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Abstract: Gearboxes are frequently used in the mining industry, especially for power transmission
between the electric drive and the ball mill; besides the extreme complexity of a ball mill gear
transmission system, the fault diagnosis by vibration analysis can be easily distorted by the presence
of impulsive noises due to the ball pulses on the mill shell. Although several works in the literature
are related to the influence of an impulsive noise on the accuracy of the diagnosis, no dynamic model
exists yet in the literature that can explain the influence of these forces on the dynamic behavior of
gearboxes. This paper presents a new approach to determine the influence of the grinding forces
in crack defects diagnosis. This approach is based on a hybrid numerical model of a 24-degree-of-
freedom gearbox, simulating one gear train and two drive shafts. The impact forces of the mill drum
are modelled by a discrete element method (DEM). The ball-filling rate (Fr), the mill speed (Nr),
and the ball size (Db) are considered to study this phenomenon. The simulations results show by a
time series representation, fast Fourier transform, and short-time Fourier transform (STFT), that the
acceleration is significantly affected by the presence of the grinding forces, developing an impulsive
noise due to the impact of the balls governed by the studied parameters.

Keywords: ball mill; discrete element modeling; gear modeling; impulsive environment;
vibration monitoring

1. Introduction

Ore treatment process is an essential step in the mining industry. The goal is to reduce
it to a desired particle size by using a ball mill, to be then treated chemically or physically [1].
This process is most often associated with high operating costs. About 70% of these costs are
attributed to the particle reduction range from 30–50 mm to 20–50 micron [2,3]. Research
should be carried out to reduce these costs by exploring different solutions, for example,
(i) optimizing the energy consumed by the ball mills [4,5], (ii) automation of the grinding
process [6–8], or (iii) optimization of maintenance operations. The main purpose of indus-
trial maintenance is to ensure the availability of the production tools. If well applied, it can
also contribute efficiently to a reduction of the operating costs of the machines. Industrial
maintenance has undergone a continuous evolution over the years, advancing from a
corrective to a preventive approach. However, the drawback of this approach is the risk to
intervene too late when a failure has already occurred before the next scheduled mainte-
nance, or replacing parts too early, which might have been still functional before failure.
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However, this could be corrected by a so-called conditional preventive approach according
to which an intervention is decided based on the measured state of the equipment.

Vibration analysis has long been the main tool for monitoring rotating machines and
is therefore highly represented in the industry. It operates based on the properties of
impulsivity and periodicity of disturbances related to a localized fault. However, when
applied to nonstationary operating conditions and impulsive environments such as in the
mining industry, it shows a lack of precision to detect mechanical defects. The monitoring
methods using vibration analysis developed in the context of rotating machines should be
accurate in order to ensure a reliable diagnosis. To obtain satisfactory results, real conditions
in which the monitored equipment operates must be considered. Through modeling and
simulation, it is becoming increasingly possible to understand certain complex phenomena
normally rather difficult to obtain directly in an industrial environment. This paper focuses
on the vibration behavior of gearboxes driving ball mills in the mining industry, which
often operate in a harsh environment due to shocks and collisions on the mill drum.

Research has already focused on these issues, particularly in the context of gear
modeling. The first trend focuses on the consideration of varying operating conditions.
This research seeks to understand, with the help of modeling, the consequences that
fluctuations in loading and/or speed can have on the diagnosis of gear defects by vibration
analysis. F. Chaari et al. [9] proposed a model for the variation of the gearing stiffness
based on the mechanical characteristics of the drive motor and the loading conditions.
Simulation results on a single-stage spur gear transmission led to frequency modulations in
perfect agreement with experimental results. W. Bartemus and R. Zimroz [10] demonstrated
through a concentrated mass modeling and an experimental investigation the sensitivity
of a gear transmission in terms of vibration level and increasing loading conditions. They
showed that a defective transmission is more sensitive to increased load by generating
higher vibrations. N. Baydar and A. Ball [11] concluded that a spectral analysis cannot
track the degradation of a gear’s condition under fluctuating load conditions. They used
the instantaneous power spectrum to detect local defects in the teeth of a gear under
different load conditions. Farhat et al. [12] developed a numerical model of single-stage
gears subjected to variable speed and load conditions and studied their influences in the
presence of combined gear and bearing faults.

Other researchers have been interested in the environment, in which most rotating
machines operate, mainly in the mining industry. The presence of shocks, impulses, and
collisions of materials that characterize most mining processes is often highlighted. It
has been observed that the vibration signatures collected in these processes are most
often contaminated by the presence of noncyclic impulsive shocks at high energy. This
phenomenon makes it difficult to extract useful information about the monitored machine
faults. Stochastic signal modeling approaches are most often used for these types of
processes. G. Yu and N. Shi [13], for example, proposed a new method of statistical
modeling of gear defects based on an α-stable distribution. A. Wylomanska et al. [14]
also proposed a method for separating the useful signal related to the bearing fault from a
noncyclic and non-Gaussian impulsive noise, in the context of monitoring a raw material
crusher. The proposed technique was applied to a simulated signal as well as a real signal.
S. Schmidt et al. [15] suggested the synchronous median of the square of the envelope
method, instead of the synchronous mean of the square of the envelope of a vibration signal,
for fault diagnosis of gearboxes operating under variable conditions and in an impulsive
environment. This study showed its effectiveness on simulated and real signals. Jacek w
et al. [16] proposed to use nonnegative matrix factorization of spectrogram for separation
cyclic and noncyclic impulsive components from a hammer crusher. Jacek w. [17] proposed
the time-varying spectral kurtosis (TVSK) as a means of spectral kurtosis adaptation for
frequency-band selection of bearing damage signals under variable operating conditions.
In a corresponding trend, Hebda-Sobkowicz et al. [18] presented a new approach to local
bearing damage detection in the presence of non-Gaussian impulsive noise based on
conditional variance statistics to identify cyclic and noncyclic impulses. This method
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allows to detect and extract cyclic-impulsive signal (damage in bearing) in the presence of
high amplitude noncyclic impulsive signal. Several other researchers have addressed the
issue in this sense [19–21].

