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Abstract: COVID-19 is a highly infectious respiratory disease which leads to several clinical
conditions related to the dysfunction of the respiratory system along with other physical and
psychological complaints. Severely affected patients are referred to intensive care units (ICUs),
limiting their possibilities for physical exercise. Whole body vibration (WBV) exercise is a non-invasive,
physical therapy, that has been suggested as part of the procedures involved with pulmonary
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rehabilitation, even in ICU settings. Therefore, in the current review, the World Association of
Vibration Exercise Experts (WAVEX) reviewed the potential of WBV exercise as a useful and
safe intervention for the management of infected individuals with COVID-19 by mitigating the
inactivity-related declines in physical condition and reducing the time in ICU. Recommendations
regarding the reduction of fatigue and the risk of dyspnea, the improvement of the inflammatory
and redox status favoring cellular homeostasis and the overall improvement in the quality of life are
provided. Finally, practical applications for the use of this paradigm leading to a better prognosis in
bed bound and ICU-bound subjects is proposed.

Keywords: COVID-19; SARS-CoV-2; coronavirus; whole body vibration exercise

1. Introduction

COVID-19 is a benign condition in 80% of symptomatic forms with about another 15% considered
severe, and 5% critical, requiring resuscitation [1]. The overall lethality of symptomatic forms is estimated
at 2 to 5%, depending on the age distribution of patients, their co-morbidities, and the saturation
of health care systems, however, the lethality of patients with critical forms of Covid-19 has been
estimated at 61% in a series of patients hospitalized in Wuhan [2] with 20% under 60 years of age [1].

COVID-19 is caused by the virus SARS-CoV-2 and results in severe stresses to the various health
care systems in most countries available to combat this disease. Most infected patients have mild
symptoms including fever, fatigue and cough, but in severe cases, especially elderly patients with
systemic inflammatory response syndrome (SIRS), cardiovascular diseases, rheumatoid arthritis,
immunodepression, cancer or chronic obstructive pulmonary disease (COPD), the disease can progress
quickly to acute respiratory distress syndrome, septic shock, metabolic acidosis and coagulopathy [3].
One reason for the potential rapid deterioration associated with the disease is based on the steady
accumulation of detrimental cellular and molecular changes within tissues that reduces the body’s
ability to respond to stress [4]. Consequently, in some cases, the virus can also negatively impact
cellular homeostasis and immunity, with some studies reporting elevations in the expression of
pro-inflammatory cytokines within skeletal muscle of patients with SARS-CoV-2 infection [4].

In a recent metanalysis, Sun et al. [5] also reported that several patients with SARS-CoV-2 infection
have presented with muscle soreness or fatigue as well as acute respiratory distress syndrome (ARDS),
whereas diarrhea, hemoptysis, headache, sore throat, shock, and other symptoms are rare [6,7].
Suspected and confirmed cases of SARS-CoV-2 need to be treated in designated hospitals with
effective isolation and protective conditions with critical cases being admitted to ICU as soon as
possible. Treatment involves different approaches and recommendations generally include bed rest,
with the patient being monitored for vital signs (heart rate, pulse oxygen saturation, respiratory rate,
blood pressure) and given supportive treatment to ensure sufficient energy intake and water, electrolytes,
and acid-base homeostasis along with other internal environment factors [8].

Considering the clinical characteristics of COVID-19 and the necessity of resting in bed,
individuals are not able to perform physical activity; despite recent reports highlighting the need for
these patients in maintaining regular physical activity [9]. Several authors have reported that physical
activity plays an important role in the maintenance of homeostasis for individuals [10,11] and that mild
to moderate intensity physical activity aids in controlling the inflammatory responses in subjects with
chronic low-grade inflammation [12]. Despite these benefits, patients infected by COVID-19 cannot
actively engage in any type of exercise; therefore, passive strategies such as whole-body vibration (WBV)
exercise could be recommended in patients suffering from a mild COVID-19 infection after careful
clinical evaluation to ensure the safety of this type of rehabilitation. WBV exercise is a non-invasive
physical therapy that has even been successfully included in ICU settings [13]. These authors assessed
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the safety and feasibility of WBV in mechanically ventilated ICU patients and concluded that this
device was both safe and feasible.

While there is evidence of the beneficial effects of WBV in numerous health outcomes in the
general population [14,15], in the current review we aimed to examine the potential of WBV exercise as
a useful and safe intervention for the management of infected individuals with COVID-19 in order to
reduce time in ICU and/or to manage the disease sequels after recovery. This manuscript is a joint effort
from members of the World Association of Vibration Exercise Experts (WAVEX), a world association of
researchers interested in the potential of WBV for physical and mental health.

2. Effects of the WBV Exercises That Could Be Relevant to the Management of Individuals
Infected with COVID-19

As reported in the previous paragraph, patients with COVID-19 typically have fever and cough
and some will develop ARDS, possibly due to uncontrolled cytokine release [4]. The management of
this condition in severe cases include prone positioning, lung-protective ventilation, and consideration of
extracorporeal membrane oxygenation for refractory hypoxemia [16]. Therefore, in the following sections
we will discuss the WBV benefits that could be relevant in the management of individuals infected with
COVID-19 including: (a) the reduction of fatigue and the reduced risk of dyspnea, (b) improvements in
inflammatory and redox status favoring cellular homeostasis and (c) an overall improvement in the
quality of life, leading to a better prognosis in bed bound and ICU-bound subjects (Table 1).

3. Reduction of the Fatigue and the Risk of Dyspnea

Fatigue and dyspnea are clinical characteristics as evidenced by COVID-19 patients [17].
The fatigue is present in about 22% of infected patients [18] and, although it is still early to
evaluate it in this population, a recent study suggested that 70% of ARDS survivors reported
clinically significant and persistent fatigue symptoms at 6 and 12 months [19] and these are also
common in patients with COPD [20] or in intensive care survivors one year after discharge [21].
Moreover, as highlighted by Neufeld et al. [19], fatigue co-occurs with impaired physical function
(33% out of 711 ARDS patients) and other clinically significant symptoms, such as anxiety or depression
(27%). Consequently, fatigue, weakness and negative psychological symptoms seem to be common
sequelae of these conditions and this connection should be considered when considering treatment
options [19]. These authors have recently shown that small increases in physical functioning status
were associated with less fatigue. Although this multidimensional construct is difficult to define and
may vary across a range of conditions [22], previous studies have reported that WBV exercise can,
not just enhance physical status, but also manage the fatigue in various populations such as those
with fibromyalgia [23]; Parkinson disease [24] or multiple sclerosis [25]. Moreover, recent studies [26]
evaluated the effects of WBV (frequency 20–27 Hz) on various physical and psychological capacities
in patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) and reported that
WBV might maintain maximum strength, functional performance, quality of life (Qol), and mitigate
fatigue. In a similar fashion, Escudero-Uribe et al. [25] investigated the effects of regular exercise alone
(aerobic, body weight, coordination, and balance exercises) and with the inclusion of WBV exercise
(amplitude 3 mm, average frequency 4 Hz ± 1Hz/sec) on fatigue, gait pattern, mood, and quality of life
in persons with relapsing-remitting multiple sclerosis (RRMS). Significant improvements in fatigue and
mood were identified for both intervention groups, while gait parameters also improved significantly
in the WBV group. It was concluded that combined training programs of regular exercise with WBV
helps to reduce fatigue and improve mood in persons with mild to moderate RRMS. The effects of WBV
exercise (amplitude 3 mm, frequency 30 Hz) was also tested in rheumatoid arthritis patients with similar
improvements being reported [27]. Finally, Alentorn-Geli et al. [23] studied the effectiveness of a 6-week
traditional exercise program with supplementary WBV exercise (amplitude 2 mm, frequency 30 Hz)
on fibromyalgia patients (FM) and found that the WBV protocol resulted in reductions in pain and
fatigue, whereas exercise alone failed to induce any improvements.
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Table 1. Intervention parameters in the included studies.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Wollersheim
2017 [13]

