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Polynomial preconditions for
the CG method on the CM2

Pascal Joly & Olivier Perlot

Université Paxis 6, FVance

§1 Introduction
This paper is concerned with the implementation ofparallel iterativa methods
for solving large sparse symmetricpositiva defínite linear i^stems arising fivni
finite difference methods, Ax = 6, on ah SIMD computar, the CM-2. Sped-
fically, we are interested in the Conjúgate Gradient (CG) method introduced
by Hestenes and Stiefel [8). This method is a popular and effective linear
systems solver, notably when combinad with a preconditioner; oneattractive
possibility considerad by many authors ([1], [6], {9] and {13j), is polynomial
preconditioning. Its main advantageis its suitability for vector and/or parallel
computers, when the matrix by vector product is parallelizable. Whenever A
has a regular sparsity structure (multidiagonal), poljmomial preconditioning is
effective on parallel machines.
The outline of this paper is as follows: Section 2 describes the linear sys

tems we are solving, Section 3 presents the main characteristics of the CM-2
computar, Section 4 is devoted to polynomial preconditioners and in Section5,
we present some numerical results.
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§2 Description of model problems
We consider linear systems of equations that arise from the approximation of
the solution of the problem:

—div(AV«) = /, in Í2 =J0,1 ( x JO, 1[,

"U = o-
The first problem is the Poisson problem, A= 1.
The second problem is

A = 1000 iní2 = )5,flx]0,l[,
A = 1 elsewhere.

Por both problema weusea standard five-point scheme on an uniformmesh
{h = l/(n + 1)), and thus we obtain a linear system

Ax = b (1)
The matrix A is a symmetric positiva definite matrix of order n^, and is a
pentadiagonal matrix with a natural ordering of the unknowns. If the matrix
is stored by diagonals, then the matrix by vector product can be performed
mparallel. To solve (1) we use thePreconditioned Conjúgate Gradient (PCG)
method ofConcus, Golub andO'Leary (4).

§3 The Connectíon-Machine
The Connection Machine is amassively parallel local memory SIMD (Single In-
struction stream Múltiple Data stream) supercomputer. In fact, all processing
ements (PE3s, single bitprocessor) can execute immediately thesame instruc-
tions on local different data. Ifthey need other data from other PEs, they use
a commumcation network (ahypercube network links sets ofprocessors). But
t ese communications are not very fast. Moreover the CM-2 being a syndiro-
nous supercomputer, the PEsmust execute the same instruction (on different
data) or nothing at the same time. Then the prográmming is sequential with
vectors andsjmchronous data transfers between processors. Thussome instruc-
tions are well suited tothe CM-2; saxpy, multidiagonal matrix vector product,
etc. .... Therefore we are trying to use these kernels as frequently as possible
to optimizo the computing time. Then the CG with Diagonal preconditioner
seems well-suited to theCM-2's ardiitecture o priori, but all the same we will
avoid point remrsions like ICCG methods. TheCM-2 consists at mostof 65536
PEs (2048 Weitek chips), and it operates under the control of a host computer
(aSUN workstation in general), and the peak Mñops rate with 65536 processors
is about 30 Gñops.
Actually all tests have been performed in single precisión on 8192 PEs of

the CM-2 with the CM-FORTRAN language, and without any CM Scientific
Software Librarles.

{
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§4 Polynomial preconditioners
The principie of polynomial preconditioning consistsin finding a preconditionier
M so that;

m-M Pk{A)A

where Pk is a polynomial, of degree less or equal to k (we denote the poly-
nomials with some capital letter when th^r are applied to matrices, and with
the corresponding lower case letter when they are applied to scalars). This
idea may seem, at the same time, natural andstrange. Natural, because from
the Cayley-Hamilton theorem, the inverse A~^ can be expressed as a poly
nomial in A, but strange because CG generates an optimal polynomial (see
[8]) and, in that respect, the CG polynomial after m(k-1-1) iterations with no
preconditioner is better than the polynomial generatedby m iterationswith a
polynomial preconditioner of degree k.
In this section we review several choices for Pfc. PkiA) should be in some

sense an approximation of A~^. Of course there are severíü ways of doingthis.
As proved by Ashby et al. in [2], there is no single best polynomial, thechoice
depends on the eigenvalue distribution of A, which is seldom known a prioTÍ
One of the most important practical issues for using pol3niomial precondi

tioners is the estimation of smallest and largest eigenvalues ofA (denoted a
and b). For the model Poisson problem, we take its well-known eigenvalues
a = 8sin^(7r/2(n + 1)) and b= 8sin^(7rn/2(n + 1)), which are not in fect the
optimum valúes (see [2] and [13]). However, these eigenvalues are unknown
in realistic applications. Then for solving the second problan with the more
elabórate polynomial preconditioners, we propose toscale sjonmetrically Ato
have a unit diagonal. Instead of solving (1) we solve

D = Ap = D-ift, and X = (2)

We know that the eigenvalues ofA are in theset ]0,2[, thus to solve (2) we
choose 5 = 2. After an important numerical study onthebehaviour ofpolyntv
mial preconditioners in relation to the estimationof o, wechoose o = 0.2510
for this problem. This valué is not for thisproblem theoptimum smallest eigen
value, but it is sufficiently representativa of the polynomial preconditioners
numerical effectiveness.