Gearboxes driving ball mills in the mining industry are subject to impulsive forces
created by the falling of the balls and ore against the mill drum. The vibratory charac-
teristics of the gears leading to a fault detection can be affected by the presence of these
forces/shocks, which makes it difficult to detect localized faults in the gearboxes. However,
in the literature, no numerical model allows us so far to understand the vibratory behavior
of gearboxes in an impulsive environment such as that generated by the ball mill. The lack
of knowledge of the nature of the forces generated by the fall of the balls against the mill
drum does not permit us to develop an efficient mathematical model that characterizes the
distribution of these forces. For modeling gears in an impulsive environment, the common
practice is to synthesize the signal, considering it as a combination of several components:
a deterministic component which often characterizes the manifestation of the fault, a gaus-
sian random component which models noise, and a non-Gaussian random component
which models impulsive noise. The weakness of this method is that the modeled signal can
only describe one type of defect at a time. In this paper, a new hybrid numerical approach
is proposed, combining two types of models: (i) a classical model of a gear transmission
(lumped parameter model and finite elements models for gear and shaft), (ii) a discrete
element model of a ball mill. The second model simulates the internal behavior of the
ball mill and provides the grinding forces that will be considered as external efforts in the
model of the transmission. The objective is to show, using this model, the influence of
impulsive grinding forces on the transmission vibratory behavior in the presence of defects.
In addition to the introduction and the conclusion, the paper is organized into three main
sections. Section 2 presents the general methodology of the hybrid approach giving details
on the software and the design of the simulation to be performed. Section 3 focuses on the
description of the gearbox model and the ball mill model separately. Section 4 presents
results; first, the load profile and the shape of the grinding forces are presented, then the
influences of its forces are studied in healthy and under crack fault conditions, respectively.

2. Methods
2.1. Introduction

In industrial reality, a ball mill is generally made of a cylindrical drum driven by an
electric motor via a gear reducer. In addition to the gear reducer, a ring gear is directly
connected to the mill, whose transmission is provided by an external pinion, thus yielding
an additional reduction stage. The model studied in this paper is a simplified version
in accordance with a laboratory setup in which the mill is mounted at the end of the
gearbox output shaft (Figure 1). During its rotation, the mill drum lifts the charge along
one side until it reaches the maximum drop height. From this position, the particles start
to fall independently of the drum movement, described by either a cascade or a cataract
movement depending on the rotation speed of the mill [3].

By falling against the drum, particles’ impact forces are created and transmitted to the
gearbox through the drive shaft. Despite the presence of a lining to absorb the impacts, the
impact forces produced by the movement of the load inside the mill are present and their
amplitude can increase with the wear of the lining. It is therefore necessary to study their
influence on the dynamic behavior of the gearbox.
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Figure 1. Ball mills driving system.

2.2. Methodology

The methodology implemented in this work is presented in the (Figure 2). It is based
on a modeling approach called hybrid, which consists of bringing together different types of
models for each technological element involved in the system. Three technological elements
were involved in this model. The drive shafts were modeled by a finite element method,
using Timoshenko beam elements. Gears were described by a lumped parameter model
and were located on their corresponding nodes on the two input and output shafts; the ball
mill was represented by a discrete element method. The geometry of their shell, produced
by computer-aided design software such as SolidWorks and/or FreeCAD, can be loaded
from many commonly used formats such as a mesh produced by Gmsh software [22].
The discretized model was loaded using a Python program; spherical particles were filled
in a ball mill and run using discrete elements modeling in Yade software. By solving
Newton’s second law, the trajectory of every particle was calculated, so the properties and
behavior of the material under the influence of different external forces may be observed.
By observing the trajectory and postprocessing of the collected data either in Yade or an
external program such as ParaView, a deeper understanding of the microscopic processes
may be obtained [23]. After obtaining impulsive forces and assembling each element, the
calculated forces were applied to the 24-degree-of-freedom gearbox model and were solved
using the Newmark time integration scheme in (MATLAB), to study the dynamic response.
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2.3. Simulation Design

During the operation of the mill, the rotational speed, filling rate, and ball size are
operating parameters that can change during the process and influence in different ways
the dynamics of the load inside the mill, and consequently, of the entire structure [4]. The
mill speed is defined as the percentage of the critical speed Cs. The critical speed Cs of the
mill is the rotation speed at which the balls are subject to centrifugal force while adhering
to the inner surface of the drum [4,24,25]. It can be calculated by the following Equation (1).

Cs =
42.3√

DM
(1)

where DM is the average diameter of the mill. The critical speed of the mill simulated
in this paper was 5.04 (rad/s). Four speed levels from 30% to 95% of this speed were
considered. The filling rate Fr is the fraction of the internal volume of the mill occupied
by the circulating load. The four simulated filling rates ranged from 5% to 35% and the
simulated mill was successively fed with balls of diameter ranging from 30 to 120 mm. The
choice of these three parameters is justified by the fact that their influence has been noticed
through industrial observations during the grinding process. For example, the reduction
in ball size due to wear leads to an outward ejection of the balls. This phenomenon has
a direct influence on the filling rate. It is often decided to increase the number of balls to
achieve the filling rate required for grinding ores. Moreover, the rotation speed of the mill
affects the type of ore grain size and varying this speed can often adjust the grain size at the
outlet of the mill by. The grinding can therefore be carried out in cascade or cataract modes,
depending on whether the rotation speed is close to or far below the critical speed. Table 1
shows how the simulations were designed according to the three operating parameters.

Table 1. Simulation design.

Operating Conditions Rotating Speed Ball Filling Rate Ball Sizes

Fixed parameters: Fr = 30%, Db= 50 mm Nr= 0.6 Cs, Db= 50 mm Fr = 30%, Nr= 0.6 Cs

No. % of Critical speed Cs Filling rate, Fr Diameter (mm), Db

1 30% 5% 30

2 50% 15% 60

3 70% 25% 90

4 90% 35% 120

3. System Modeling
3.1. Modeling of the Gearbox

• The transmission system studied in this work was a single-stage gearbox, according
to the bench SURVIB of the laboratory of mechanical engineering of the URCA. It
consists of two transmission shafts, two gears, four bearings, and a housing. Some
assumptions were made in the modeling of the gears:

• The influence of the housing was neglected.
• The shafts were assumed to have constant cross sections.
• The wheel and the pinion were rigid, the only deformation being at the contact point,

and the connection was flexible, with a variable mesh stiffness.
• The contact between wheel and pinion was assumed to be frictionless.

