Polynomial preconditions for the CG method on the CM2 - Archive ouverte HAL Access content directly
Conference Papers Year : 1996

Polynomial preconditions for the CG method on the CM2

Préconditionnement polynomial pour la méthode du gradient conjugué sur CM-2

(1) , (1)
1

Abstract

This paper is concerned with the implementation of parallel iterative methods for solving large sparse symmetric positive definite linear systems arising form finite difference methods, Ax=b, on an SIMD computer, the CM-2. Specifically, we are interested in the Conjugate Gradient (CG) method introduced by Hestenes and Stiefel. This method is a popular method and effective linear systems solver, notably when combine with a preconditioner, one attractive possibility considered by Ashby or Ciarlet, Meurant, Perlot or Freud or Johnson, Mitchell and Paul is polynomial preconditioning. Its main advantage is its suitability for vector and/or parallel computers, when the matrix by vector product is parallelizable. Whenever A has a regular sparsity structure (multidiagonal), polynomial preconditioning is effective on parallel machine.
Fichier principal
Vignette du fichier
Extraits_ACCEFVN-AC-spa-1996-memorias tercera escuela de verano en geometría diferencial..pdf (1.01 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03614976 , version 1 (29-03-2022)

Licence

Attribution - ShareAlike - CC BY 4.0

Identifiers

  • HAL Id : hal-03614976 , version 1

Cite

Pascal Joly, Olivier Perlot. Polynomial preconditions for the CG method on the CM2. Tercera Escuela de Verano en Geometría Diferencial, Ecuaciones Diferenciales Parciales y Análisis Numérico, ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS, FISICAS Y NATURALES, Jun 1996, Bogota, Colombia. ⟨hal-03614976⟩
5 View
13 Download

Share

Gmail Facebook Twitter LinkedIn More