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Abstract: Streptomyces species are effective biocontrol agents toward many plant pathogens. These
microorganisms are well known for producing secondary metabolites, promoting plant growth and
inducing plant defense mechanisms. In this study, the ability of tomato root-colonizing Streptomyces
strains to trigger the resistance against Rhizoctonia solani (J.G. Kühn) AG4 was investigated. For this
goal, we evaluated the pattern of LOXB and PAL1 genes expression changes upon pathogen inocula-
tion in primed tomato plants. The results revealed that Streptomyces globisporous (Krasil’nikov) strain
F8 and S. praecox (Millard and Burr) strain R7 were able to enhance the expression of lipoxygenase
and phenylalanine ammonia lyase in tomato plants. This finding suggests that Streptomyces strains
F8 and R7 may trigger jasmonic acid and phenyl propanoid signaling pathways in plants, therefore,
resulting an induced defense status in tomatoes against R. solani. Biochemical characterization of
these Streptomyces strains showed that they were strong producers of siderophores. S. praecox strain
R7 produced siderophores of hyderoxamate and catechol types and S. globisporous strain F8 produced
a phenolic siderophore. Moreover, they also produced protease while only the S. praecox strain R7
was able to produce amylase. Taken together, these results indicate that S. globisporous strain F8
and S. praecox strain R7 promote plant growth and reduces disease and hence are suitable for future
in depth and field studies with the aim to attain appropriate biocontrol agents to protect tomatoes
against R. solani.

Keywords: defense response; gene expression; Rhizoctonia solani AG4; siderophores; Streptomyces

1. Introduction

Investigation on the relationship between microbiota and their host plants is crucial
for innovative sustainable agriculture. In addition to managing abiotic and biotic stresses
in plants, Plant Growth Promoting Rhizobacteria (PGPR) affect the plants fitness and
growth in two different manners, which are directly or indirectly. While PGPR are able
to trigger plant growth by mobilizing nutrients in soils or producing numerous growth
regulators, they protect plants from plant pathogens either by controlling invaders or by
triggering plant defense mechanisms. During last decades, “induced resistance” to diseases
or plant “immunization” has received interesting attention. Colonization of plant roots
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by PGPR can induce a systemic resistance in plants [1]. Primed plants respond faster and
stronger defense responses to future stresses, which is a process named priming [2–5].
Priming can be long lasting and several reports indicated that descendants of primed
plants expressed next-generation systemic acquired resistance [6–8]. It is a cost effective
defense mechanism [9] and the resulting induced resistance can protect plants against a
broad spectrum of attackers [10].

The phylum Actinobacteria is considered as one of the largest taxonomic unit among
the major lineages currently recognized within the bacteria domain [11]. Actinomycetes
include a large portion of rhizosphere microbial community and are capable of colonizing
the plants root [12]. Furthermore, they are of great interest in the field of biotechnology,
as they produce of a plethora of bioactive secondary metabolites with extensive medical,
industrial and agricultural applications [11,13–18]. In addition to their direct toxic effects
on other microbes, several secondary metabolites produced by actinobacteria have been
suggested to trigger plant defenses, improving the plant’s protection against pathogens [12].

Streptomyces spp. were able to protect tomatoes against R. solani and enhance the
accumulation of phenolic compounds in plants [19]. Similarly, Singh et al. [20] through
biochemical characterization revealed an enhancement in defense related enzymes levels
in tomatoes treated with actinomycetes isolated from vermicompost, which were then
challenged with R. solani. Kurth et al. [21] noticed that the Streptomyces sp. strain AcH 505
elicited systemic defense responses upon a Microsphaera alphitoides challenge. Induction of
systemic resistance in different tomato cultivars against Botrytis cinerea by Micromonospora
strains isolated from legume root nodules has been reported by Martinez-Hidalgo et al. [22].
The ability of proteolytic actinomycetes to induce resistance against the Sclerospora gramini-
cola causal agent of downy mildew in millet was demonstrated by Jogaiah et al. [23]. Singh
and Gaur [24] reported that the chickpea plants treated with endophytic Streptomyces spp.
under Sclerotium rolfsii stress exhibited higher levels of defense enzymes and accumulated
phenols. Abbasi and her colleagues in 2019 noticed that two Streptomyces strains were able
to induce resistance in tomatoes against Fusarium oxysporum f.sp. lycopersici [25]. Rhizo-
spheric Streptomyces spp. and endophytes involving Pseudomonas putida and Metarhizium
anisopliae induced defense responses in rice against Xanthomonas oryzae pv. oryzae [26].
Although there are a number of reports on the implication of actinomycetes as inducers of
plant defense responses, these microorganisms are still less explored for the development
of host resistance in comparison with other plant growth promoting rhizobacteria.