3.1.1. Gear Element

The chosen gear model considered the work previously carried out by [26] in the
context of wind turbine gearboxes. In his work, the developed model allowed us to connect
the node N1 of the wheel to the node N2 of the pinion as described in (Figure 3b), by linking
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through a stiffness matrix Kgear the restoring forces transmitted to the displacements Xgear,
(Figure 3a), as expressed by Equations (2) and (3).{

Fgear
}
=
[
Kgear

]{
Xgear

}
(2)

and [
Kgear

]
= km[G] (3)
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The stiffness matrix [Keng] of the gear element can be expressed as a product of
a matrix [G] including the elements describing the geometry of the gear (radii of the
base circles, pressure angle α, and an average mesh stiffness km, which can be estimated
according to ISO 6336 [27]). The matrix [G] is calculated by considering that the strain
energy associated with this average stiffness is equal to:

Ep =
1
2

km· Σ2=
1
2

km

(
{σ}T·

{
Xgear

})2
=

1
2

km

({
Xgear

}
[G]
{

Xgear
}T
)

(4)

[G] = σTσ (5)

where σ is the geometric vector of the gear transmission and defined by Equation (6):

σ =
{

c 0 c −λ1 µ1s + d1c λ1c −c 0 −s λ2s −d2c− µ2s −λ2c
}

(6)

{Xgear} is the generalized gear displacement vector defined by:{
Xgear

}
=
[
xp yp θp xg yg θg

]
gear

(7)

The parameters involved in Equation (6) are described in Table 2 for a two-mesh
configuration depending on the type of loading.

Rp and Rg are, respectively, the radii of the pinion and wheelbase circle; α and β, are,
respectively, the pressure angle and the helix angle of the tooth in contact.

The modeling led to the determination of the mesh rigidity matrix as described in
Appendix A. Compared to the work of [26] in which the meshing stiffness was assigned
a constant, a variable meshing stiffness was considered in this work, in order to describe
the manifestations of meshing defects. However, nonlinear bearing forces were not dealt
with in this case. Due to the variation of the number of teeth in contact during meshing,
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the duration of the contact depends on the contact ratio ε and the variation of the meshing
stiffness can be modeled by a square function (Figure 4) Kgear (t), according to the work
done by [9,12]. It fluctuates around a mean value km and can be described by Equation (8)

Kgear(t) =
{

K2 0 ≤ t ≤ (ε− 1)Tm
K1 (ε− 1)Tm ≤ t ≤ Tm

(8)

where Tm is the meshing period, ε is a contact ratio, and K1 and K2 are the minimum
and maximum values corresponding to the contact stiffness when one or two teeth are in
meshing. A crack defect can be introduced to the model, by cyclically weakening the mesh
stiffness by a degradation rate calculated by Equation (9):

D(t) = αδ

[
1 + ∑

n

sin(nαπ)
nαπ

cos(nΩit)

]
(9)

Table 2. Gear configurations.

Parameters Configuration 1 Configuration 2

µ1 −Rptanα −Rptanα
µ2 +Rgtanα +Rgtanα
λ1 Rp −Rp
λ2 −Rg −Rg
c cosβ cosβ
s sinβ sinβ
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Figure 4. Fluctuation of meshing stiffness Kgear(t).

In the presence of this defect, the meshing rigidity is thus calculated by:

K(t) = K(t)[1−D(t)] (10)

with 0 < D(t) < 1, and Ωi = 2πfi, fi, representing the rotation frequency of the wheel affected
by a crack. δ and α = 1⁄Zi are the amplitude of the function D(t), and the cyclic ratio,
respectively. Table 3 gives the different parameters used for the gear simulation.

Table 3. Simulation parameters of the gearbox.

Parameters Symbol Wheel Pinion Motor Units

Mass M 2.5 1.8 8 Kg
Moment of inertia J 0.0014 0.007 0.00125 k·gm2

Module m 2 mm
Angle of pression α 20
Number of teeth Z 59 66
Meshing stiffness Km 1.5× 108

Base circle radius R 59 66 mm
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3.1.2. Shaft Element

The shaft of the gearbox was assumed to be flexible in bending and torsion and
made of a homogeneous material, to have a constant cross section, and to have small
displacement in bending. An energetic approach based on the Lagrange formalism was
applied. The two shafts were discretized into 6 elements including 8 nodes, as shown in
(Figure 5) to approximate the displacement field. Unlike the work carried out by [28], the
3-degree-of-freedom in Equation (11), corresponding to one rotation along the z-axis and
two translations along x and y were retained in each node to describe the system. The
nodal displacement vector {χ} is defined in Equation (12):

{χ}node = {x, y, θ}node (11)
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The vector containing the displacement fields over an element is given by:

{χe} = {x1, y1, θz1, x2, y2, θz2 } (12)

Thus, the model has a total of 24 degrees of freedom (Figure 5). The adequate choice
of shape functions and application of Lagrange’s equations led to the determination of
elementary mass Me and rigidity Ke matrixes of the shaft element, as described in Ap-
pendix B. The motor and the load were accounted for by their respective masses and polar
inertias. They were concentrated at node 1 of the input shaft and node 8 of the output shaft,
respectively. The bearings, modeled by constant rigidities mounted in parallel, supported
the shafts. The geometric and material properties of the shafts are reported in Table 4.

Table 4. Simulation parameters of shaft.

Parameters Symbol Input Shaft Output Shaft Units

Shaft length L. 0.5 0.5 m
Wheel position Lg 0.3 0.3 m
Shaft outer
radius re 0.018 0.018 m

Mass per unit
volume ρ 7800 7800 k·gm−3

Young modulus E 2.1011 2.1011 N·m−2
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3.1.3. Discrete Element Modeling of the Ball Mill
3.1.3.1. Principle

The discrete element method is used to simulate the motion and interactions of discrete
particles in a dynamic environment such as a ball mill. This method uses contact models
for an accurate characterization of the contact forces between the particles during their
motion. In this paper, a process based on the discrete element method was developed
and implemented in Yade in order to determine the motion of the charge and to calculate
the interaction forces between the ball and the mill drum. The numerical model of the
mill had therefore two main components: first, a geometric component that represents the
geometry of the surface with which the balls come into contact (Figure 6a); second, a contact
model that describes the interactions between the modeled particles and a drum as well
between the different particles (Figure 6b). Three different elements were considered in the
simulation: spherical elements representing the balls, triangulated surfaces representing
shell liner and planes representing end walls.
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Considering a set of particles whose motion is described by Newton’s second law, the
linear contact model shown in Figure 6b models the forces acting on each particle. In ball
mills modeling, these particles are usually spheres representing the balls. The following
properties characterized each sphere j: (i) properties of states such as the position of the
center xbj, the linear speed ẋbj, the angular speed ω bj, the linear acceleration

..
xbj, the

angular acceleration
.
ωbj, the forces applied to their centers Fbj, and the moment of force,

i.e., the torque about the center Mbj; (ii) shape properties such as diameter dbj or the radius
rbj of each particle; (iii) material properties such as density ρbj and contact parameters.