EG1: n = 12
EG2: n = 7

54 (52–59) years

Immobilized
ICU

patients

Clinical trial
with

longitudinal
analysis

(before, during,
and after

intervention)

EG1: 26
EG2: 24 2–5 No

information

EG1: Synchronous
vibration (Vibrosphere®,

Promedvi: Sweden)
EG2: side alternating

vibration (Galileo,
home-ICU®. Novotec

Medical GmbH,
Pforzheim, Germany)

Supine position with
knees flexed at

about 20◦
One session EG1: 9 × 1 min, 45 s rest

EG2: 3 × 3 min Socks

Chang 2018
[15]

n = 17
82.1 ± 8.2 years

Older
people

Quasi-experimental,
single-group,

pretest-posttest
design

12 3 No
information

Vertical synchronous
vibration (i-vib6050
model; Bodygreen,
Changhua, Taiwan)

Stand on position 3-Month period,
3 sessions/week 10 × 60 s, 30 s rest No

information

Alentorn-Geli
2008 [23]

EG1: n = 11, 55.2 [3.4]
years

EG2: n = 12, 53.7 [2.7]
years

CG: n = 10, 59.3 [2.3]
years

Fibromyalgia

RCT (2-factor
mixed

experimental
design)

EG1: 30 EG1: 2 No
information

Synchronous vibration
(PowerPlate®, Power
Plate North America,
Inc., Northbrook, IL)

Static and dynamic
lower extremities
tasks (static and
dynamic squat;

ankle plantar-flexion
with legs in
extension;

flexo-extension of
the right leg or of the

left leg; squat
shifting the body

weight from 1 leg to
the other)

6-Week period,
2 sessions/week

3–6 × 4–18 min, 3 min
rest

No
information

Corbianco
2018 [24]

EG1: n = 10, 58.8 ± 3.9
years

EG2: n = 10
56.9 ± 4.7 years

Parkinson’s
disease RCT EG1: 26 EG1: 4 EG1: 106.64

m/s2

Side alternating
vibration (Galileo, Med
L2000, Novotec Medical

GmbH, Pforzheim,
Germany)

Isometric protocol in
semi squat position

with normalized
workload (20–100%

patient’s body
weight, progressive
increase of 5% body
weight was added

every week)

4-Week period,
4 sessions/week 20 × 1 min, 1 min rest No

information
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Pahl 2020
[26]

EG: n = 18, 55 (50–63)
years

CG: n = 26, 56 (32–63)
years

Allogeneic
hematopoietic

cell
transplantation

RCT (subjects
randomly

allocated 1:1 to
two parallel

groups)

EG: 20–27 EG: 0–3 No
information

Side alternating
vibration (Galileo, Med
L2000, Novotec Medical

GmbH, Pforzheim,
Germany)

Standing position:
five exercises from a

repertoire of 16
exercises for lower

limbs, especially the
knee extensors and

flexors

180-Day period,
5 sessions/week ~20 min/session Barefoot

Prioreschi
2016 [27]

EG: n = 16
CG: n = 15

EG: 51 ±10 yrs
CG: 52 ±12 years

Reumatoid
Arthitis
Female

RCT 30 3 No
information

Vertical synchronous
vibration ((DKN XG 5.0,

DKN Technology,
California, USA)

Standing position
holding on to the
handlebars with

knees slightly bent

12 weeks
2 sessions/week
15 min/session

EG: WBV 10 × 60 s, 30 s
rest

CG: normal activities
Barefoot

Furness 2013
[28]

n = 17
69 ± 8 years COPD

Non-randomised,
cross-over

design to sham
25 2 24.7 m/s2

Side alternating
vibration platform

(Amazing Super Health,
Melbourne, AUS)

Static squatting
position with knees
flexed at about 20◦

One session 5 × 1 min, 1 min rest Flat soled
shoes

Gloeckl 2017
[29]

n = 10
62 ± 8 years COPD RCT cross-over

study 26 5 No
information

Side alternating
vibration (Galileo,
Novotec Medical,

Pforzheim, Germany)

Dynamic squatting
position with knees
and hips at about

90–100◦
One session

6 × 3 min, 10 repetitions
per minute (to bend

their knees 2 s
concentric, 2 s eccentric,

2 s standing between
each repetition)

Flat soled
shoes

Furness 2014
[30]

n = 16
72 ± 7 years COPD

non-randomized,
cross-over

design to sham
25 2 ~24.7 m/s2

Side alternating
vibration platform

(Amazing Super Health,
Melbourne, AUS)

53◦ knee flexion 6-Week period,
2 sessions/week No information Flat soled

shoes.

Jawed 2020
[31]

n = 11
24 ± 1 (6-Young)

55 ± 3
(5-old) years

Healthy
male

subjects

Single site,
within subjects,

pre and
post-test
design,

cross-over

35 4 No
information

Power Plate my3 (Power
Plate North America,

Northbrook, IL)

EG1: standing
platform vibration;
EG2: repetitive leg

squat exercise
(no vibration); and
EG3: EG1 plus EG2

(with vibration)

2 to 3-week period,
one session

EG1: 8 bouts (WBV) ×
60 s × 120 (rest), knees
slightly bent; EG2: 8
bouts (WBV) × 60 s ×

120 (rest), 90◦ knee
flexion, 120 total

repetitions of leg squats;
EG3: same EG2

Barefoot
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Neves 2018
[32]

EG: n = 10, 63.5 ± 7.8
years

CG: n = 10, 63.8 ± 8.1
years

COPD

Single-blind
trial with a
controlled

parallel design

EG: 30–40 EG: 2 EG: 1.45–2.25
g

Synchronous vibration
(Fitvibe Excel Pro C,

Bilzen, Belgium)

Static squatting
position with knees
flexed at about 30◦

12-Week period, 3
sessions/week 6 × 30 s, 60 s rest Barefoot

Ribeiro 2018
[33]

EG: n = 19, 52.1 [1.8]
years

CG: n = 19, 51.0 [1.9]
years

Fibromyalgia

CT 1:1
case-control
paired study

(variables
assessed before

and
immediately

after one
session)

EG: 40 EG: 4 No
information

Synchronous vibration
(Fitvibe Excel Pro C,

Bilzen, Belgium)

Dynamic squatting
position with knees
flexed at about 10◦

to 60◦
One session

8 × 40 s, 40 s rest
(to bend their knees to
60◦ angle for 3 s and

then to 10◦ angle for 3 s,
over the 40 s of each

series)

Barefoot

Simão 2012
[34]

EG1: n = 10, 75 ± 7.4
years

EG2: n = 10, 69 ± 3.7
years

CG: n = 11, 71 ± 5.3
years

Knee
osteoarthritis

Clinical,
prospective,
randomized,

single-blinded
study

EG1: 35–40 EG1: 4 EG1:
2.00-2.61 g

Synchronous vibration
(Fitvibe Excel Pro C,

Bilzen, Belgium)

Dynamic squatting
position with knees
flexed at about 10◦

to 60◦

12-Week period, 3
sessions/week

6–8 × 20–40 s, 20–40 s
rest (to bend their knees
to 60◦ angle for 3 s and
then to 10◦ angle for 3 s,

over each series)

Barefoot

Song 2019
[35]

EG1: n = 11 (hum),
22–27 years

EG2: n = 10(mice),
6 wks

EG1:
healthy

individuals
EG2: old
C57BL/6

mice

Non-randomized
study

EG1: 21
EG2: 13 e

17

No
information

No
information

Vertical vibration
(Weibutexun, Jinan,

China)

EG1: standing body
vibration and seated

for 10min in each
position; EG2: no

information

4-week period, 7
sessions/week

EG1: 10 min (WBV);
EG2: 30 min (WBV)

No
information

Blanks 2020
[36]

EG1: n = 11, 33 ± 4
years

EG2: n = 10, 28 ± 8
years

EG1:
normal
weight

EG2: obese

Non-randomized
study 14 2.5 20.19 m/s2

Side alternating whole
body vibration platform

(RS3000, Rock Solid
Wholesale, Atlantic

Beach, FL, USA)

Static squat position,
knee flexion (~60◦)

with a stable
non-flexed trunk.