Rhizoctonia solani Kühn (teleomorph: Tanatephorus cucumeris) is one of the most de-
structive pathogens in many plants [27]. Tomato crown and root rot caused by R. solani
AG4 was found in various tomato production areas in Iran. The control of this pathogen
is difficult because of its wide host range, long-term survival in soil and high population
variability [28]. Previously, this pathogen was controlled by soil fumigation with methyl
bromide, the application of which has been banned for about two decades [29]. The use of
other fungicides to control R. solani under field conditions is not very effective and has en-
vironmental consequences. In order to be in pace with the aims of sustainable environment,
it is necessary to find an effective and safe method to control this pathogen. Biological
control of R. solani in tomatoes has been evaluated with different antagonistic agents in
several studies. Goudjal et al. [30] reported that tomato seed treatment with endophytic
actinomycetes reduced the severity of R. solani damping-off and promoted plant growth.
The efficacy of Streptomyces spp. to protect tomatoes against R. solani and to enhance yield
was demonstrated by Singh et al. [20]. In addition to Streptomyces spp., some other mi-
croorganisms have proven to act as antagonisms against this phytopathogen. The positive
effects of Burkholderia cepacia T1A-2B and Pseudomonas sp. T4B-2A on control of R. solani
in the field conditions are indicated by De Curtis et al. [31]. Similar results were reported
with Glomus mosseae BEG12 and P. fluorescens A6RI to suppress R. solani in tomatoes [32].
Trichoderma harzianum mutants were effective to control R. solani under greenhouse and field
conditions [33]. Manganiello et al. [34] also revealed that T. harzianum and its secondary
metabolite, harzianic acid, were able to protect tomato plants against R. solani by inducing
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the plant defense responses. Interestingly, combination of four microorganisms including
Pythium oligandrum, Bacillus subtilis, B. thuringiensis and Enterobacter cloacae suppressed
tomato Rhizoctonia root rot [35].

The present study aimed to (i) evaluate inhibitory activity of actinomycete isolates
for the control of R. solani AG4, (ii) to evaluate in vivo ability of the isolates to colonize
the tomato roots and induction of resistance against the pathogen and (iii) to identify and
characterize the selected actinomycetes isolates.

2. Materials and Methods
2.1. Culture Media and Preparation of Pathogen

Pure culture of R. solani AG4 was obtained from Mycology Collection, Ferdowsi
University of Mashhad, Iran. The fungus was cultured on potato dextrose agar (PDA,
Difco-39 g PDA L−1 of distilled H2O, pH 7.2) and kept refrigerated until use. Casein
glycerol agar (CGA) was prepared from basic ingredients as described by Küster and
Williams [36] and used as actinomycetes culture.

2.2. Sample Collection and Isolation of Actinomycetes

Soil samples of rhizosphere were collected from tomato fields in different localities of
the Kerman province, Iran, with global positioning system (GPS) of (30.2192663, 57.0290540)
and (28.4656225, 57.8501318). Soil samples (1 g) were serially diluted at 1:10 using sterile
distilled water. Inocula consisted of adding aliquots of 10−3–10−6 soil dilutions to auto-
claved CGA (1.25 mL−1 CGA) at 50 ◦C before pouring the plates and solidification. Three
replicates were considered for each dilution. Plates were incubated at 28 ◦C. From the
7th day forward, colonies of actinomycetes were isolated as pure culture on CGA slants
and incubated at 28 ◦C for one week and then stored at 4 ◦C before use [37].

2.3. In Vitro Bioassays

To evaluate the antifungal activity of actinomycetes, two sets of isolates were used in
the agar disk bioassay method against the pathogen. One set included those isolated from
tomato rhizosphere and another set included some isolates from our laboratory collection
(Laboratory of Biocontrol of Plant Diseases in Shahid Bahonar University of Kerman,
Kerman, Iran). Antifungal activity around the actinomycetes agar disks was evaluated and
the ratings performed were as used by Lee and Hwang [38] and El-Tarabily et al. [39].