These spheres move in space according to Newton’s second law (in translation and rotation)
as follows: {

mbj
..
xbj = Fbj

Ibj
.
ωbj = Mbj

(13)

where mbj =
4πρbjr3

bj
3 , Ibi =

2mbjr2
bj

5 , are, respectively, the mass and the moment of inertia,
and Fbj represents the mechanical contact forces. For elastic particles, Fbj was determined
using the classical contact theory.



Machines 2022, 10, 226 10 of 22

3.1.3.2. Model of Contact between Particles

The interactions between the balls and the mill wall can be dealt with by means of a
suitable contact law. Both gravity and friction effects were considered. A linear contact law
was used to determine the normal contact forces Fn, and tangential forces Fs [29];

The normal force Fn was calculated based on the relative displacement δn, created
during the interaction between the sphere and the contact surface. It was expressed
as follows:

Fn = Knδn + ηn
dδn

dt
(14)

where Kn and ηn are, respectively, the stiffness and the viscosity coefficients in the normal
direction. The tangential force Fs was defined by the following relation:

Fs = min(µFn, Ks

∫
vsdt + ηsvs) (15)

It consists of the frictional force µFn, where µ is the friction coefficient acting between
the particles, and the force due to the spring and the damping in the shear direction
exceeding µFn. ηs represents the viscosity coefficient in the tangential direction and vs
is the velocity in the same direction. Table 5 gives different parameters used in the ball
mill simulation.

Table 5. Discrete element method simulation parameters.

Parameters Symbol Value Unit

Radii of the balls Ri 50 mm
Ball density ρi 7640 Kg/m3

Ball mill liner density ρb 7640 Kg/m3

Friction coefficient
(balls–liners) µ1 0.30

Friction coefficient
(ball–ball) µ2 0.30

Restitution coefficient e1 0.75
Restitution coefficient
(balls–liners) e2 0.75

Mill diameter D 0.80 m
Mill width L 0.40 m
Normal rigidity Kn 106 N/m
Tangential rigidity Ks 106 N/m
Damping normale
coefficient ηn 106 Ns/m

Damping shear coefficient ηs 106 Ns/m

The equations of motion described by Equation (13) were solved numerically, using an
explicit integration scheme called the “Leapfrog” algorithm implemented in Yade software,
and described by the following equation.

.
q
(

t + δt
2

)
=

.
q
(

t− δt
2

)
+

..
q(t)δt

q(t + δt) = q(t) +
.
q
(

t + δt
2

) (16)

where q, δt, and t, are, respectively, the generalized position vector of the sphere mass
centers, the constant time step, and the current time. This algorithm is conditionally stable.
To ensure the stability of the algorithm, the time step should be less than the critical time
step δtcr given by:

δtcr =
2

ωmax
(17)

ωmax being the highest frequency in the system [30].
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3.1.4. Equations of Motion

The above-described elements were assembled to obtain the finite element model.
The latter was governed by a 24-equation system corresponding to the 24 degrees of
freedom described in Section 3.1.2. Equation (18) represents the described model as a
matrix equation.

[M]
{ ..

X
}
+ [C]

{ .
X
}
+ [K]{X} = {FBM(t)}+ {Fext(t)} (18)

where Fext(t) is the vector of external forces applied to the gearbox, consisting of the motor
torque CM(t), and the resistive torque of the mill CR(t). FBM(t) represents the vector of
forces exerted by the mill.

FBM(t) =


zeros(1, 21)

FBMx(t)
FBMy(t)

zeros(1, 1)

 (19)

and

Fext(t) =


zeros(1, 2)

CM(t)
zeros(1, 18)

CR(t)

 (20)

The vectors FBMx(t) and FBMy(t) are point vectors corresponding to the values of the
forces exerted by the balls on the mill drum and calculated separately using Yade software.
[M](24×24) and [K] (24×24) are, respectively, the mass matrix and the stiffness matrix of
the gearbox, obtained by assembling the elementary matrices of the system components.
{X}(24×1) is the vector of degrees of freedom of the global system. [C] (24×24) represents
the global damping matrix, calculated proportionally to the mass matrix [M](24×24) and
the average value of the stiffness matrix [K] (24×24) as follows:

C = α[M] + β[K] (21)

α and β are two real coefficients calculated so that the damping is viscous. According
to [31], all resolution schemes for which α = 1/2 and β = 1/4 are unconditionally stable.
In this work, the resolution of the system of equations was conducted using the standard
Newmark integration scheme. The mill torque (resistive torque) CR, the driving torque
CM, and the speed of rotation Nr were constants. Only the contact forces of the balls on the
mill drum were variable. According to the parameters of the gear transmission systems
summarized in Table 3, MATLAB software was used to solve Equation (14).

4. Results and Discussion
4.1. Effects of Grinding Forces
4.1.1. Principle

In this section, the influence of the grinding forces is investigated. Three operating
parameters were varied to understand the manifestations of the impulse forces in each
case. The study was based on the observation of the load profile inside the drum, and
interpretation of its influence by observing the amplitude of the signals in the vibrations
time series and on the spectrogram. The maximum drop height of the balls Hf was analyzed
in all three cases. It was assumed that a high drop height correlated with a high impact
force amplitude and consequently a high noise in the signal. A laboratory ball mill, whose
characteristics were taken from the work of [4] and collected in Table 2, was used as a
reference model. The simulations were performed according to the experimental design
represented in Table 4, using Yade software. Yade (Yet another dynamic engine) is an
open-source software tool based on the discrete element method (DEM), which uses object-
oriented programming techniques [32]. The software program is written in C++ and has a
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Python interface for high flexibility and performance. This makes the simulation of millions
of particles interacting with each other possible. Yade runs on Linux operating systems
and is available from the official repositories of common distributions such as Ubuntu.
The source code is freely available on GitHub and is licensed under the GPL2 open-source
license [22]. (Figure 7) depicts the results of a simulation of ball mill grindings forces by
showing the evolution of contact forces between the balls and the liner, for three different
levels of filling rate Fr. By analyzing the curve, we can observe that the average value of
the applied forces increases with the filling rate.
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Figure 7. Contact forces’ time evolution, for three levels of filling rate: (a) Fr = 15%, CAF = 496.5 N,
(b) Fr = 25%, CAF = 1772.5 N, (c) Fr = 35% CAF = 5145.8 N, with Nr = 0.3 Cs and Db = 50 mm.