One session 10 bouts × 60s (WBV) ×
30 s (rest) Barefoot

Tossige-Gomes
2012 [37]

EG1: n = 8,
75 ± 7 years

EG2: n = 10, 71 ± 4
years

CG: n = 8, 72 ± 6 years

Knee
osteoarthritis

Randomized
controlled trial

(variables
assessed before

and after
training)

EG1: 35–40 EG1: 4 EG1:
2.78–3.26 g

Synchronous vibration
(Fitvibe Excel Pro C,

Bilzen, Belgium)

Dynamic squatting
position with knees
flexed at about 10◦

to 60◦

12-Week period, 3
sessions/week

6–8 × 20–40 s, 20–40 s
rest (to bend their knees
to 60◦ angle for 3 s and
then to 10◦ angle for 3 s,

over each serie)

Barefoot
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Rittweger
2010 [38]

CG: n = 10, 33.4 ± 6.6
years

EG: n = 10, 32.6 ± 4.8
years

Healthy
male

Randomized
controlled trial 19–30 No

information
No

information

Side alternating
vibration (Galileo Space,

Novotec Medical,
Pforzheim, Germany)

EG: squating
exercise, heel raises,
toe raises and kicks

8-week, twice
daily (except for

Wednesday
afternoons and

Sundays)

Exercises were
performed rhythmically
at a repetition rate of 1

in 6 s, and kicks
(explosive squats with

10 s rest insertion)

No
information

Greulich
2014 [39]

CG: n = 20, 70.4 ± 10.1
years

EG: n = 20, 66.4 ± 9.93
years

COPD Clinical trial 12–26 1.5; 2; and 3 No
information

Side alternating
vibration Galileo®,
Novotec Medical,

Pforzheim, Germany)

CG: physiotherapy
program, EG:

physiotherapy
program plus WBV
(bended knees on

the Platform)

No information 3 × 2 min/day No
information

Stark 2016
[40]

EG1: n = 12, 8.6 ± 3.2
months

EG2: n = 12, 19.4 ± 3.2
months

Cerebral
palsy

Prospective,
evaluator-blinded,

monocenter,
randomized

waiting-control
design with
follow-up

12 or 22 2.5 0.72 g or
2.43 g

Side alternating
vibration

Galileo®system
combined with a tilt

table (Novotec Medical
GmbH, Pforzheim,

Germany)

Standing still or
alternately squatting

and standing up
(using tilt table);

sitting on the
platform; four-point

position

14-week, twice
daily (10 times per

week)

Ten 9-minute (3 × 3) min
Feet or hands were

placed at equal distance
from the center of the

platform

If possible
the

children
trained
without

shoes, but
with socks

Gloeckl 2017
[41]

CG: n = 37,
63 ± 9 years

EG: n=37,
65 ± 8 years

COPD Randomized
controlled trial 24–26 5 PPD No

information

Side-alternating
vibration platform
Galileo®(Novotec

Medical GmbH,
Pforzheim, Germany)

Dynamic squat
training, 90◦ and

120◦ Knee and hip
flexion during each

squat movement
without holding on

to anything

3-week, 3 times a
week

(non-consecutive
days)

4 bouts × 120 s (WBV) Flat soled
shoes

Rittweger
2001 [42]

n = 12,
25.2 years

Healthy
individuals

Non-randomized
study 26 6 No

information

Side alterning vibration
Galileo, 2000 (Novotec

Medical GmbH,
Pforzheim, Germany)

Standing, squatting,
and squatting with a

load
One session

Exercises performed in
randomized sequence

for 3 min each

No
information

Hazell 2008
[43]

EG1: n = 8,
25 ± 3.4 years

EG2: n = 8,
25 ± 2.6 years

Healthy
RA men

Non-randomized
study 45 2 No

information

Vertical vibration WAVE
platform (Whole-body
Advanced Vibration

Exercise, Windsor,
Canada)

EG1: seated next to
the WBV device

(passive, unloaded),
90º knee flexion
EG2: semi-squat

(static, loaded), 120◦

knee flexion

One session

EG1 and EG2:
15 repetitions of 1 min
(WBV) × 1 min (rest)

and 10 min of recovery
(40 min of total time)

Barefoot
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Boeselt 2016
[44]

EG1: n = 12, 41.8 ±
19.7 years

EG2: n = 12, 31.3 ± 6.6
years

EG1: ICU
patients

EG2:
healthy

individuals

Non-randomized
study 24 No

information
No

information

Side alternating
vibration

Galileo®(Novotec
Medical, Pforzheim,

Germany)

EG1 and EG2: WBV
alone and WBV with

a dumbbell
One session

EG1 and EG2:
3 min (WBV) × 1 min
(rest) × 3 min (WBV +

dumbbell)

Barefoot

Kim 2015
[45]

Males: n = 9,
29 ± 3.9 years

Females: n = 9,
25.6 ± 3.5 years

Healthy
individuals

Single-group,
repeated-measure,

cross-study
0, 10, 20 No

information
No

information

Side alternating
vibration

Galileo®(Novotec
Medical, Pforzheim,

Germany)

Three pelvic
positions (neutral,

anterior tilt,
posterior tilt)

One session 3 × 10 s (WBV) × 10 s
(rest) in each position

No
information

Ritzmann
2013 [46]

EG1 and EG2: n = 18,
25 ± 4 years

Healthy
individuals

Single-group,
repeated
measures,

crossed-study

EG1 and
EG2: 5, 10,
15, 20, 25,

30

EG 1: 2 and
4 EG2: 2

No
information

EG1: Novotec Medical
(Pforzheim, Germany);

EG2: Power Plate.
(Germany, Frankfurt am

Main, Germany)

One session

EG1: side alternating
vibration and EG2:

synchronous vibration:
10 s (WBV) × 30 s (rest)

Barefoot

Eckhardt
2011 [47]

n = 14
26.0 ± 4.5 years

Physically
active men Randomizedcross-over22

Mean 4
(feet at

shoulder
width)

No
information

Side-alternating Galileo
900 (Novotec,

Pforzheim, Germany)

Squat exercise knee
bending angle 80◦

and additional load
10RM applied by

barbell

One session

EG: WBV 5 sets of 10
squats within 30s per set.
3 min rest between sets
CC: same procedure on

floor

Shoes

Albercromby
2007 [48]

n = 9 male
32.7± 7.0 years

n = 7 female
32.7 ±8.3 years

Healthy
adults

Single-group
repeated
measures

30 2 No
information

Vertical: Powerplate
Power Plate North

America, Inc.,
Northbrook, IL) and

side-alternating: Galileo
2000 (Novotec Medical,
Pforzheim, Germany)

Slow dynamic
squatting movement
from 5◦ to 40◦ knee
flexion for several

One session

Two trials for in max 15
s per condition. 60 s rest

between trials, 5 min
rest between vibration

directions

Sport socks
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Rohlmann
2014 [49]

n = 3,
62,63,66 years

Patients
fractured
lumbar

vertebral
body, male

Repeated
measures 5–25 1, 2, 4 No

information

Vertical: Powerplate Pro
5. (Power Plate North

America, Inc.,
Northbrook, IL).