2.4. Siderophore Production

The ability of actinobacterial isolates to produce siderophore was tested by the
universal chrome azurol S (CAS) agar assay [40]. In brief, positive producers develop
yellow-orange zone around their colonies in CAS agar, which indicate the production
of siderophores. The isolates were rated arbitrary into weak (+), moderate (++) and
strong (+++) producers. Quantitative estimation of siderophore was performed with liquid
CAS assay. The siderophore production during the actinomycetes growth in modified
International Streptomyces Project 4 (ISP4) was assessed in liquid CAS medium [40]. Uninoc-
ulated ISP4 broth was used as negative control. Quantitative estimation of siderophore
was performed by taking of supernatant of actinobacterial cultures grown in ISP4 broth
medium [41]. The bacterial cultures were centrifuged at 10,000 rpm for 10 min and then
supernatant (0.5 mL) of each bacterial culture was mixed with 0.5 mL CAS reagent. After
20 min, the optical density (OD) was measured at 630 nm by spectrophotometer (Thermo
Scientific, USA). Siderophore produced by actinomycetes isolates was calculated in percent
siderophore unit (psu) according to the following formula [42].

Siderophore production (psu) = [(Ar−As)÷Ar]× 100

Ar: Absorbance of reference (CAS solution and un-inoculated broth).
As: Absorbance of sample (CAS solution and cell free supernatant of sample).
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2.4.1. Detection of Catechol and Hydroxamate Type Siderophore
Solvent Extraction of Siderophore

Submerged ISP4 actinobacterial cultures of the most potent siderophore producers (R7
and F8) were centrifuged at 10,000 rpm for 10 min and a supernatant was used to detect
siderophore. For catechol siderophores, 10 mL of supernatant was adjusted to pH 2–3 by
the drop wise addition of 0.5 M HCl. Then, siderophore was extracted with 1:5 volume of
ethyl acetate and repeated three times to ensure the maximum recovery of siderophore.
Ethyl acetate was evaporated by rotary evaporator at 50 ◦C and extracted siderophore
was suspended in 300 µL of methanol [43]. For hydroxamate siderophores, NaCl was
added to 10 mL of supernatant to a concentration of 300 g/L and mixed thoroughly. Then,
siderophore was extracted with a 1:5 volume of benzyl alcohol and three volumes of diethyl
ether and driven into a 1:20 volume of sterile distilled water. Diethyl ether was removed by
evaporation at a rotary evaporator at 50 ◦C and extracted siderophore was suspended in
methanol [43]. Similarly, these two methods were conducted for culture medium without
the use of bacteria as control samples.

Thin Layer Chromatography (TLC)

The presence of siderophores was confirmed by using TLC. Extracted siderophores
that were described before were diluted in methanol, 5 µL of this solution was spotted on
silica gel plates (8 cm × 10 cm) and then the spots were allowed to dry.

To detect the hydroxamate siderophore, the plates were developed using butanol:
acetic acid: water (12:3:5, v/v/v) solvent system until the solvent front reached approxi-
mately the top of the plate. Then, plates were dried and sprayed with 0.1 M FeCl3 in 0.1 N
HCl [44]. As a positive standard for mobility, 3,4 dihydroxybenzoic acid was used [45].
The same procedure was applied to detect the catechol siderophore with the difference that
ethyl acetate: methanol (9:1, v/v) was used as solvent.

FeCl3 reagent was used to detect both hydroxamate and catechol siderophores. The
presence of hydroxamate siderophore was indicated in red color and phenolic com-
pounds such as catechol indicated as blue or greenish. Moreover, Gibbs reagent (2,6-
dichlorobenzoquinone-4 chloroimine) was used to detect phenolic compounds and was
indicated as brown color.

2.5. Biochemical Characterization of Selected Actinomycetes Isolates

In addition to siderophore production, other biochemical characteristics of the selected
R7 and F8 actinobacterial isolates were determined in this study, namely protease [46], chiti-
nase [47], amylase [48], volatile compounds production [49], osmotic pressure tolerance [50]
and HCN production [51].

2.6. Molecular Identification of Actinobacteria

Genomic DNA of the two selected actinobacterial isolates was extracted according
to the method described by Atashpaz et al. [52]. The PCR amplification of the 16S rDNA
gene was conducted using the universal primers 27f (5′-AGAGTTTGATCCTGGCTCAG-3′)
and 1492r (5′-CGGTTACCTTGTTACGACTT-3′) [53]. PCR was performed by means of a
Thermal cycler (Biometra®, Analytik Jena, Germany) with the following program: 94 ◦C
for 3 min for 1 cycle; 94 ◦C for 1 min, 55 ◦C for 45 s and 72 ◦C for 1.5 min for 15 cycles; and
72 ◦C for 10 min for 1 cycle. PCR products (~1500 bp) were purified by PCR purification
kit (NucleoSpin® Gel and PCR Clean-up, USA). The PCR amplified sequences of both R7
and F8 actinobacterial isolates were submitted to GenBank with the accession numbers of
MW857093 and MW857095, respectively. The sequences were searched for similarity to
other sequences available in the NCBI database using the basic local alignment search tool
(BLAST) algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 27 June 2020).
The alignment of the sequences was performed with corresponding sequences of the avail-
able Streptomyces species deposited in GenBank using the Clustal W and the phylogenetic
tree was inferred using the neighbor-joining method in the MEGA 6.06 software.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.7. Root Colonization Test