4.1 Diagonal preconditioner.
The simplest approximation M of A we consider is the dií^hal matrix

M = diag(A).
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4.2 T^uncated Neumann's series.
The second approximation, proposed by Dubois, Greenbaum and Rodrigue
in [5], is basedon Neumann'sseries. Wedenote A = D—L—l!^ by D = diag(v4),
with L strictly lower triangular. If /I is a positive defínite matrix, then

A"* =

Moreover, if A is diagonally dominant then the spectral radius

and the Neumann's seríes for the inverseof / — L'^)D~ cxjnverges.
We denote by NEUMl the following preconditioner:

M-^ = D-^ + D-^(L + L'^)D-\
and by NEUM3:

= D-^ + + + D-^L + L'^)D-HL+ L'^)D-^

Acxording to Ashby [1], NEUM2 is worse than NEUMl.

4.3 Polynomials minimizing a generalization of the
condition number.
The previous preconditioner is very easy to use, as there are noparameters to
estimate. Unfortunately it may yield a poor preconditioner in relation to the
convergence rate (see numerical results). Therefore we have to consider more
elabórate polynomial preconditioners. In this section, we are interested in
polynomials minimizing an upper bound ofthe condition number; the minmax
polynomial.
Let (a, 6] bea setcontaining the eigenvalues ofA, O^ (a, 6], and let

Qk = {polynomials Qk of degree < fc (<7fe(A) >OVA e [a, 6], and <7^(0) = 0}
Weare looking for q€Qfc+i minimizing;

maxAe|a,b| g(A)
minA€[a,6|g(A) •

Let fi(X) = 2—^ ^— be the linear mapping taking [o, 6] into (—1,+1].
Then the solution is given, for example by Johnson, Michelh and Paúl in [9],
as:

Tfe+i (//(A))9fc+i(A) — 1 —
Tk+i (m(0))'
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Tk being the Chebyshev polynomial of the first kind oforder k. Then weobtain
Pk by:

Pk{X) = i Ti _Al, Tk^,(^{0))J-
Now, to evalúate z = Pfc(A)r = want to conserve both the

sparsity of A and also the effective matrix by vector product. Moreover, the
computation of Oj should stay simple and fast. Thus we use first a simple
Hórner's scheine, which is given as follows:

2fc = Qfcr,

Zi = Oíir + Azj+i,
Then z = zq = Pfc(A)r.

{ z = fc-l,... ,0

4.4 Least squares polynomials.
As an alternative cholee, we consider poljmomials minimizing some quadratic
norm of the residual polynomial [9]

rb

(l-Ap(A))2a;(A)dA,/Ja
where ^(A) is a weight frmction able to emphasize the portion of the spectrum
which is the most important. In practice, we take a Jacobi wei^t fiinction:

a;(Q,;0,A) = (6-Ar(A-o)^.
We denote by 5í(A) the associated orthonormal polynomials. The solution of
this problem is: ,

fc+i

Pfc(A) = X^6ií¿(A),
j=o

with

bj =
sj{0)

and _ ^j(O) ~ ^j(^)

Now we would like tocompute pfc(A) = XlS The Sj are orthonor
mal with respect to o;. Then they satisfy a three-term recursion:

with

«i+i(A) = ajKA)sj(A) - 7j_iSj_i(A), forj>l.

C being a constant.
Specifically, we have studied two kinds ofJacobi polynomials; the Chebyshev

polynomials {a= 0 = ~5)» the Liendre polynomials {a =0 = 0).
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§5 Numerical results on CM-2
In this section, we give results of numerical experiments in ordcr to point out
some additional facts about polynomial preconditioning on massively parallel
computers. The PCG algorithms stopped as soon as tlie approximate residual
Tj = b—Axj —Tj-i —on-iApi-i, satisfíed ((rj|| < e||ro||, where t = 10~®. We
study the number of iterations, the Mflops rate and the computing time as a
function of the polynomial degree. At first we test the model Poisson problem
with a 512 X 512 mesh.
The first results concern the number of iterations of the PCG with these pre-

conditioners (in fact, table 1 shows the degree which minimizes the computing
time for all preconditioners).