Side-alternating: Galileo
advanced (Novotec
Medical, Pforzheim,

Germany)

4 postures: knees
straight, knees

slightly bent, knees
bent at 60◦ and on

the forefeet

One session

8 WBV trials on each
plate, 12–15 s per trial,
One trial 60 s. Breaks
between trials 10–30 s,

break 5 min when
changing device

No
information

Pollock 2010
[50]

EG1: n = 12
31.3 ± 12.4 years

EG2: n = 15
36 ± 12.1 years

Healthy
adults

Single group
repeated
measures

Randomized
order

5–30 5.5 and 2.5 0.2–9 g

Side-alternating Galileo
2000 (Novotec Medical

GmBH, Pforzheim,
Germany)

Standing straight
legs, without locking

knees, resulting in
15.1 ± 4.8◦ knee

flexion

One session

EC: WBV 7s for each
condition (6 frequencies

x 2 amplitudes)
Rest 30s

Barefoot

Braz Júnior
2015 [51]

EG + CG: n = 11
62.91 ± 8.82

COPD,
72.7% male

Cross-over
RCT 35

2 or 4
(wk1–4: 2

wk2–12: 4)

No
information

Vibrating platform
(MY3; Power Plate,

London, UK)

Static work of the
lower limbs, semi

squatting position at
an angle of

120◦–130◦ with the
upper limbs lightly
flexed in support

12 weeks 3
sessions/week

Wk 1–4: 10
min/session Wk

5–8: 15
min/session Wk

9–12: 20
min/session

EG: 1–4 wks (10 min; 30
s WBV × 60 s rest); 5-8
wks (15 min); 9-12 wks

(20 min; 60 s WBV × 30 s
rest)

CG: no intervention

No
information

Gloeckl 2012
[52]

EG: n = 42
CG: n = 40

EG: 64 ± 11 years
CG: 65 ± 7 years

COPD, 51%
female RCT 24–26 3 No

information

Side-alternating
Galileo®(Novotec

Medical GmbH,
Pforzheim, Germany)

Squat exercises

3 weeks
3 sessions per

week
3 × 3 min/session

EG: WBV 3 × 3min CG:
same exercises on floor

No
information

Boerema
2018 [53]

EG + CG: n = 20
15 weeks

C57BI/6
mice, males RCT 30 0.0537 0.098 g

Synchronous, 3D
LEVELL R.C. Oscillator
(Levell Electronics Ltd,

Barnet, GB) with Shaker
power amplifier

Free choice
5 weeks

5 session/week
10 minutes/session

EG: WBV
CG: same procedures

but without WBV

No
information
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Table 1. Cont.

Author

Participants and Age
(Years/Months/Weeks)
± SD or [SE] or

(Min–Max)

Condition Study Design Frequency
(Hz)

Amplitude
or PPD
(mm)

Peak
Acceleration
(m/s2 or g)

Vibration Type/Device Position/Exercises Session Protocol Intervention Footwear

Regterschot
2014 [54]

n = 133
20.5 ± 2.2

years

Healthy
young

adults, 84%
female

Cross-over
Short-term

effects
30 0.5 No

information

Vertical/Vibe 300 (Tonic
Vibe, Nantes, France)

with chair
Sitting One session EG: WBV 6 × 2 min CC:

rest 6 × 2 min Socks

Choi 2019
[55]

n = 18
25.3 ± 2.4 years

Healthy
young

male adults

Cross-over
Acute effects 10, 20, 27 4 No

information

Side-alternating/Galileo®
Advanced Plus (Novotec

Medical GmbH,
Pforzheim, Germany)

Static half squat 30◦

flexion Standing One session

EG: WBV 3 conditions ×
2 tasks each 5 × 30 s CG:
same position without

WBV
3 min rest between

conditions

No
information

Heesterbeek
2017 [56]

EG + CG: n = 14
2 months

Young
C57BI/6J

mice, males
RCT 30 0.0537 0.098 g

Synchronous, 3D
LEVELL R.C. Oscillator
(Levell Electronics Ltd,

Barnet, GB) with Shaker
power amplifier

Free choice
5 weeks

5 session/week
10 minutes/session

EG: WBV 1 × 10 min
CG: same procedures

but without WBV

No
information

Zhao 2014
[57]

EG + CG: n = 25
Body weight 25–30 g

mouse
model of

Parkinson’s
disease
C57BL
mice

RCT 10 and 30 5 No
information

Synchronous Platform
(Columbus instruments,

OH, USA)
Free choice

4 weeks
5 sessions/week

15 × 1 min/session

EG1: 5 mm/10 Hz: 15 ×
1 min WBV, rest 1min

EG2: 5 mm/30 Hz:
15 × 1 min WBV, rest

1 min
CG1+2: same

procedures without
WBV

No
information

SD-standard derivation; SE-standard error; Min-minimum; Max-maximum; PPD-peak-to-peak displacement; ICU-intensive care unit; wks-weeks; COPD-chronic obstructive pulmonary
disease; WBV-whole body vibration; s-second; hum-humam; anim-animals; RA-recreationally active; min-minute.
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WBV exercise has also been investigated in individuals with chronic obstructive pulmonary
disease (COPD). Due to lung emphysema and chronic bronchitis COPD patients suffer from severe
dyspnea especially during exercise. On the other hand, research has indicated that WBV exercise does
not induce dyspnea while standing on a vibration platform with knees slightly bent even though the
involuntary muscle contractions that occur due to the vibrations have been shown to improve functional
exercise performance as measured by the 6-min walk test in COPD patients [28]. Even dynamic activities
on the vibration platform, like squat exercises, produce similar levels of dyspnea as compared to
squat exercises on the floor, but with significantly greater improvements in exercise performance [29].
The current evidence suggests that WBV exercise does not induce dyspnea during training could infer
that this exercise modality could be tolerated by COVID-19 patients.

In patients with stable COPD, it has been shown that WBV does not alter oxygen saturation [28,30].
In two studies reported by Furness et al. that either utilized a single session of WBV exercise consisting
of five one-minute bouts of vibration (~25 Hz, ~2 mm, ~2.5 g) interspersed with five one-minute passive
rest periods [24], or two sessions per week for six weeks (~25 Hz, 2 mm, ~2.5 g for WBV) [26] that
neither protocol had a negative influence on oxygen saturation, an important finding when considering
the use of WBV in COVID-19 patients.

4. Anti-Inflammatory Biomarkers Responses to WBV

In the lungs, inflammation results predominantly from tissue exposure to bacterial and viral
pathogens, and/ or environmental pollutants. Excessive acute inflammation and subsequent lung
injury can cause pulmonary fibrosis and impair gas exchange. Unresolved lung injury and chronic
inflammation are frequently observed in acute respiratory distress syndrome, cystic fibrosis, COPD,
and asthma [58–60]. Mitochondria are negatively affected by systemic low-grade inflammation in
individuals infected with COVID-19 [4], leading to their inability to adapt to higher levels of oxidative
stress and ultimately contributing to the systemic loss of muscle mass and function. Understanding the
molecular basis of how systemic inflammation and exercise (e.g., WBV) influence muscle mitochondria
in this patient group could provide invaluable insight into the development of exercise protocols that
could maximize the beneficial adaptations of exercise.