The following subsections present the results of the effects of impulsions forces on the
vibration behavior of the transmission for the three operating parameters.

4.1.2. Effect of the Filling Rate

Figure 8 shows the variation of the load profile inside the mill for different filling rates
Fr of 5%, 15%, 25%, and 35%. For a rotational speed Nr of 30 rpm, and a ball diameter of
50 mm, the drop height of the balls H f increases with the increasing filling rate. For a filling
rate of 15% (see Figure 8a), the maximum drop height is H f = 0.6262 m while for Fr = 35%,
H f = 0.8943 m. This increase in the drop height leads to an increase in the amplitude of
the signals as can be seen in Figure 8b, in which the vibratory signature corresponding to
Fr = 35% presents a higher amplitude compared to that corresponding to Fr = 15%.

The characteristics of the defect appear in this case with a severity of δf = 45%. The
vibrations of the gearbox are affected in different ways by the increase or decrease of
the filling rate. Table 6 presents a synthesis of the results for 16 similar observations,
corresponding to four levels of crack severity, for four levels of filling rate. It provides
information on the prevalence of different components in the vibration signal. For a filling
rate Fr of 5% and 15%, the mask noise Mn prevails over the impulsive components of
the defect IDC and over the impulsive noise Pi, when the defect degradation rate δf is
between 0% and 30%. However, the impulsive noise is more dominant when the filling
rate increases, i.e., for Fr = 25% to Fr = 35%.
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Table 6. Prevalence of the different phenomena in the signal due to the filling rate (Fr).

Crack Level Fr = 5% Fr = 15% Fr = 25% Fr = 35%

0% Mn Mn Pi Pi
15% Mn Mn Pi Pi
30% Mn Mn Pi Pi
45% Mn + IDC Mn + IDC Mn + IDC IDC + Pi

4.1.3. Effect of Rotation Speed (N)

The rotation speed shows two behaviors of the load profile inside the mill (Figure 9).
For a filling rate of 30% and a ball diameter of 50 mm, the drop height increases together
with increasing rotation speed. For a speed corresponding to 0.6 Cs, the maximum drop
height is H f = 0.6366 m in Figure 9(a2). The balls rise to the specified drop height, then
fall and roll over each other. The load has a cascade effect, and in practice, this effect favors
attritional crushing. This can result in a high percentage of indirect contact between balls
and walls, as most of the balls fall on top of each other. Beyond 0.6 Cs, the maximum drop
height is H f = 0.7351 m (Figure 9(a4)). In this case, the balls rise to the height of drop
and fall on the drum wall; a cataract effect is observed. In practice, this behavior favors
impact crushing and thus the presence of a direct contact between ball and wall. In both
cases, the vibration signals of the gearbox are amplified by the increase of the rotation
speed (Figure 9b). However, this increase of the amplitudes remains weak compared
to the augmentation caused by the increase of the filling rate. Figure 9b shows a weak
amplification of the signal recorded at a rotation speed of 0.3 Cs, and is compared to the
signal recorded at a rotation speed of 0.9 Cs (critical speed). The increase in speed subjects
the balls to a force approaching centrifugal force, thus the balls tend to stick to the inner
wall of the mill, reducing the impact of the contact forces. Therefore, impulses due to
defects are more visible at higher speeds since the impulses due to shocks are lower.
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Figure 9. Effects of rotation speed: (a) load profile 1. Nr = 0.3 Cs, 2. Nr = 0.6 Cs, 3. Nr = 0.7 Cs,
4. Nr = 0.9 Cs, with Fr = 30%, and Db = 50 mm; (b) affected vibrations 1. time series of simulated
signals for Nr = 0.9 Cs (black), and Nr = 0.3 Cs (blue); 2. spectrogram of signal for Fr = 30%,
Db = 50 mm and δ f = 30%.

Table 7 presents a synthesis of the results for 16 similar observations, corresponding
to four levels of crack severity, for four levels of rotation speed. All the simulated signals
show the prevalence of the mask noise Mn and an easier manifestation of fault impulses
for a degradation rate of δ f = 30 and 45%.

Table 7. Prevalence of the different phenomena in the signal due to the rotation speed Nr.

Crack Level Nr = 0.3 Cs Nr = 0.6 Cs Nr = 0.7 Cs Nr = 0.9 Cs

0% Mn Mn Mn Mn
15% Pi Mn Mn Mn
30% Mn Pi IDC IDC
45% IDC IDC Pi Mn

4.1.4. Effect of Balls Size

The reduction in ball size leads to a reduction in the drop height creating extra free
space in the mill. Considering the same rotational speed and the same filling rate (Figure 10),
the balls can move freely and create a direct contact with the wall. The decrease in ball
size promotes a cataract effect. For balls of 120 mm in diameter, the maximum head was
H f = 0.5966 m, while it was H f = 0.6911 m for balls with a diameter of 60 mm. Despite
the decrease in head, we registered a small increase in amplitude of the recorded signal for
a diameter of 120 mm, compared to the one recorded for a diameter of 60 mm, as presented
in Figure 10a. The spectrogram of Figure 10b was obtained for a signal corresponding to
Fr = 30%, Nr = 0.6 Cs, δf =0%. It has a large amount of mask noise Mn, compared to
impulsive noise Pi. Table 6 presents a synthesis of the results for 16 similar observations,
corresponding to four levels of crack severity, for four levels of balls size. The reduction
of ball size favors the presence of mask noise. The low representativeness of the impulses
due to the grinding is normal and due to the filling rate of 30%, a value for which there is a
domination of the mask noise (see Table 8). A reduction in the ball size can only lead to a
reduction in the filling rate, which in turn leads to the presence of mask noise. The defect
only appears starting at a severity level of 30%.
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lated at node 4 in the Y-axis direction. From the spectrum and spectrogram, respectively 
in Figures 11b and 12, one can see the frequency characteristics related to the meshing and 
the crack defect. The model simulation reveals the presence of the meshing frequency and 
its odd-order harmonics (Figure 12). The crack defect appears in the time series (Figure 
11a) at a period 𝑇 = 0.87 s, which corresponds on the spectrum to the presence of the 