To evaluate the ability of actinomycetes isolates to colonize tomato roots; tomato
seeds cv. Superchief (https://poponik.com/product/super-chef-tomato/; accessed on
27 February 2019) were surface sterilized by 1% sodium hypochlorite for 1 min and rinsed
in sterile distilled water twice. Then, the seeds were immerged in a suspension of actino-
mycetes spores (108 spores mL−1) and shaken for 20 min. Actinomycetes-coated seeds
were placed on filter paper on water-agar medium and incubated at 25 ◦C. When the seeds
had germinated and the primary roots had elongated to about 5 cm, elongation zones of
approximately 3–4 mm were cut and transferred on CGA medium. The test plates were
incubated at 29 ◦C for 3–5 days and examined daily to monitor the growth of actinomycetes
from the excised root elongation zones.

2.8. Greenhouse Experiments

Tomato (Solanum lycopersicum) cv. Superchief susceptible to R. solani AG4 was used
in greenhouse experiments. Seeds were surface sterilized by 1% sodium hypochlorite
for 1 min and rinsed three times in sterile distilled water. Seeds were placed on sterile
standard horticultural peat until the first true leaf appeared and then transplanted to plastic
pots (15 cm × 20 cm) with the same mixture as above. The plants were then divided
into four groups and four pots in each and treated in the following groups: (i) pathogen
alone, (ii) actinomycetes isolate, (iii) actinomycetes isolate plus pathogen and (iv) control
(untreated plants). Plants were grown in a greenhouse at 30 ± 2 ◦C with a photoperiod of
16/8 h and 60% humidity. The plants were inoculated immediately after transplantation
with four actinomycetes isolates (R7, F8, BH4-1 and BH4-3). The last two isolates were
identified as two strains of Streptomyces misionensis (Cercos et al.) by Torabi et al. [54] and
were used for a biocontrol test in greenhouse with those that displayed an inhibition zone
against pathogens in Petri dishes (BH4-1 and BH4-3 isolates) and those that did not (R7 and
F8 isolates). Inoculation of tomato plants was performed with 3 mL of bacterial suspensions
(108 spores mL−1) of each actinomycetes isolate grown on solid medium. The bacterial
suspensions were strewn in the soil near the root of the tomato seedling. After three weeks,
plants were inoculated with the R. solani AG4 using colonized wheat grains. To prepare the
pathogen inoculum, 500 mL flasks containing 100 g sterile wheat grains were inoculated
with 10 plugs containing the pathogen cultured on PDA for 5 days. Then, the flasks were
incubated at 28 ◦C for three weeks and shaken at least twice to aid colonization [55,56].
Colonized wheat grains were filled 1 cm above the soil surface, which contained 10 g of
wheat grain inocula per pot. The inoculated plants were grown in greenhouse conditions as
described above. After one month, the tomato seedlings were carefully removed from the
soil and washed with tap water. Disease severity was rated using a 5 class scale as described
by Fery and Dukes [57] and then the seedlings were incubated for 48 h at 60 ◦C to measure
the dry weights. According to assessment, plant growth parameters and disease reduction
resulted in the biocontrol experiment and two actinomycetes isolates were selected for the
next greenhouse experiment to evaluate the ability of these isolates to induce resistance
against the pathogen in plants. The procedure of this experiment was similar to the first
one but the plants were inoculated with the pathogen two weeks after inoculation with the
actinomycetes isolates.

2.9. RNA Extraction and qPCR Analysis of the Defense Related Genes

To evaluate the expression of defense related genes, the tomato seedlings were har-
vested at different time points: 0, 4, 5 and 6 days after pathogen inoculation (dpi); 0 dpi
implies the first hours of pathogen infection and 4, 5 and 6 dpi are indicative of the days of
post inoculations. Leaves and roots samples were flash frozen in liquid nitrogen and stored
at−70 ◦C until required. Tissues were ground with ball mill (Retsch®, MM 400) using glass
beads and total RNA was extracted from tomato leaves and roots by a Trizol reagent (Sigma
Chemicals, Saint Louis, MI, USA). The concentration of extracted RNA was measured by
NanoDrop® ND-1000 UV-Vis Spectrophotometer (Thermo Scientific, Waltham, MA, USA).