Jawed et al. [31] explored the effects of WBV exercise (amplitude 4 mm, frequency 35 Hz) on
circulating stem/progenitor cell (CPC) and cytokine levels. These authors assessed the participants
(a) standing on the WBV platform, (b) performing repetitive leg squats without vibration,
and (c) repetitive leg squat exercise on a vibrating platform, and reported that CPC levels increased
significantly with exercise alone (i.e., repetitive leg squats) and with WBV alone in younger participants.
Angiogenic CPCs increased during combined activity in younger and non-angiogenic CPCs increased
with WBV alone in younger, and with exercise alone in older participants. With WBV alone,
anti-inflammatory cytokine interleukin-10 increased significantly as did tumor necrosis factor-alpha
and vascular endothelial growth factor, while inflammatory interleukin-6 decreased. These results
suggested that WBV may have positive vascular and anti-inflammatory effects. In clinical populations,
such as in COPD, Neves et al. [32] reported that WBV (amplitude 2 mm, frequency 30–40 Hz) can induce
changes in inflammatory-oxidative parameters. After WBV, along with improved functional changes
(e.g., 6-min walking distance, peak oxygen uptake or handgrip strength), the authors also reported
improvements in inflammatory-oxidative biomarkers and white cell count. Ribeiro et al. [33] assessed
the effects of a single session of WBV exercise (amplitude 4 mm, frequency 40 Hz) on inflammatory
responses in a group of women diagnosed with fibromyalgia. Based on changes in levels of adipokines,
soluble tumor necrosis factor receptors (sTNFr1, sTNFr2), and brain-derived neurotrophic factor
(BDNF), as well as changes in oxygen consumption, heart rate, and perceived exertion (RPE), it was
concluded that a single session of WBV can acutely improve the inflammatory status in patients with
fibromyalgia. A similar response was observed in elderly individuals with knee osteoarthritis [34].
Plasma concentration of inflammatory markers and functional performance were assessed after squat
exercises combined with WBV (amplitude 4 mm, frequency 35–40 Hz) and resulted in significantly
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reduced plasma concentrations of the inflammatory markers sTNFR1 and sTNFR2 accompanied by a
reduction in self-reported pain.

5. Immune and Myokine Responses to WBV

Given the complex situation generated by the COVID-19 virus, it could be speculated that WBV is
able to influence the patients’ immune system. Repeated bouts of acute exercise have been shown to
enhance production of anti-inflammatory cytokines (i.e., IL-10) and myokines [61], contributing to
reduced inflammation [62] as well as a reduced pro-inflammatory cytokine production [63] and
an increased anti-inflammatory cytokine production [64], all of which might have an important
protective role in this virus. A recent study by Song et al. [35] aimed at assessing the possible effects
of WBV on immune cell differentiation and inflammatory markers reported significant increases in
lymphocyte and Treg cells normally associated with improvements in the inflammation barrier function.
Blanks et al. [36] also assessed the impact of WBV on the immune system in healthy participants
(ages 18–45 y) (14 Hz, 2.5 mm, ~2.1 g) with 10 sets of 1 min vibration periods followed by 30 s of
standing rest. The authors observed a significant increase in neutrophil percentage and increases in
IL-6, a well-known myokine. This response to WBV was attributed to increased neutrophil infiltration
into the muscle [65] and a resultant pro-inflammatory cytokine response [66] that would help mitigate
the exercise-induced inflammatory response.

Based on the aforementioned evidence, it seems that IL-6 in response to muscle activation
(i.e., WBV) has a number of anti-inflammatory benefits including increased anti-inflammatory cytokine
production which could contribute to an attenuation of basal inflammation [62,67]. Blanks et al. [36]
even suggested that WBV enhanced tissue IL-6 sensitivity and hypothesized, based on previous
results after acute exercise [64], that this exercise paradigm would increase anti-inflammatory cytokine
production (IL-10). This is consistent with a recent pilot study aimed at assessing the efficacy of WBV
on inflammatory markers in individuals with chronic obstructive pulmonary disease. Participants
performed WBV training (35 Hz, 2 mm, 6 × 30 s) and showed increased plasma concentrations of IL-10.

Increases in the percentage of lymphocytes in response to WBV exercise have also been
observed [36,37]. Authors showed that squat exercise training with superimposed WBV might
modulate T-cell-mediated immunity [37], considered a key aspect in the management of COVID-19 [4].

6. WBV Exercise in Bed-Bound and ICU-Bound Subjects

Ample evidence demonstrates the benefits of early rehabilitation in ICU-bound patients [68]. In fact,
given the profound homeostatic and neuro-inflammatory processes involved during (bed-ridden)
immobilization [69], one can conclude that musculoskeletal depletion is a highly detrimental side-effect
of critical illness, not only with respect to successful rehabilitation after critical illness, but also
for the clinical management during the active disease state. We therefore propose that ICU-bound
patients are in greater need of adequate medical exercise therapy compared to ambulatory patients.
However, it is obvious that traditional forms of exercise and active physiotherapy are difficult to
provide in ICU patients. In the context of developing countermeasures for spaceflight that prevent
physical de-conditioning, resistive WBV has been found to be a potent mode of exercise [38,70].
Given its partly passive nature, WBV is particularly useful in situations where the ability of patients to
co-operate and to exercise is limited, such as in geriatrics or COPD patients hospitalized due to an
acute exacerbation [39] (Figure 1). However, considering that traditional squat exercise training might
be inappropriate for most COVID-19 patients, when combined with tilt-table technology, WBV can also
be applied in well selected patients who are yet unable to stand by themselves, as has been powerfully
demonstrated in pediatric rehabilitation [40]. Notably, the approach is also feasible in intensive care
units. Technically, patients start to practice WBV in a supine position with a very small inclination,
and the tilt table is then iteratively verticalized over several rehab sessions until the patients can
stand freely. This approach targets all main muscle groups involved in standing and walking, and it
relieves caregivers and physiotherapists from their physical labor during the period where patients are
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particularly unstable. Furthermore, the approach also relieves the necessity of close contacts with the
patient, thus potentially reducing the spread of infectious diseases.

Figure 1. Conventional squat exercise on a WBV platform [54].

On the other hand, the demands of WBV on oxygen consumption and oxygen transport are
very moderate [42], as are the demands on the cardiovascular system [43]. This has not only been
demonstrated in healthy men and women of all ages, but also in stable COPD patients [29] and even
ICU-bound patients [13,44]. The ICU bed was either inclined up to 25◦ and the vibration platform
was fixed on the end of the bed so that patients got some pressure with their feet on the platform
(see Figure 2).

Figure 2. (A): WBV exercise in conscious but bed-bound ICU patients. Tilt ICU bed up to 30◦ and fix
WBV platform at the end of the bed. Knees should be slightly bended for about 10◦. Considerable
muscle contractions at the calf and thigh muscles should be noticed by the patient (figure adapted
from [44]). (B): WBV exercise in unconscious bed-bound ICU patients. Fix the legs with a strap to get
pressure on the platform. Flex knees and hip for about 20◦. Considerable muscle contractions at the
calf and thigh muscles should be noticeable by a therapist (figure adapted from [13]).

In sedated patients, the bent legs were fixed with a strap to get some pressure on the platform
(see Figure 2B). In these proof-of-concept studies 1 to 3 sessions of 3 min duration were performed on a
side-alternating vibration platform at a high frequency (24 Hz). In order to determine the safety of
WBV exercise, vital parameters, as well as hemodynamics (e.g., oxygen saturation, respiratory rate,
heart rate, blood pressure, intra-cranial pressure) were measured. Both studies demonstrated a very
good feasibility of WBV exercise in ICU bed-bound patients. No clinically significant changes in vital
parameters were found. No endotracheal tube, tracheal cannula, drain infusion line, ECMO-cannula,
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central venous catheter or dialyses catheter was dislocated during WBV [13]. Furthermore, by using
electromyography a significantly increased electrical activity of the quadriceps femoris muscle during
in-bed WBV exercise was found [44] indicating an important stimulus to lower extremity muscles.