Figure 10. Effect of ball size: (a) load profile 1. Db = 30 mm, 2. Db = 60 mm, 3. Db = 90 mm,
4. Db = 120 mm, for Fr = 30% and Nr = 0.3 Cs; (b) affected vibrations 1. time series of simulated
signals for Db = 120 mm (black) and Db = 30 mm (blue); 2. spectrogram of signal, for Nr = 0.6 Cs,
Fr = 30% and of δ f = 0%.

Table 8. Prevalence of the different phenomena in the signal due to the size of the balls Db.

Ball Size Db

Crack Level Db = 30 mm Db = 60 mm Db = 90 mm Db = 120 mm

0% Mn Mn Mn Mn
15% Mn Mn Mn Mn
30% IDC IDC IDC IDC
45% Mn Mn Mn IDC + Pi

4.2. Case without Grinding Efforts

In this section, the system was simulated with a tooth crack defect through increasing
the rate of defect degradation, corresponding to δ f = 30%, and eccentricity defect of
1 µm, but without grinding efforts. The gearbox rotated at a speed of 500 RPM, and the
corresponding meshing frequency was Gm f = 550 Hz. Figure 11 shows the vibrations sim-
ulated at node 4 in the Y-axis direction. From the spectrum and spectrogram, respectively
in Figures 11b and 12, one can see the frequency characteristics related to the meshing and
the crack defect. The model simulation reveals the presence of the meshing frequency and
its odd-order harmonics (Figure 12). The crack defect appears in the time series (Figure 11a)
at a period Tcrack = 0.87 s, which corresponds on the spectrum to the presence of the side
bands spaced at a multiple frequency of the defect frequency Ff = 1.1 Hz. As shown in
Figure 12, the defect is manifested by the presence of side bands around the Gm f frequency
separated by the rotation frequency fr.



Machines 2022, 10, 226 16 of 22

Machines 2022, 10, x FOR PEER REVIEW 16 of 22 
 

 

side bands spaced at a multiple frequency of the defect frequency 𝐹 = 1.1 Hz. As shown 
in Figure 12, the defect is manifested by the presence of side bands around the 𝐺𝑚𝑓 fre-
quency separated by the rotation frequency 𝑓 . 

 
Figure 11. Simulation results without grinding efforts: (a) time series signals, (b) spectrogram of the 
signal with a crack defect 𝛿 = 30% 

 
Figure 12. Spectrum showing manifestation of the eccentricity defect. 

4.3. Case with Grinding Efforts 
This section shows the simulation results of the signals recorded at node 4, after the 

gearbox was loaded with grinding forces according to the different operating parameters 
studied previously. The analysis of Tables 5–7 reveals three important phenomena that 
can be observed on the time series, the spectrogram (Figure 13b), and the signal spectrum 
(Figure 14). For these three parameters, four levels of manifestations, for four different 
levels of severity of crack defect were retained. The idea was to see for each selected pa-
rameter level how the crack defect manifested itself in the presence of grinding forces. The 
vibratory signal in the presence of grinding forces is characterized by the presence of 
Gaussian noise 𝑀𝑛, as well as a noncyclic and non-Gaussian impulsive noise distribution 
noted 𝑃 . This noise is manifested by noncyclic peaks in the time series, by the presence 

0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

A
cc

el
er

at
io

n 
(m

/s
2 )

105

Side-band

fr=8.3Hz
Gmf-fr Gmf+fr

Gmf=550Hz
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4.3. Case with Grinding Efforts

This section shows the simulation results of the signals recorded at node 4, after the
gearbox was loaded with grinding forces according to the different operating parameters
studied previously. The analysis of Tables 5–7 reveals three important phenomena that
can be observed on the time series, the spectrogram (Figure 13b), and the signal spectrum
(Figure 14). For these three parameters, four levels of manifestations, for four different
levels of severity of crack defect were retained. The idea was to see for each selected
parameter level how the crack defect manifested itself in the presence of grinding forces.
The vibratory signal in the presence of grinding forces is characterized by the presence of
Gaussian noise Mn, as well as a noncyclic and non-Gaussian impulsive noise distribution



Machines 2022, 10, 226 17 of 22

noted Pi. This noise is manifested by noncyclic peaks in the time series, by the presence of
high-energy components in the spectrogram (Figure 13b), and by a random apparition of
several lines around the gear mesh frequency in the spectrum (Figure 14). The distribution
of impulsive noise in the signal is random and does not correspond to any fault-related
feature. These two types of noise are present in all signals subjected to grinding forces. In
the case of the presence of these noises, the cyclic impulsive component related to the crack
defect IDC (impulsive defect component) is hidden. However, in the presence of grinding
forces, this defect is masked by the impulses of the balls. In addition, in the case of a fault
detection using these features, the presence of its lateral lines due to pulses can strongly
influence the value of indicators calculated in both the time and frequency domains.
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of signal with a crack defect δ f = 30% and Fr = 30%.
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5. Conclusions

This paper presented an original approach to study the influence of grinding forces
on the vibratory behavior of a ball mill gearbox. By inserting a discrete element model of
a ball mill into the dynamic model of a gear transmission, the paper highlighted for the
first time three parameters intrinsic to the grinding process, i.e., the filling rate, the rotation
speed, and the ball size, as the cause of the impulsive noise in the vibration signal. This is
of great importance for transmission systems mounted in the mining industry operating
in a noisy and impulsive environment. Through the short-term Fourier transform (STFT)
of the envelope signal, the results showed that the increase of the filling rate leads to an
increase of the impulsive noise. This phenomenon masked the defect signature, which only
manifested itself at a high degradation rate. In this case, the defect was only visible in the
spectrogram at a high severity level, i.e., 30–45% of the degradation rate. An increase of
the rotation speed led to a decrease in the impulsive noise and increased the risk of the
defect manifestation. In fact, when the rotation speed was close to the critical speed of the
mill, the balls, due to centrifugal force, adhered to the mill wall and led to a decrease in
impulses. In this case, the defect was visible in the spectrogram at a mean severity level,
i.e., 15–30% of the degradation rate. The decrease in ball size had the opposite effect to that
of the filling rate. It led to a manifestation of Gaussian noise. In this case, the defect was
only visible in the spectrogram at a mean severity level, i.e., 30% of the degradation rate.
Although all three parameters each had a significant contribution to impulsive noise, filling
rate was the parameter that showed a large prominence over the other two.

