T. gondii in the Western Indian Ocean.

As expected, prevalence of T. gondii antibodies was lower in chicks than on adults in sooty

tern (Juan de Nova: 0% versus 20.4%; Europa: 0% versus 32.6%) and in wedge-tailed shearwa-

ters (Reunion: 4.3% versus 10%). However, prevalence of T. gondii was higher in chicks than in

adults in red-footed boobies sampled on Europa (11.8% versus 8.3%) and Tromelin (1/1 posi-

tive versus 0/8). This unexpected result can be due to the persistence of maternal antibodies

transferred via egg yolk [87, 88]. In long-lived birds such as wedge-tailed shearwater or red-

footed boobies, specific maternal antibodies can have an estimated half-life of 25 days post-

hatching [89, 90]. The low antibody levels detected in one shearwater and three red-footed

booby chicks (MAT titres = 10 or 25) most likely resulted from maternal antibody transfer

since antibody level might have been higher if chicks had produced antibodies in response to a

recent environmental exposure to T. gondii. In contrast, the high antibody levels detected in

nine juvenile masked boobies (MAT titres = 50, 100 or 200) from Tromelin, located 430 km

away from the closest feline population, as well as in adult red-footed and masked boobies on

Europa and Tromelin (300 km and 430 km away from the closest feline population) likely

resulted of an environmental exposure to T. gondii. This result is intriguing because adult

masked and red-footed boobies have a foraging range limited to the 150 km surrounding

Europa and Tromelin [91–93]. The detection of antibodies to T. gondii in boobies from these

islands could a result of the long-distance movements that juvenile boobies sometimes make

before breeding [94–96] and/or the transport of oocysts across the ocean for hundreds of

kilometres.

To conclude, this study clearly demonstrates that T. gondii has efficiently colonized the

marine realm of the tropical Indian Ocean. Three non-exclusive routes of contamination
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could be involved: (i) by the ingestion of oocysts locally deposited on islands colonised by cats;

(ii) by the ingestion of oocysts transported by currents and deposited on the shore of distant

islands; (iii) by the ingestion of oocysts carried by Mullidae, Carangidae, Clupeidae or Engrau-

lidae fish. It is interesting to note that the only species for which no seropositive bird was

found—i.e. great frigatebird breeding on Europa—was also the least exposed to these routes of

contamination. Indeed, on the cat-free island of Europa, great frigatebirds nest and roost in

trees and bushes and have a diet essentially composed of flying-fish and Ommastrephid squids

[55, 97]. Further investigations are needed to confirm that T. gondii oocysts could be trans-

ported over tens or hundreds of kilometres across the ocean and to better identify the ecologi-

cal processes allowing the pathway of this protozoa in the tropical seabird community.
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