https://poponik.com/product/super-chef-tomato/
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cDNA was synthesized from 1 µg of DNase treated total RNA using Omniscript RT kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Quantitative real
time polymerase chain reaction (qPCR) experiments were carried out in a final volume
15 µL containing 5 µL of template cDNA, 1 µL (1 pmol) primers mix and 7.5 µL SensiFast
SYBR® Green mix (LABGENE Scientific, Châtel-St-Denis, Switzerland). Quantitative real
time PCR was performed with two biological replicates of each cDNA sample in the MIC
qPCR cycler (Bio Molecular Systems, Upper Coomera, Queensland, Australia). The PCR
program was as follows: 95 ◦C for 15 s, 60 ◦C for 15 s and 72 ◦C for 30 s (45 cycles). The
reference gene EF-1α was used to normalize the experimental genes. QPCR primers for
the PAL1 and LOXB genes were prepared by Microsynth AG (Switzerland). The primer
sequences used in this study are presented in Table 1. Relative expression of genes was
calculated according to Livak and Schmittgen [58].

Table 1. The list of the primers used in qPCR experiment.

Gene Name Primer Sequences Reference

PAL1 F-TCGTTATGCTCTCCGAACATCT
R-ATTCACTGAGTTAATCTCCCTCTC Chandrasekaran and Chun [59]

LOXB F-ATCTCCCAAGTGAAACACCACA
R-TCATAAACCCTGTCCCATTCTTC Song et al. [60]

EF-1 α
F- GATTGGTGGTATTGGAACTGTC

R- GCTTCGTGGTGCATCTCA Rotenberg et al. [61]

2.10. Statistical Analysis

The statistical analysis was performed using SPSS software version 22.0 (SPSS Inc.,
Chicago, IL, USA) and data were processed by one-way analysis of variance (ANOVA).
The significant differences of the results were determined using LSD test at p ≤ 0.05.

3. Results
3.1. In Vitro Antagonistic Bioassays

A total of 38 pure actinomycetes isolates were collected from the screening study and
then evaluated according to their antagonistic effect toward R. solani AG4. From the tested
isolates, 10 were active in dual culture method and two indicated strong antifungal activity
(Figure 1a). None of actinomycetes isolates collected from tomato rhizosphere showed
strong antifungal activity against the pathogen (Figure 1b).
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Figure 1. Bioassay results of actinomycetes isolates against Rhizoctonia solani AG4. (a) Clockwise
from top right: actinomycetes isolate BH4-1, blank agar disk (control), actinomycetes isolate BH4-3;
center: R. solani AG4; (b) Clockwise from top: actinomycetes isolate F8; blank agar disk (control);
actinomycetes isolates 115 and R7; center: R. solani AG4.
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3.2. Siderophore Production

Formation of an orange halo around actinomycetes colonies in the CAS agar medium
was observed for both R7 and F8 isolates, which are indicative of siderophore production
by these two isolates. Results indicated that both R7 and F8 isolates were rated as strong
siderophore producers as they showed fast color changes (<15 min) in the liquid CAS assay.
Concentration of siderophore produced by R7 and F8 isolates was measured 71.41 and
45.73 psu, respectively (Figure 2). TLC analysis for each isolate showed that R7 isolate
produced a siderophore of hyderoxamate type and another one of catechol type with lower
concentration. F8 isolate produced a phenolic siderophore (Figure 3).
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3.3. Biochemical Characterization of Selected Actinomycetes Isolates

All of the selected actinomycete isolates were positive for protease production and
osmotic pressure tolerance tests. The R7, BH4-1 and BH4-3 isolates produced amylase
and the BH4-1 and BH4-3 isolates also produced chitinase. However, none of the isolates
produced neither HCN nor antifungal volatiles (Table 2).

Table 2. Results of biochemical assays performed on four selected actinomycetes isolates.

Assay Selected Actinomycetes Isolates

R7 F8 BH4-1 BH4-3

Amylase + _ + +
Chitinase _ _ + +
Protease + + + +

Growth in EOPM * + + + +
HCN † Production _ _ _ _
VOCs ‡ Production _ _ _ _

* EOPM: Elevated Osmotic Pressure Medium, † HCN: Hydrogen Cyanide, ‡ VOCs: Volatile Organic Compounds.