The results presented in this paper were obtained by considering a constant load and
speed. However, the dynamics of the load inside the mill implies a fluctuating velocity and
load, which was not considered. These operating conditions will be considered variables in
future work. In addition, the presence of impulsive shocks in the signal also contributes to
masking the fault signal. Thus, signal-processing methods must be implemented in order to
separate the impulsive shocks of the fault from those caused by the balls falling against the
mill drum. The present work was limited to a numerical study of the observed phenomena.
However, an experimental validation of the proposed model will be an important step
towards the confirmation of the simulation results.
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Appendix A. Gearing Matrix

The modeling assumptions made here ensure that the pinions are comparable to non-
deformable solids, except at certain points along the normal to the contact. The knowledge
in the elementary reference frame (Xo, Yo, Zo) of the generalized displacements of the
attachment nodes of the gearing element, allows the calculation of the displacements at the
primitive meshing points. The vector of displacements and rotations of the node Ni in the
reference Ro is: { →

dep(Ni)

}
Ro

=

∣∣∣∣∣∣
ui
vi
wi

(24) et
{ →

rot(Ni)
}
=

∣∣∣∣∣∣
θxi
θyi
θzi

(A1)
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It is then possible to calculate the displacements at the pitch point for each wheel:{ →
dep(I ∈ Si)

}
Ro

=

{ →
dep(Ni)

}
Ro

+

{ →
INi

}
∧
{ →

rot(Ni)
}

Ro
(A2)

With: { →
INi

}
Ro

=

∣∣∣∣∣∣
µi
λi
−di

(A3)

di is the algebraic distance NiOi measured along the axis Zo. The values of the coeffi-
cients µi and λi depend on the gearing configuration:

Configuration 1 :

∣∣∣∣∣∣∣∣
µ1 = −Rb1tanα
µ2 = +Rb2tanα

λ1 = Rb1
λ2 = −Rb2

(A4)

and

Configuration 2 :

∣∣∣∣∣∣∣∣
µ1 = −Rb1tanα
µ2 = +Rb2tanα
λ1 = −Rb1
λ2 = Rb2

(A5)

The displacements at the primitive meshing points are therefore expressed as:

{ →
dep(I ∈ Si)

}
Ro

=

∣∣∣∣∣∣
µi + λi + diθyi

vi − diθxi − µiθzi
wi + µiθyi − λiθxi

(A6)

The expression of the contact normal in the reference Ro depends on the mesh configu-
ration and the value of the basic propeller angle β. The configuration chosen for the static
and dynamic models is related to the direction of the helix of the wheel 1. If the helix is to
the right of wheel 1, the helix angle is “negative”; it is positive in the case of a left helix.
The outgoing normal to the contact profile of wheel 1 has the following expression in the
reference frame Ro :

Configuration 1 :
{→

n 1

}
Ro

=

∣∣∣∣∣∣
cos(β)

0
sin(β)

(A7)

and

Configuration 2 :
{→

n 1

}
Ro

=

∣∣∣∣∣∣
cos(β)

0
− sin(β)

(A8)

The deformation at the teeth is then written as:

Σ =

{ →
dep(I ∈ S1)

}
·
{→

n 1

}
−
{ →

dep(I ∈ S2)

}{→
n 1

}
(A9)

Let
{

Xeng
}

be the vector of generalized displacements of the attachment nodes of the
outer “cylindrical gear element”:

{
Xgear

}
Ro

=
{

xp , yp , zp , θxp , θyp, θzp , xg, yg , z2g, θxg , θyg, θzg

}T
(A10)

In this work, three degrees of freedom for each node were considered:

{
Xgear

}
Ro

=
{

xp , yp , θzp , xg, yg , θzg

}T
(A11)
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The deformation at the teeth can then take the form of:

Σ = {σ}T{Xeng
}

Ro (A12)

With σ the geometric vector of the transmission:

σ =
{

c 0 c −λ1 µ1s + d1c λ1c −c 0 −s λ2s −d2c− µ2s −λ2c
}

(A13)

To consider the retained degrees of freedom, the geometric vector can be put in the
following form:

σ =
{

c 0 λ1c −c 0 −λ2c
}

(A14)

c = cosβ (A15)

s = sinβ (A16)

The meshing interface is modeled by a spring of stiffness km, placed along the contact
normal. The potential energy dissipated in this element is expressed as:

Ep = 1
2 km· Σ2= 1

2 km

(
{σ}T·

{
Xgear

}
Ro

)2

= 1
2 km

({
Xgear

}
Ro
{σ}T·{σ}

{
Xeng

}
Ro

T
)
= 1

2 km

({
Xgear

}
Ro

[
Kgear

]{
Xgear

}
Ro

T
) (A17)

[
Kgear

]
Ro

= km{σ}T{σ} (A18)

(A18) is the equivalent stiffness matrix of the element “external cylindrical gear” expressed
in the reference Ro

Appendix B. Shafts Matrix

The input and output shafts of the gearbox were modeled by finite elements. They
were each discretized into four elements, which were modeled by the Timoshenko beam
with two nodes and six degrees of freedom. In this work, three degrees of freedom per
node (xi, yi, θi) were retained to simulate the bending and torsion effects of the shaft, i.e.,
two translations and one rotation. Gyroscopic and centrifugal effects were neglected. The
displacement fields of the shaft element were approximated using the nodal displacements
and shape functions as follows:

x(z, t) = {N1(z)}t{χe
x(t)}

y(z, t) = {N2(z)}t
{

χe
y(t)

