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Polynomial preconditions for
the CG method on the CM2

PascaL JoLy & OLIVIER PERLOT

Université Paris 6, France

§1 Introduction

This paper is concerned with the implementation of parallel iterative methods
for solving large sparse symmetric positive definite linear systems arising from
finite difference methods, Az = b, on an SIMD computer, the CM-2. Speci-
fically, we are interested in the Conjugate Gradient (CG) method introduced
by Hestenes and Stiefel [8]. This method is a popular and effective linear
systems solver, notably when combined with a preconditioner; one attractive
possibility considered by many authors ((1], [6], 9] and [13]), is polynomial
preconditioning. Its main advantage is its suitability for vector and/or parallel
computers, when the matrix by vector product is parallelizable. Whenever A
has a regular sparsity structure (multidiagonal), polynomial preconditioning is
effective on parallel machines. '

The outline of this paper is as follows: Section 2 describes the linear sys-
tems we are solving, Section 3 presents the main characteristics of the CM-2
computer, Section 4 is devoted to polynomial preconditioners and in Section 5,
we present some numerical results.
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§2 Description of model problems

We consider linear systems of equations that arise from the approximation of
the solution of the problem:

—div(A\Vu) = f, in Q=]0,1[x]0,1[,

'u.lan = 0.

The first problem is the Poisson problem, A = 1.
The second problem is

A = 1000 inQ = %,%[X]O,l[,
A=1 elsewhere.

For both problems we use a standard ﬁvé-point scheme on an uniform mesh
(k=1/(n+ 1)), and thus we obtain a linear system

Az = b (1)

The matrix 4 is a symmetric positive definite matrix of order n2, and is a
pentadiagonal matrix with a natural ordering of the unknowns. If the matrix
is stored by diagonals, then the matrix by vector product can be performed
in parallel. To solve (1) we use the Preconditioned Conjugate Gradient (PCG)
method of Concus, Golub and O’Leary (4].

§3 The Connection-Machine

The Connection Machine is a massively parallel local memory SIMD (Single In-
struction stream Multiple Data stream) supercomputer. In fact, all processing
e}ements (PEs, single bit processor) can execute immediately the same instruc-
tions on local different data. If they need other data from other PEs, they use
a communication network (a hypercube network links sets of processors). But
these communications are not very fast. Moreover the CM-2 being a synchro-
nous supercomputer, the PEs must execute the same instruction (on different
" data) or nothing at the same time. Then the programming is sequential with
vectors and synchronous data transfers between processors. Thus some instruc-
tions are well suited to the CM-2; saxpy, multidiagonal matrix vector product,
etc. ... . Therefore we are trying to use these kernels as frequently as possible
to optimize the computing time. Then the CG with Diagonal preconditioner
seems well-suited to the CM-2's architecture a priors, but all the same we will
avoid point recursions like ICCG methods. The CM-2 consists at most of 65536
PEs (2048 Weitek chips), and it operates under the control of a host computer
(a SUN workstation in general), and the peak Mflops rate with 65536 processors
is about 30 Gflops. ’ .
Actually all tests have been performed in single precision on 8192 PEs of
the CM-2 with the CM-FORTRAN language, and without any CM Scientific
Software Libraries.
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§4 Polynomial preconditioners

The principle of polynomial preconditioning consists in finding a preconditioner
M so that:

M™'A = P(A)A

where P is a polynomial, of degree less or equal to k¥ (we denote the p0}y-
nomials with some capital letter when they are applied to matrices, and W‘t:h
the corresponding lower case letter when they are applied to scalars). This
idea may seem, at the same time, natural and strange. Natural, because from
the Cayley-Hamilton theorem, the inverse A~! can be expressed as a poly-
nomial in A, but strange because CG generates an optimal polynomial (see
[8]) and, in that respect, the CG polynomial after m(k + 1) iterations Wit,h no
preconditioner is better than the polynomial generated by m iterations with a
polynomial preconditioner of degree k.

In this section we review several choices for px. Pi(4) should be in some
sense an approximation of A~1. Of course there are several ways of doing t'hls
As proved by Ashby et al. in (2], there is no single best polynomial, the choice
depends on the eigenvalue distribution of A, which is seldom known a priort.

One of the most important practical issues for using polynomial precondi-
tioners is the estimation of smallest and largest eigenvalues of A4 (denoted a
and b). For the model Poisson problem, we take its well-known eigenvalues
a = 8sin*(7/2(n + 1)) and b = 8sin?(mn/2(n + 1)), which are not in fact the
optimum values (see [2] and [13]). However, these eigenvalues are unknown
in realistic applications. Then for solving the second pioblem with the more
elaborate polynomial preconditioners, we propose to scale symmetrically 4 to

have a unit diagonal. Instead of solving (1) we solve ‘

D™Y24D"Y2% _ Zy = D%, ad =z = DV¥. @

We know that the eigenvalues of A are in the set ]0,2], thus to solve (2) we
choose b = 2. After an important numerical study on the behaviour of polyn_o:;
mial preconditioners in relation to the estimation of a, we choose a = 0.25 l 0
for this problem. This value is not for this problem the optimum smallﬁ_t.elgm',
value, but it is sufficiently representative of the polynomial preconditioners
numerical effectiveness. )

4.1 Diagonal preconditioner. .
The simplest approximation M of A we consider is the diagonal matrix

M = diag(4).