3.4. Molecular Identification of the Two Active Isolates

Amplified PCR products of 16S rDNA for both R7 and F8 actinobacterial isolates
ranged from 1400–1500 bp. Blast results of the sequences revealed that both isolates belong
to genus Streptomyces. The R7 isolate is closely related to Streptomyces praecox with 99.31%
identity, while the F8 isolate is closely related to S. globisporus with 99.46% identity. The
phylogenetic tree based on 16s rRNA gene sequences of the Streptomyces strains R7 and F8
is presented in Figure 4.
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3.5. Root Colonization

Formation and growth of colonies following the aseptic transfer of cut roots on CGA
medium indicated that both Streptomyces strains colonized the tomato seedling roots
(Figure 5). Evidently, seed-coated spores germinate, propagate and utilize exudates present
at the spermosphere and, hence, acts as roots symbionts. This mutual physiological
behavior of the root and symbiont may result in a fully colonized root system. The
colonization of roots is a biocontrol behavior of the symbiont actinomycetes species.
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Figure 5. Result of root colonization of tomato seedling roots by two actinobacteria isolates, R7 and
F8. (a,b) show colonies formed from aseptic transfer of cut roots of R7 and F8 treatment on CGA
medium, respectively.

3.6. Greenhouse Experiments

Typical symptoms of crown rot and canker caused by R. solani AG4 on tomato cv.
Superchief are shown in Figure 6. The results of the biological control of R. solani AG4
by actinomycetes isolates in greenhouse are indicated in Table 3. Among the tested acti-
nomycetes isolates, R7 and F8 isolates promoted noticeable enhancement in seedlings
root- length; however, the enhancement in seedling shoot length was greater in R7 than
F8 isolates. Furthermore, the R7 isolate significantly increased the seedlings dry weight
compared to other isolates (p≤ 0.05). There was no significant difference in enhancement of
seedlings dry weight between three other isolates (F8, BH4-1 and BH4-3). Highest disease
severity observed in untreated seedlings and maximum disease suppression was noticed in
R7 followed by F8 treated seedlings; however, the least amount of suppression was noticed
in BH4-1 and BH4-3 treated seedlings as compared to the control (Table 3). Interestingly, R7
and F8 actinomycetes isolates promoted the plant growth and reduced the disease severity
(approximately 50 % reduction in disease severity than pathogen treatment), while these
isolates did not show antifungal activity in vitro (as indicated above in Figure 1b). We
hypothesized that R7 and F8 isolates may induce resistance in tomato plants and therefore
these isolates were selected for the gene expression experiments.
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Table 3. Effect of four actinomycetes isolates on tomato seedlings cv. Superchief growth parameters and disease severity. Growth
parameters and disease severity were measured simultaneously when seedlings were uprooted and washed; their dry weights were
measured after 48h incubation at 60 ◦C.

Treatment Root Length
(cm) Shoot Length (cm) Seedlings Dry Weight

(g) Disease Severity

R7 † 27.75 a 44.25 b 3.50 a 1.0 e

R7 + P 23.25 b 45.00 a 3.00 b 2.0 d

BH4-3 ‡ 22.50 c 29.00 h 2.75 c 1.0 e

BH4-3 + P 9.25 g 21.75 j 1.50 g 2.4 b

F8 † 27.75 a 43.00 d 2.75 c 1.0 e

F8 + P 15.00 f 43.50 c 2.50 d 2.2 c

BH4-1 ‡ 21.00 d 33.00 g 2.75 c 1.0 e

BH4-1 + P 19.00 e 40.75 f 2.25 e 2.4 b

Pathogen 8.00 h 28.50 i 2.00 f 4.2 a

Control 22.50 c 42.50 e 2.50 d 1.0 e

+ P: shows treatments inoculated with actinomycetes isolate plus pathogen (R. solani AG4). Disease severity values are in accordance with
5 classscales defined by Fery and Dukes (1: without to 5: sever symptom). Values of each column indicated by the same letters have no
significant differences according to LSD test (p ≤ 0.05). †: shows actinomycete isolates collected from tomato rhizosphere, ‡: shows isolates
selected from our laboratory collection.

3.7. Effect of Streptomyces Globisporus and S. praecox on Defense Related Genes Expression

In this study, we investigated PAL1 gene expression changes in leaves and roots and
LOXB gene expression changes in leaves at different time intervals upon pathogen inocula-
tion in tomato plants that were treated with Streptomyces strains R7 and F8, primarily. Sam-
pling started from the fourth day after the pathogen inoculation along with our observation
of the symptoms on the crown of treated plants. Treated plants with Streptomyces strains
and pathogen showed smaller lesions on the tomato crown than pathogen-treated plants.
This visual comparison indicated strong inhibition of disease development (Figure 7). As
indicated in Table 4, mean of lesions length and width on the tomato seedlings crown in
plants treated with Streptomyces strains plus pathogen were significantly (p ≤ 0.05) smaller
than the plants treated with the pathogen alone. Analysis of the LOXB gene expression
showed an upregulation of this gene in plants treated with S. praecox strain R7 four days
post pathogen inoculation (4 dpi) when compared to the negative (untreated with neither
pathogen nor Streptomyces strains) and positive control (treated with Streptomyces strains
without the pathogen) treatments; however, thereafter the level of gene expression declined
gradually. The level of LOXB gene expression increased significantly in the S. globisporus
strain F8 treated plants under pathogen impact at 6 dpi compared to negative and positive
control 5.3-fold and 3.2-fold, respectively (Figure 8).