In summary, the fact that WBV is a partly passive type of exercise that underpins musculoskeletal
functions required for posture and locomotion, and that using a tilt-table or tilted ICU-bed in
combination with WBV can safely provide critically ill patients a reduced potential of spreading the
disease, making WBV a highly appealing option in the current COVID-19 pandemic.

7. Practical Implementation of WBV Exercise for ICU-Bound Subjects: Monitoring and
Adaptation of Training Intensity

Applying a training intensity close to an individual’s limit of ability is essential to provide an
effective training effect for any physical exercise [71] including WBV. Initial sessions of applying WBV
as a new exercise intervention requires constant monitoring, especially in ICU applications (Table 2).
In the training literature, parameters like the one-repetition maximum (1RM) are typically used as an
initial measure to define a training load (for example: 80% 1RM, 10 repetitions, three sets, three times
per week). Additionally, perceived exertion is often used to control training intensity, for example,
if after the 3rd set, complete exhaustion is not achieved, then weights are increased for the next exercise
session [71]. A similar approach could be used for adapting the intensity of WBV exercises especially
in ICU conditions to promote training efficiency (maximum improvement with minimal time and
risk). Since approaches like the 1RM under ICU conditions lack feasibility, then criteria like heart
rate, blood pressure, SaO2 and potassium levels which are typically monitored under ICU conditions,
could be used to monitor training intensity. An additional note, based on clinical observations by
the authors, exercises at higher vibration frequencies in healthy individuals, the peak cardio-vascular
reaction to WBV can be delayed by up to 30 s after the end of exercise. Therefore, cardiovascular
response to vibration exercise for up to 90 s after the end of the exercise session should be used to
evaluate individual training intensities. It should also be noted that the exercise needs to show a
notable impact on these parameters in order to be effective. In other words, if no significant changes in
any of the parameters mentioned above can be observed during or within 90 s after the end of the
exercise session, then no training effects from the vibration exercise would be expected.

Table 2. Training termination criteria [13].

Parameter Value

Heart rate <40 or >180 BPM

Systolic blood pressure <80 mmHg or >200 mmHg;

Mean arterial blood pressure <60 mmHg or >120 mmHg

Increase in intracerebral pressure >20 mmHg

Oxygen saturation (SpO2) <88%

Potassium levels <3.0 mmol/L or >5.5 mmol/L

7.1. Application of WBV

Side-alternating WBV (SA-WBV) mimics human gait and activates muscles with an activation
pattern close to human gait including muscles of the core [45]. Thus, an almost upright posture that
forces the body to activate postural control and therefore allowing the vibration to activate even
more muscles of the core would be ideal. Some special ICU beds in fact allow tilting angels of up
to 80◦ which would allow such an application in principle. However, typical ICU beds allow tilting
angles of 25◦ to 30◦ (Figure 2A). Considering that there is a sine relation between tilting angle and
percentage loading of body weight, a 30◦ tilt angle is in fact equivalent to a load at 50% of body weight
(Table 3). Initially, friction from the body lying on a blanket will practically decrease this value, however,
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application of the transmitted vibration could help to eliminate this unloading effect (see below).
Effects of friction which cannot be compensated will result in less effective loading and therefore a
decreased training intensity. This will automatically be compensated by increased intensity, if short
term reactions as well as signs for exhaustion (Table 3), are used to control individual training intensity
as proposed. The maximum possible training intensity might therefore appear to be comparably high,
but this is merely reflecting the ability to compensate for friction.

Table 3. Static loading as percentage of body weight (BW) depending on tilt angle.

Tilt Angle % Load

10◦ 17% BW

20◦ 34% BW

30◦ 50% BW

60◦ 87% BW

80◦ 97% BW

Using a WBV device attached to the end of an ICU bed in combination with tilting angles of up to
30◦ seems to be most feasible in severe COVID-19 patients (Figure 2A). In less severe cases, after initial
training effects have been achieved, a WBV device attached to a mobile tilt-table or with a standing
device next to the ICU bed can also be feasible.

7.2. Adjusting Training Intensity

Using a tilt angle of 0◦ and 20◦ with bent legs (Figure 2B) could be used as a very low-intensity
starting condition but relies, to a certain extent, on active participation of the subject or on strapping the
legs down [13]. Tilting the bed with an attached WBV device (Figure 2A) can be used in patients where
even less active participation is possible, and it offers an additional cardiovascular input due to partial
verticalization. In practical terms, this option should be the preferred option since there is a higher
potential for improved training effects. Training intensity can be controlled by various parameters
beyond the tilt-angle itself, like alerting the duration, amplitude and frequency of the vibration.
Once the patient is able to actively participate, intensity can further be increased by additional exercise
tasks. In addition, each of the parameters in Table 4 could be used independently to significantly
increase training intensity.

Based on a combination of the training parameters used by the two ICU studies focusing primarily
on safety aspects [13,44] and the two studies focusing on positive intervention effects for COPD
patients [29,41], as well as the practical experiences of the authors and the large body of scientific
literature, the following training guidelines from Table 4 are proposed.

In principle, these guidelines aim to maximize muscle activation and at the same time, minimize
the mechanical effects and are based on the following rationales: the term passive exercise which
has been used to categorize vibration training is somewhat misleading, since each movement of the
platform triggers a stretch-reflexed based muscle activation [46]. Hence, the term “passive” might
apply to the fact that no voluntary muscle activation might be needed but the resulting exercise is
caused by active muscle contraction at high levels of up to a factor of 5.5 higher when compared to
quiet standing in a squatting position [46] and a factor of about 100% higher when added to intense
traditional exercises like a loaded squat [47]. In order to optimize training outcomes, maximum muscle
activation should therefore be the goal.

For the case of ICU application, vibration transmission within the body has positive as well as
negative consequences. As a positive effect, the small movements in the hip and the torso caused by
the transmission of vibration from the feet which are in contact with the vibration device, can help
to eliminate effects caused by friction. As mentioned above, at a 30◦ tilt-angle about 50% of body
weight is, in principle, applied to the vibration plate. However, friction caused by the body lying on
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a blanket will to a certain degree prevent the body from sliding down towards the vibration plate
and therefor decreases effective loading and training intensity. The transmitted vibration can help to
compensate at least a part of this effect since the transmitted movements will cause an effect similar to
a vibration conveyor-system as used in industry and therefore will help to move the body towards
the plate increasing the effective load. From observations a significant part of this decreased loading
caused by friction can be compensated within the first 30 s of vibration application, which is one of
the reasons to prefer application durations of 60 s or more. In addition, based on exercise science
principles, the time under tension (TUT) of a muscle (the total active contraction time of the muscle
during a set of a given exercises) for traditional exercises should be 90 to 120 s [72], which gives another
rationale why a training time of 60 s is proposed as a starting point.

Table 4. Parameters to alter training intensity for side-alternating and vertical whole-body vibration
training devices [13,44,73].

Parameter Value

1 to 2

Times per day
Standard ICU bed (severe cases):

0◦ tilt + 20◦ knee angle
30◦ tilt + bent knees

Tilt Angle

Special Tilt-Table (less severe cases):
30◦ to 90◦

Standing device (further increase of intensity):
90◦ (standing)

Frequency Side-alternating WBV: 20 to 27 Hz
Vertical WBV: 25 to 35 Hz

Duration 1 to 3 min

Number of sets 1 to 4

Amplitude (peak-to peak) Side-alternating WBV: 1–2.5 mm (2–5 mm)
Vertical WBV: 1 mm (2 mm)

Further increase of intensity by additional exercise tasks

Squatting (hip & thigh muscles)
Heel-raises (calf muscles)
Toe-raises (shin-muscles)

Pelvis lifting (thigh muscles & trunk)

Negative effects of transmitted vibration could potentially be caused in the case of significant
transmission of vibration to measurement sensors, infusion needles, drainage tubes and such, or to
intubated patients and the Endotracheal tube. While studies examining the safety of using WBV showed
no significant risk for disturbing tubes and sensors [13,44] and studies in COPD patients showed the
safety and effectiveness of vibration training even when using an oxygen mask [41]. Currently, data is
available concerning the use of vibration exercise in intubated patients under ICU conditions. As a
consequence, the proposed guidelines aim to create high muscle activation to maximize training effects
while mechanical transmissions are aimed to be as low as possible to minimize potential risks. It should
be noted that research to date has shown a very low transmission of vibration from the feet to the head
with 2 to 5% (side-alternating) and 6 to 14% of the amplitude created by the device under 100% loading
conditions (free standing at different knee angles) [48], so transmission of the vibration stimulus to the
Endotracheal tube would also be expected to be minimal.