}
θz(z, t) = {N3(z)}t

{
χe

θz
(t)
} (A19)

where N1 and N2 are cubic polynomials and N3 is a linear one. {χe
x(t)} And

{
χe

y(t)
}

are

nodal displacements in the (XZ) and (YZ) planes while
{

χe
θz
(t)
}

is the nodal displacements
in the rotational directions. The elementary mass matrix Me and stiffness matrix Ke were
obtained by determining the kinetic Ec and potential Ep energy of the shaft element:

Ec =
1
2

ρA
∫ L

0

( .
x2

+
.
y2
)

dz +
1
2

Io

∫ L

0

.
θ

2
zdz (A20)

Ep =
1
2

∫ L

0
G·J·

(
∂θz

∂z

)2
dz +

1
2

∫ L

0
E·IA·

((
∂2x
∂z2

)2

+

(
∂2y
∂z2

))
dz (A21)

In these two equations, ρ, G, E represent, respectively, the density, the shear modulus,
and the Young’s modulus of the considered beam. A and L represent the cross section and
length of the beam, IA is the mass inertia per unit length of the beam, along one of the axis
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X or Y. Io is the polar inertia of the beam along the Z axis and J is the polar moment of
inertia of the beam.

Me =



156
420 ρAL + 36

30
Ix
L 0 0 54

420 ρAL− 36
30

Ix
L 0 0

0 156
420 ρAL + 36

30
Ix
L 0 0 54

420 ρAL− 36
30

Ix
L 0

0 0 I0 L
3 0 0 I0 L

3
54
420 ρAL− 36

30
Ix
L 0 0 156

420 ρAL + 36
30

Ix
L 0 0

0 156
420 ρAL + 36

30
Ix
L 0 0 156

420 ρAL + 36
30

Ix
L 0

0 0 I0 L
3 0 0 I0 L

3


(A22)

Ke =



12EIA
L3 0 0 − 12EIA

L3 0 0
0 12EIA

L3 0 0 − 12EIA
L3 0

0 0 GJ
L 0 0 −GJ

L
− 12EIA

L3 0 0 12EIA
L3 0 0

0 − 12EIA
L3 0 0 12EIA

L3 0
0 0 −GJ

L 0 0 GJ
L


(A23)

References
1. Jeswiet, J.; Szekeres, A. Energy Consumption in Mining Comminution. Procedia CIRP 2016, 48, 140–145. [CrossRef]
2. Góralczyk, M.; Krot, P.; Zimroz, R.; Ogonowski, S. Increasing Energy Efficiency and Productivity of the Comminution Process in

Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview. Energies 2020, 13, 6735. [CrossRef]
3. Molina Vicuna, C.; Venegas, P.J.; Valenzuela, M.A. Use of Virtual Sensors for the Analysis of Forces Exerted by the Load

Inside a Tumbling Mill. Lyon, France, Juill. 2019. Available online: https://hal.archives-ouvertes.fr/hal-02190273 (accessed on
16 February 2021).

4. Boemer, D.; Ponthot, J.-P. A generic wear prediction procedure based on the discrete element method for ball mill liners in the
cement industry. Miner. Eng. 2017, 109, 55–79. [CrossRef]

5. Kalala, J.T.; Breetzke, M.; Moys, M.H. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling
mill using the Discrete Element Method (DEM). Int. J. Miner. Process. 2008, 86, 33–39. [CrossRef]

6. Airikka, P. Simple Continuous-time Identification Method for PID Controlled Crushing Plant Processes. IFAC Proc. Vol. 2012,
45, 60–65. [CrossRef]

7. Mukepe Kahilu, M.; Kinnaert, M.; Kalenga Ngoy, P.; Moanda Ndeko, J.-M. MODELLING, IDENTIFICATION AND SIMULATION
OF A DOUBLE CLOSED-LOOP INDUSTRIAL WET GRINDING CIRCUIT. IFAC Proc. Vol. 2012, 45, 72–77. [CrossRef]

8. Ruuska, J.; Lamberg, P.; Leiviskä, K. Flotation model based on floatability component approach—PGE minerals case. IFAC Proc.
Vol. 2012, 45, 19–24. [CrossRef]

9. Chaari, F.; Bartelmus, W.; Zimroz, R.; Fakhfakh, T.; Haddar, M. Gearbox Vibration Signal Amplitude and Frequency Modulation.
Shock Vib. 2012, 19, 635–652. [CrossRef]

10. Bartelmus, W.; Zimroz, R. Vibration condition monitoring of planetary gearbox under varying external load. Mech. Syst. Signal
Process. 2009, 23, 246–257. [CrossRef]

11. Baydar, N.; Ball, A. DETECTION OF GEAR DETERIORATION UNDER VARYING LOAD CONDITIONS BY USING THE
INSTANTANEOUS POWER SPECTRUM. Mech. Syst. Signal Process. 2000, 14, 907–921. [CrossRef]

12. Farhat, M.H.; Hentati, T.; Chiementin, X.; Bolaers, F.; Chaari, F.; Haddar, M. Numerical model of a single stage gearbox under
variable regime. Mech. Based Des. Struct. Mach. 2020, 1–28. [CrossRef]

13. Yu, G.; Shi, N. Gear fault signal modeling and detection based on alpha stable distribution. In Proceedings of the 2012 International
Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Sanya, China, 25–28 August 2012;
IEEE: Piscataway, NJ, USA, 2012; pp. 471–474. [CrossRef]

14. Wylomanska, A.; Zimroz, R.; Janczura, J.; Obuchowski, J. Impulsive Noise Cancellation Method for Copper Ore Crusher Vibration
Signals Enhancement. IEEE Trans. Ind. Electron. 2016, 63, 5612–5621. [CrossRef]

15. Schmidt, S.; Zimroz, R.; Chaari, F.; Stephan Heyns, P.; Haddar, M. A Simple Condition Monitoring Method for Gearboxes
Operating in Impulsive Environments. Sensors 2020, 20, 2115. [CrossRef] [PubMed]

16. Wodecki, J. Local damage detection based on vibration data analysis in the presence of Gaussian and heavy-tailed impulsive
noise. Measurement 2020, 169, 108400. [CrossRef]

17. Wodecki, J. Time-Varying Spectral Kurtosis: Generalization of Spectral Kurtosis for Local Damage Detection in Rotating Machines
under Time-Varying Operating Conditions. Sensors 2021, 21, 3590. [CrossRef]
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