Table 4. Mean values of lesion length and width on the crown of the tomato seedlings at the 4th day
of pathogen inoculation.

Treatment Mean Length of Lesion (mm) Mean Width of Lesion (mm)

Pathogen (P) 20.00 a 7.50 a

F8 + P 6.50 b 5.00 a,b

R7 + P 7.50 b 3.50 b

Values of each column indicated by the same letters have no significant differences according to LSD test (p ≤ 0.05).
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Figure 7. Comparative results of the biological activity of Streptomyces globisporus strain F8 and
S. praecox strain R7 against R. solani AG4 on tomato seedlings at the 4th day after pathogen inoculation.
(a): control treatment; (b): plant inoculated with the pathogen alone; (c,e): plants inoculated with
Streptomyces strains F8 and R7 alone, respectively; (d,f): treated seedlings with Streptomyces strains F8
and R7 and pathogen showed smaller lesions than pathogen treatment.

Although a downregulation of PAL1 gene in leaves was noticed in S. globisporous
strain F8-treated plants at 4 dpi, the expression level of this gene increased consistently
and reached the highest expression (5.7-fold higher than untreated unchallenged control)
at 6 dpi. There was also a significant difference between levels of PAL1 expression in
plants treated with S. globisporous strain F8 before and after the pathogen inoculation at
6 dpi. An induction of a stronger defensive reaction was noticeable in pathogen-challenged
plants compared to unchallenged controls. In S. praecox strain R7 treated plants, a minor
enhancement of PAL1 expression in the leaves was observed at 5 dpi under the pathogen
stress compared to the negative control (Figure 9A). Furthermore, the analysis of PAL1 gene
expression in roots revealed an enhancement of the gene expression after the pathogen
inoculation in plants which were pretreated with S. globisporus strain F8 and S. praecox strain
R7 (2.3-folds and 3.3-folds, respectively) at 5 dpi compared to negative control (Figure 9B).
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in tomato leaves and roots, respectively, at different time points in plants inoculated with R. solani
AG4. Statistically, values of each column indicated by the same letters (a–d) have no significant
differences according to LSD test (p ≤ 0.05). CO: Control treatment without pathogen and Strepto-
myces; RS: Rhizoctonia solani (pathogen); F8: Streptomyces globisporus strain F8; F8 + P: S. globisporus
strain F8 + Pathogen; R7: Streptomyces praecox strain R7 and R7 + P: S. praecox strain R7 + Pathogen.
Dpi: day post inoculation with the pathogen; 0 dpi implies the first hours of pathogen infection.

4. Discussion

Naturally, plants live with a diversity of microorganisms in the rhizosphere and the
phyllosphere. In addition to deleterious interactions where plants deploy their immune
system to withstand against pathogens and insects’ herbivores, they also establish mutual-
istic associations with beneficial microbes to improve the plants growth or to assist them in
overcoming stress [62]. Thus, beneficial rhizobacteria can enhance plants immunity against
pathogens by stimulating the systemic defense pathways including salicylic acid (SA) and
jasmonic acid/ethylene (JA/ET) dependent signaling pathways [63,64]. The present study
demonstrated that S. globisporus and S. praecox are able to enhance the expression of plant
defense genes encoding enzymes such as phenylalanine ammonia lyase (PAL) and lipooxy-
genase (LOX) in tomato seedlings. PAL is one of the most studied enzymes in plant defense
responses against biotic and abiotic stresses [65]. PAL is a key enzyme in phenyl propanoid
pathway that mediates the biosynthesis of salicylic acid and phenolic compounds such as
lignin, suberin and phytoalexins. The phenolic compounds therefore reinforce the plant
cell wall preventing the pathogen penetration [66,67]. Lipoxygenases are dioxygenases that
catalyze the hydroperoxidation of specific unsaturated fatty acids and are involved in the
jasmonic acid (JA) biosynthesis in plants [68]. JA and ethylene are signaling molecules that
play a basic role in induced systemic resistance (ISR) pathway [1,69]. Similar to our results,
the treatment of grapevine plant with S. anulatus S37 triggered the defense-related genes
expression, including genes encoding secondary metabolism of PAL and LOX in response
to Botrytis cinerea challenge [70]. Nevertheless, despite the level of gene expression being
low during the interaction between S. globisporous strain F8 or S. praecox strain R7 and
pathogen in the tomato plant, it may suggest the involvement of JA and SA signaling path-
ways upon the strain’s perception, as reflected by the increased expression of LOX, which
is a key element of the oxylipin synthesis, and an induced expression of PAL gene, which
was found to be induced by SA. Similar results were reported in grapevine in response to
P. fluorescens PTA-CT2 and Burkholderia phytofirmans PsJN [71,72].