Transmission of vibration within the human body (transmission factor) significantly depends
on the type of vibration used, as well as the vibration parameters of frequency and amplitude.
Side-alternating devices only transmit about half the vibration to the torso and head compared to
vertical vibration devices [48]. Similarly, in-vivo measured joint forces have been shown to be 30% to
60% lower [49] in side-alternating systems. Despite the lower vibration transmissions and the lower
resulting joint forces, muscle activation for the identical parameters of frequency and amplitude have
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been shown to be more than double in side-alternating devices compared to vertical devices [46].
Based on these data, the use of side-alternating systems to maximize muscle activation and minimize
vibration transmission, especially in ICU’s, would be the preferred form of vibration.

Mechanical loading of the joints (joint-internal forces measured by artificial joint replacements
with built-in force sensors) has been shown to be mainly influenced by the amplitude of the vibration.
Doubling the frequency from 12.5 to 25 Hz, would in theory, result in a 4-fold increase in acceleration
and consequently a 4-fold increase in joint forces, however, increases in hip-forces rose by only 10–15%
and even decreased by 10% at the knee [45]. Additionally, the same study demonstrated that doubling
the amplitude from 2 to 4 mm also increased hip-forces by only 10–15% but increased knee-forces
by 20–25%. Along these same lines, several studies have shown that muscle activation, as measured
by EMG, is significantly increased by oscillation frequency [45,46,50] with activation amplification of
up to a factor of 5.5 compared to quiet standing and by about 80–100% when increasing oscillation
frequency from 15 Hz to 30 Hz (Table 4).

As a consequence of the combination of the observations above, to increase training intensity it is
preferable to follow a certain parameter sequence to maximize effects and minimize potential risks.
The proposed sequence to increase training intensity therefore consists of:

Initial parameters: 30 to 60 s, if possible, twice a day. Then increase parameters in the following
order e.g.,: Duration to 60 s (60 s to help to compensate effects of friction and to allow a TUT of 60 s
per set), then tilt-angle (up to 30◦) (increase proportion of body weight as high as possible using
a typical ICU bed), then frequency (high effect on muscle activation but lower effect on vibration
transmission), then duration above 60 s (adding cardio-vascular aspects due to longer training duration),
then amplitude (adding additional vibration transmission but also additional muscle activation) and
lastly, the additional exercise tasks (could also be added earlier but are unfeasible for most ICU patients).

8. Effects of WBV on Quality of Life

It was pointed out that COVID-19 leads to dysfunction at different levels (e.g., respiratory, physical,
and psychological outcomes), with patients experiencing a serious decrement in the QoL. The effects of
WBV on QoL have also been investigated and several authors reported that WBV exercise can improve
the QoL of individuals with COPD [51,52,74].

9. Effects of WBV on Mental Conditions in COVID-19 Patients

Besides the aforementioned clinical aspects of the effect of WBV on various physiological
systems, it should be mentioned that WBV also stimulates the brain, which could potentially
contribute to improving cognitive function and the mental health of COVID-19 patients [53,75].
Although these aspects can be considered as secondary to the pulmonary dysfunction and
pneumonia-like conditions, mental health is still important for these patients. This seems most
critical during the recovery phase but keeping the brain more active during the acute phase of
the disease may also accelerate subsequent full recovery. Pneumonia is known to affect the brain,
including cognitive performance [76,77]. Declines in cognition after pneumonia can be caused
by hypoxia [78,79], inflammation, and other mechanisms of organ dysfunction attributable to
pneumonia [76]. Additionally, Davydow et al. [77] argued that immobility and lack of active exercise
in patients hospitalized for pneumonia could exacerbate age-related muscle atrophy [80], and may
worsen direct inflammatory, apoptotic, and hypoperfusion-mediated muscle fiber and neuronal
degradation [81–83]. Also, proinflammatory cytokines are elevated in pneumonia-patients as well
as in depressed patients [84,85], and prolonged neuroinflammation has been hypothesized to lead to
late-life neurodegeneration [85].

Given that WBV activates the brain, and stimulates cognition [54,55], it could be of benefit for
COVID-19 patients. Preclinical research showed that WBV induces enhanced neurotransmission [56],
generates region-specific neuronal activity and stimulates hippocampal neurogenesis critical for
cognition [75 and unpublished observations]. Moreover, results from previous studies suggest that
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WBV stimulates the cholinergic system, as well as the dopaminergic [57] and serotonergic systems
enhancing mood (especially in case of mild depression). This is further corroborated by the finding
that WBV, at least in preclinical studies, has the potential to reduce anxiety [53].

Taken together WBV, when used as an exercise modality, seems to affect the brain in a positive
manner. This should perhaps not come as a surprise given that WBV as a form of passive exercise and
reflects what is known of the positive impacts of active exercise on the brain [86]. Hence the use of WBV
in seriously affected individuals with COVID-19 should also be considered in the light of cognition and
mental health. Although the effect-size of the mental impact of WBV is small and its clinical relevance
still debatable due to the lack of sufficient research, we consider it a bonus if WBV interventions are
being performed on COVID-19 patients not (yet) capable of performing active exercise.

10. Limitations

This is a narrative review based on the best available knowledge of the effects of WBV in several
contexts that might be extrapolated to patients with mild COVID-19 infection, but it is a theoretical
approach and lacks validation in the context of COVID-19. The potential prescription and employment
of WBV in selected COVID-19 infected subjects will require careful evaluation by multidisciplinary
teams, asked to carefully evaluate the risk-benefit ratios, monitor the efficacy of WBV exercise, and tailor
the protocols to the single subject’s clinical conditions during convalescence.

11. Practical Applications

Practical recommendations on how to perform WBV exercise in the hospital or on the ICU
are presented in Table 4. Moreover, it is possible to suggest some specific practical applications
of WBV exercise (i) for inpatients with COVID-19, that would relieve the symptoms of dyspnea,
anxiety, and depression; eventually improve physical function and the QoL, reducing the time in ICU,
(ii) for isolated patients, that could be conducted through educational videos, instructional manuals or
remote consultation and (iii) for the improvement of post COVI-19 recovery and QoL.

12. Conclusions

It is expected that these findings could aid the authorities to plan a simple action like WBV
exercise that could help infected individuals to attenuate the decline in physical function, improve post
COVID-19 recovery and perhaps reduce time in ICU and allowing for more individuals to be treated.
Moreover, these considerations could stimulate investigations involving the use of WBV exercise in in
the COVID-19 patients.
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66. Furuncuoğlu, Y.; Tulgar, S.; Dogan, A.; Cakar, S.; Tulgar, Y.; Cakiroglu, B. How obesity affects the
neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet
indices: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1300–1306.