86 PASCAL JOLY & OLIVIER PERLOT

4.2 Truncated Neumann’s series.

The second approximation, proposed by Dubois, Greenbaum and Rodrigue
in {5}, is based on Neumann’s series. We denote A = D—L—L7 by D = diag(A),
with L strictly lower triangular. If A is a positive definite matrix, then

A7' = DM2(J - p~Y(L 4 LT)D~Y?) T D-1/2,
Moreover, if A is diagonally dominant then the spectral radius
p(D™VHL+ LT)D™V?) < 1

and the Neumann’s series for the inverse of I — D~ 1/2(L+ LT)D~ /2 converges.
We denote by NEUM1 the following preconditioner:

M = D' + DYWL+ LT)D?,
and by NEUM3:
M = D'+ D YL+ LT)D™' + DV L+ LT)D YL + LT)D?
4 DL+ LT)D L+ LT)D ML+ LT)D.
According to Ashby [1], NEUM2 is worse than NEUMI.

4.3 Polynomials minimizing a generalization of the
condition number.

The previous preconditioner is very easy to use, as there are no parameters to
estimate. Unfortunately it may yield a poor preconditioner in relation to the
convergence rate (see numerical results). Therefore we have to consider more
elaborate polynomial preconditioners. In this section, we are interested in
polynomials minimizing an upper bound of the condition number; the minmax
polynomial.

Let [a,b] be a set containing the eigenvalues of A, 0 ¢ (e, b], and let

Q. = {polynomials g of degree < k[ gc()) >0VA € [a,b], and :(0) =0}
We are looking for ¢ € Q.1 minimizing:

maXje(q,5] ¢(N)
minygq 5 ¢(A)

A=b-—

Let u()) = ZT—E be the linear mapping taking [a,b] into [—1, +1].
Then the solution is given, for example by Johnson, Michelli and Paul in [9],
as:

G = 1 - Tt (1(N)
" Tiev1 (0(0))
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T} being the Chebyshev polynomial of the first kind of order k. Then we obtain

Pr. by:
1 Thesr (£2(N))
p(N) = —(1———' .
A T (1(0))

Now, to evaluate z = Py.(A)r = Ef:o a; A’r, we want to conserve both the
sparsity of A and also the effective matrix by vector product. Moreover, the
computation of o; should stay simple and fast. Thus we use first a simple
Hoérner’s scheme, which is given as follows:

{ Zr = ogr,
Zi = 04T+ Aziqg,
Then z = 29 = Pi(A)r.

i=k—1,...,0

4.4 Least squares polynomials.

As an alternative choice. we consider polynomials minimizing some quadratic
norm of the residual polynomial [9]

b
[ a=xerema,
a
where c'.u( A) is a weight function able to emphasize the portion of the spectrum
which is the most important. In practice, we take a Jacobi weight function:
UJ(Q, ﬁv A) = (b - A)a()‘ - a’)ﬂ .

We denote by s;i()) the associated orthonormal polynomials. The solution of
this problem is: f
k+1

pe() = 3 biti(\),
=0
with
b; = s;{0)
Tite s3(0)

Now we would like to compute py.(\) = Z;‘;}} b;t;(A). The s; are orthonor-
mal with respect to w. Then they satisfy a three-term recursion:

si+1(A) = au(N)si(A) — viasma(N),  forj21,

and tj(/\) = Sj(O)')"Sj(A)-

with
0) —
YO _ g
C being a constant.
Specifically, we have studied two kinds of Jacobi polynomials; the Chebyshev

polynomials (a = 8 = —1), and the Legendre polynomials (a=p=0).
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$5 Numerical results on CM-2

In this section, we give results of numerical experiments in order to point out
some additional facts about polynomial preconditioning on massively parallel
computers. The PCG algorithms stopped as soon as the approximate residual
rj =b— Az; = rj_1 — 0i_1Ap;_1, satisfied ;|| < €||rol|, where € = 10~6. We
study the number of iterations, the Mflops rate and the computing time as a
function of the polynomial degree. At first we test the model Poisson problem
with a 512 x 512 mesh.

The first results concern the number of iterations of the PCG with these pre-
conditioners (in fact, table 1 shows the degree which minimizes the computing
time for all preconditioners).