Various studies have advocated that most beneficial bacteria primed plants to trigger sev-
eral cellular defense responses against the pathogen assault [70,73]. Martinez-Hidalgo et al. [22]
showed that in the expression of LOXA and PinΠ, the JA marker genes increased significantly
upon Botrytis cinerea challenge in Micromonospora-treated tomato plants. It was indicated that
endophytic actinobacteria were able to prime both SAR and JA/ET pathways in Arabidopsis
thaliana [74]. Moreover, Kurth et al. [21] showed that not only JA, ET and SA defense pathways
but also abscisic acid (ABA) might play a role in Streptomyces mediated priming in Oak plant.
Our results showed that the relative expression of some defense-related genes was upregulated
by both Streptomyces strains F8 and R7 after R. solani challenge. The results suggest that both
bacterial isolates may trigger phenyl propanoid pathway and JA signaling pathway in primed
tomato plants; however, we believe that further studies bearing more genes are needed to
confirm this suggestion. The maximum enhancement of genes expression has occurred in
leaves indicating a systemic resistance. These results are consistent with Patil et al. [19], who
reported a higher PAL activity in actinomycetes treated plants after R. solani challenge and
with report on the induction of defense related enzymes and the accumulation of phenolics
and flavonoids in primed tomato plants with actinomycetes under pathogen stress [20]. Our
findings are similar to the results of Bacillus cereus AR156 in Arabidopsis, which SA and JA/ET
signaling pathways were primed simultaneously [64]. Furthermore, the present results show
that Streptomyces strains R7 and F8 were able to activate the plant defense related genes in the
absence of pathogen challenge (as also reported by Kurth et al. [21]). The positive effects of acti-
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nomycetes on the biocontrol of R. solani on tomatoes were also reported by Goudjal et al. [30]
and Singh et al. [20]. The present study demonstrated the role of two Streptomyces strains
in promotion of plant growth which are consistent with other studies [14,20,30,75–77]. The
present findings are consistent with other previous studies which showed that beneficial bacte-
ria prime plant host for a quicker and a boosted capacity to trigger plant defense responses
such as the activation of some defense related genes upon the pathogen challenge [62,70].

The two Streptomyces strains used in this study are strong producers of siderophores,
which can trigger plants defense mechanisms. Several studies have demonstrated that
siderophores involved in ISR are triggered by plant growth promoting rhizobacteria [78,79].
The role of pyochelin siderophore produced by P. aeruginosa in the protection of toma-
toes against Pythium splendens was demonstrated by Buysens et al. [80]. Furthermore,
pseudobactin (Psb374), a siderophore produced by P. fluorescens WCS374, is needed to
induce systemic resistance in rice against Magnaporthe oryzae, which is the causal agent of
blast disease [81]. Furthermore, purified pseudobactin triggered ISR in Eucalyptus against
Ralstonia solanacearum [82]. We believe that further studies are needed to confirm the role
of siderophores produced by Streptomyces strains R7 and F8 in triggering the plant defense
mechanisms.

Our biochemical characterization showed that both Streptomyces strains R7 and F8
produce protease and are tolerant to high osmotic pressure. However, such criteria indicates
that the two active strains may be well activated in saline soils when applied as biocontrol
agents. As far as we know, this is the first report from Iran that an induction of resistance
by Streptomyces strains in tomatoes against R. solani occurs and it is the second report of the
usage of actinobacteria as inducer of plant defense against phytopathogens. The present
preliminary finding suggests that Streptomyces strains R7 and F8 can promote the plant
growth in addition to the protection of the tomato plant against R. solani. These Streptomyces
strains may be considered as potential candidates for further investigation in the biological
control of R. solani AG4; the causative agent of tomato crown and root rot disease.

5. Conclusions

The results of this research proved that the tomato plants rhizosphere colonizing
Streptomyces strains R7 and F8 were able to prime the plants and induce resistance against
R. solani, which highlight their potential role as candidates in biocontrol strategies for
further field trials against the pathogen. In addition to their biocontrol activities, they
behaved as plant growth promoting rhizobacteria in tomato plants. To attain their role
as determinative biocontrol agents, further in vivo meticulous evaluations are needed to
demonstrate their demanded effects in protecting tomato plants against this pathogen in
diverse areas of Iran growing tomato.
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