67. Wärnberg, J.; Cunningham, K.; Romeo, J.; Marcos, A. Physical activity, exercise and low-grade systemic
inflammation. Proc. Nutr. Soc. 2010, 69, 400–406. [CrossRef]

68. Thomas, S.; Mehrholz, J.; Bodechtel, U.; Elsner, B. Effect of physiotherapy on regaining independent walking
in patients with intensive-care-unit-acquired muscle weakness: A cohort study. J. Rehabil. Med. 2019, 51,
797–804. [CrossRef]

69. Capri, M.; Morsiani, C.; Santoro, A.; Moriggi, M.; Conte, M.; Martucci, M.; Bellavista, E.; Fabbri, C.;
Giampieri, E.; Albracht, K. Recovery from 6-month spaceflight at the international space station:
Muscle-related stress into a proinflammatory setting. FASEB J. 2019, 33, 5168–5180. [CrossRef]

70. Buehring, B.; Belavý, D.L.; Michaelis, I.; Gast, U.; Felsenberg, D.; Rittweger, J. Changes in lower extremity
muscle function after 56 days of bed rest. J. Appl. Physiol. 2011, 111, 87–94. [CrossRef]

71. National Strength & Conditioning Association. Strength Training; Human Kinetics, Incorporated: Champaign,
IL, USA, 2016.

72. Toigo, M. Muskelrevolution: Konzepte und Rezepte zum Muskel- und Kraftaufbau; Springer: Berlin, Germany, 2019.
73. Zhou, J.; Pang, L.; Chen, N.; Wang, Z.; Wang, C.; Hai, Y.; Lyu, M.; Lai, H.; Lin, F. Whole-body vibration

training–better care for copd patients: A systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis.
2018, 13, 3243. [CrossRef] [PubMed]

74. Sá-Caputo, D.; Gonçalves, C.R.; Morel, D.S.; Marconi, E.M.; Fróes, P.; Rufino, R.; Costa, C.H.; Lopes, A.J.;
Arnóbio, A.; Asad, N.R. Benefits of whole-body vibration, as a component of the pulmonary rehabilitation,
in patients with chronic obstructive pulmonary disease: A narrative review with a suitable approach.
Evid. -Based Complementary Altern. Med. 2016, 2016. [CrossRef]

75. Van der Zee, E.A.; Heesterbeek, M.; Tucha, O.; Fuermaier, A.B.; van Heuvelen, M.J. Whole body vibration,
cognition, and the brain. In Whole Body Vibrations; CRC Press: Boca Raton, FL, USA, 2018; pp. 151–170.

76. Girard, T.D.; Self, W.H.; Edwards, K.M.; Grijalva, C.G.; Zhu, Y.; Williams, D.J.; Jain, S.; Jackson, J.C. Long-term
cognitive impairment after hospitalization for community-acquired pneumonia: A prospective cohort study.
J. Gen. Intern. Med. 2018, 33, 929–935. [CrossRef] [PubMed]

77. Davydow, D.S.; Hough, C.L.; Levine, D.A.; Langa, K.M.; Iwashyna, T.J. Functional disability, cognitive
impairment, and depression after hospitalization for pneumonia. Am. J. Med. 2013, 126, 615–624.e5. [CrossRef]

78. McCoy, J.G.; McKenna, J.T.; Connolly, N.P.; Poeta, D.L.; Ling, L.; McCarley, R.W.; Strecker, R.E. One week of
exposure to intermittent hypoxia impairs attentional set-shifting in rats. Behav. Brain Res. 2010, 210, 123–126.
[CrossRef]

79. Yaffe, K.; Laffan, A.M.; Harrison, S.L.; Redline, S.; Spira, A.P.; Ensrud, K.E.; Ancoli-Israel, S.; Stone, K.L.
Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women.
JAMA 2011, 306, 613–619. [CrossRef]

80. Carmeli, E.; Reznick, A.Z. The physiology and biochemistry of skeletal muscle atrophy as a function of age.
Proc. Soc. Exp. Biol. Med. 1994, 206, 103–113. [CrossRef]

http://dx.doi.org/10.2147/COPD.S106009
http://dx.doi.org/10.3389/fphys.2018.01307
http://www.ncbi.nlm.nih.gov/pubmed/30319436
http://dx.doi.org/10.1016/j.cca.2010.02.069
http://www.ncbi.nlm.nih.gov/pubmed/20188719
http://dx.doi.org/10.1084/jem.179.5.1529
http://www.ncbi.nlm.nih.gov/pubmed/8163936
http://dx.doi.org/10.1152/ajpendo.00074.2003
http://dx.doi.org/10.1186/1550-2783-7-23
http://dx.doi.org/10.1017/S0029665110001928
http://dx.doi.org/10.2340/16501977-2606
http://dx.doi.org/10.1096/fj.201801625R
http://dx.doi.org/10.1152/japplphysiol.01294.2010
http://dx.doi.org/10.2147/COPD.S176229
http://www.ncbi.nlm.nih.gov/pubmed/30349230
http://dx.doi.org/10.1155/2016/2560710
http://dx.doi.org/10.1007/s11606-017-4301-x
http://www.ncbi.nlm.nih.gov/pubmed/29374359
http://dx.doi.org/10.1016/j.amjmed.2012.12.006
http://dx.doi.org/10.1016/j.bbr.2010.01.043
http://dx.doi.org/10.1001/jama.2011.1115
http://dx.doi.org/10.3181/00379727-206-43727


Int. J. Environ. Res. Public Health 2020, 17, 3650 23 of 23

81. Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; Langa, K.M. Long-term cognitive impairment and functional disability
among survivors of severe sepsis. JAMA 2010, 304, 1787–1794. [CrossRef]

82. Schweickert, W.D.; Hall, J. Icu-acquired weakness. Chest 2007, 131, 1541–1549. [CrossRef]
83. Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.;

Franczyk, M.; Deprizio, D. Early physical and occupational therapy in mechanically ventilated, critically ill
patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [CrossRef]

84. Kellum, J.A.; Kong, L.; Fink, M.P.; Weissfeld, L.A.; Yealy, D.M.; Pinsky, M.R.; Fine, J.; Krichevsky, A.;
Delude, R.L.; Angus, D.C. Understanding the inflammatory cytokine response in pneumonia and sepsis:
Results of the genetic and inflammatory markers of sepsis (genims) study. Arch. Intern. Med. 2007, 167,
1655–1663. [CrossRef] [PubMed]

85. Danese, A.; Moffitt, T.E.; Pariante, C.M.; Ambler, A.; Poulton, R.; Caspi, A. Elevated inflammation levels
in depressed adults with a history of childhood maltreatment. Arch. Gen. Psychiatry 2008, 65, 409–415.
[CrossRef] [PubMed]

86. Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and
cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1001/jama.2010.1553
http://dx.doi.org/10.1378/chest.06-2065
http://dx.doi.org/10.1016/S0140-6736(09)60658-9
http://dx.doi.org/10.1001/archinte.167.15.1655
http://www.ncbi.nlm.nih.gov/pubmed/17698689
http://dx.doi.org/10.1001/archpsyc.65.4.409
http://www.ncbi.nlm.nih.gov/pubmed/18391129
http://dx.doi.org/10.1038/nrn2298
http://www.ncbi.nlm.nih.gov/pubmed/18094706
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Effects of the WBV Exercises That Could Be Relevant to the Management of Individuals Infected with COVID-19 
	Reduction of the Fatigue and the Risk of Dyspnea 
	Anti-Inflammatory Biomarkers Responses to WBV 
	Immune and Myokine Responses to WBV 
	WBV Exercise in Bed-Bound and ICU-Bound Subjects 
	Practical Implementation of WBV Exercise for ICU-Bound Subjects: Monitoring and Adaptation of Training Intensity 
	Application of WBV 
	Adjusting Training Intensity 

	Effects of WBV on Quality of Life 
	Effects of WBV on Mental Conditions in COVID-19 Patients 
	Limitations 
	Practical Applications 
	Conclusions 
	References