Preconditioner Optimal | Number of Total Mflops
degree iterations time (s)

DIAG 0 1521 70.5 124.5
NEUM1 1 761 54.1 114.4
NEUM3 3 537 58.1 119.0
MINMAX 12 109 36.8 164.4
MCARRE 16 100 45.4 171.6

LEG 10 163 49.6 174.4
TABLE 1:

CM-2’S OPTIMAL RESULTS ON PROBLEM 1 WITH A 512x512 MESH.

The convergence rate of the polynomial preconditioners is always better
than those of the diagonal preconditioner, but does depend on the choice of
the polynomial. For example, the decrease in the number of iterations using
truncated Neumann’s series is not sufficient to allow degrees greater than 3,
because of the cost of the polynomial computation. The three-term recursion
evaluations are very stable and actually competitive. In fact, we can even use
much higher degrees (500) with the algorithms MINMAX, MCARRE and LEG.

It has sometimes been claimed that the diagonal preconditioner can deliver
the smallest computing times on massively parallel supercomputers. Table 1
proves that the polynomial preconditioners are better massively parallel pre-
conditioners for this problem; with the optimum degree of MINMAX (12), the
time required to solve the problem with the diagonal preconditioner has been
nearly cut in half. )

Some algorithms have a better MFlops rate than others, because at each
iteration they compute more operations without communication between pro-
cessors. The polynomial preconditioners are very massively parallel, because
they have a very high parallelism degree, 89.5% with MINMAX and its optimum
degree (12), or 98.5% with a higher degree (100).

POLYNOMIAL PRECONDITIONS 89

Now. we arec interested in solving an ill-conditioned linear system; the dis-
crete version of the second problem with a 256 x 256 mesh. The eigenvalues of
the matrix A are not explicitly known for this problem, so we have symmetri-
cally scaled the matrix A in order to have a unit diagonal, and then we solve
(2) instead of (1).

Preconditioner Optimal Number of Total Mﬂobs
degree iterations | time (s)

DIAG 0 7368 129.0 82.3
NEUM1 1 3792 108.5 71.0
NEUM3 3 3238 1263 | 824
MINMAX 31 223 52.9 142.7
MCARRE 70 108 564 | 1534

NORM 90 87 56.6 ‘ 1474

TABLE 2:

CM-2’S OPTIMAL RESULTS ON PROBLEM 2 WITH A 256 %256 MESH.

Table 2 confirms that the diagonal preconditioner is no longer the best mas-
sively parallel preconditioner for these kinds of problems. The CM-2 achieves
fewer Mflops than for problem 1, only because the mesh is smaller. Neverthe-
less, we keep a good degree of parallelism, 93% with MCARRE and polynomial
degree 100. ‘

Finally, MINMAX, MCARRE and NORM are some of the very efficient pre-
conditioners on massively parallel supercomputers like the CM-2.

§6 = Conclusions

We have reviewed some techniques for an efficient use of PCG on massively par-
allel supercomputers. The main conclusion of this paper is that the polynomial
preconditioners associated with a fast matrix by vector product can run much
faster than the simpler but more easily parallelizable diagonal preconditioner.

Thus, for an efficient use of PCG on massively parallel supercomputers,
we propose to use the MINMAX or NORM preconditioners. MINMAX gives
the better results of these preconditioners, but it needs an estimation of the
minimum eigenvalue a # 0, whereas NORM is independent of the eigenvalues.

The problems we propose may seem academic, but the method can handle
more realistic ones, on grids topologically equivalent to 2D-rectangular grids;
and it can also be used as a linear system solver in a fictitious domain approach
for more general meshes.
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Pointwise error estimates and
asymptotic error expansion
inequalities for the finite element
method on irregular grids

ALFRED H. ScHATZ!
Cornell University, USA

The aim of this lecture is to derive new pointwise error estimates for the fi-
nite element method on general quasi-uniform meshes for second order elliptic
boundary value problems in RV, N > 2. In a sense to be discussed below,
these estimates represent an improvement on the now standard quasi-optimal
Lo estimates. In order to fix the ideas, here we will deal with global estimates
for a model Neumann problem with smooth solutions. Local estimates, both
interior and up to the boundary, which are applicable to a variety of problems
with both smooth and nonsmooth solutions can also be derived. As a conse-
quence of these estimates, some new and useful inequalities will be given which
are in the form of error expansions. They are valid for large classes of finite
elements on general quasi~uniform meshes in RY and have application to both
superconvergence and extrapolation. Let us begin by giving a brief description
of some of the main results.

Let Q be a bounded domain in R, N > 2 with smooth boundary 2. Let

Alu,v) = / ( Z a,,(:c)a Bx + Zb (z) 0 + cfz)w ) (1)

1 Supported in part by the Nati 1 Sci Foundation Grant DMS 9403512
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