Preconditioner Optimal
degree

Number of
iterations

Total
time (s)

Mflops

DIAG 0 1521 70.5 124.5

NEÜMl 1 761 54.1 114.4

• NEUM3 3 537 58.1 119.0

MINMAX 12 109 36.8 164.4

MCARRE 16 100 45.4 171.6

LEG 10 163 49.6 174.4

Table 1:
CM-2'S OPTIMAL RESULTS ON PROBLEM 1 WITH A 512x512 MESH.

The convergence rate of the polynomial preconditioners is always better
than those of the diagonal preconditioner, but does depend on the cholee of
the polynomial. For example, the decrease in the number of iterations using
truncated Neumann's series is not sufficient to allow degrees greater than 3,
because of the cost of the polynomial computation. The three-term recursion
evaluations are very stable and actually competitive. In fact, we can even use
much higher degrees (500) with the algorithms MINMAX, MCARRE and LEG.
It has sometimes been claimed that the diagonal preconditioner can deliver

the smallest computing times on massively parallel supercomputers. Table 1
proves that the polynomial preconditioners are better massively parallel pre
conditioners for this problem; with the optimum degree of MINMAX (12), the
time required to solve the problem with the diagonal preconditioner has been
nearly cut in half.
Some algorithms have a better MFlops rate than others, because at each

iteration they compute more operations without communication between pro-
cessors. The polynomial preconditioners are very massively parallel, because
they have a very high parallelism degree, 89.5% with MINMAX and its optimum
degree (12), or 98.5% with a higher degree (100).
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Now. we are intercsted in solving an ill-conditioned linear system; the dis
creto versión of the second problem with a 256 x 256 mesh. The eigenvalues of
the matrix A are not explicitly known for this problem, so we have symmetri-
cally scaled the inatrix A in order to have a imit diagonal, and then we solve
(2) instead of (1).

Preconditioner Optimal
degree

Number of
iterations

Total
time (s)

Mñops

DIAG 0 7368 129.0 82.3

NEUMl 1 3792 108.5 71.0

NEUM3 3 3238 126-3 82.4

MINMAX 31 223 52.9 142.7

MCARRE 70 108 56.4 , 153.4

NORM 90 87 56.6 147.4

Table 2:

CM-2'S OPTIMAL RESULTS ON PROBLEM 2 WITH A ^6x 256 MESH.
Table 2 confirms that the diagonal preconditioner is no longer the best mas

sively parallel preconditioner for these kinds of problems. The CM-2 achieves
fewer Mflops than for problem 1, only because the mesh is smaller. Neverthe-
less, we keep a good degree of parallelism, 93%with MCARRE and polynomial
degree 100.
Finally, MINMAX, MCARRE and NORM are some of the very efficient pre

conditioners on massively parallel supercomputers like the CM-2.

§6 Conclusions
We have reviewed some techniques for an efficient use of PCG on massively par
allel supercomputers. The main conclusión of this paper is that the polynomial
preconditioners associated with a fast matrix by vector productcan run much
faster than the simpler but more easily parallelizable diagonal preconditioner.
Thus, for an efiicient use of PCG on massively parallel supercomputers,

we propose to use the MINMAX or NORM preconditioners. MINMAX gives
the better results of these preconditioners, but it needs an estimation of the
mínimum eigenvalue a O, whereas NORM is independent of the eigenvalues.
The problems we propose may seem academic, but the method can handle

more realistic ones, on grids topologically equivalent to 2D-rectangular grids;
and it can aiso be used as a linear system solver in a fictitious domain approach
for more general meshes.
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Pointwise error estimates and
asymptotic error expansión

inequalities for the finite element
method on irregular grids

Alpred H. Schatz^

Cornell University, USA

The aim of this lecture is to derive new pointwise error estimates for the fi
nite elementmethod on general quasi—uniform meshes for second order elliptic
boundary valué problems in N > 2. In a sense to be discussed below,
these estimates represent an improvement on thenow standard quasi-optimal
Loo estimates. In order to fix the ideas, here we will deal with global estimates
for a model Neumann problemwith smooth solutions. Local estimates, both
interior and up to the boundary, which are applicable to a variely ofproblems
with both smooth and nonsmooth solutions can also be derived. As a conse-
quence of these estimates, some new and usefui inequalities will be given which
are in the form of error expansione. They are valid for large classes of finite
elements on general quasi—uniform meshes in R^ and have application to both
superconvergence and extrapolation. Let us begin bygiving a briefdescription
of some of the main results.
Let íí be a bounded domain in R''̂ , N >2 with smooth boundary dSl. Let

A(.,„) =/„( E ^ ^c(xH)d. (.)
t,J—1 *' .t=l
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