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Abstract: The persistence of effervescence and foam collar during a Champagne or sparkling wine
tasting constitute one, among others, specific consumer preference for these products. Many different
factors related to the product or to the tasting conditions might influence their behavior in the glass.
However, the underlying factor behind the fizziness of these wines involves a second in-bottle
alcoholic fermentation, also well known as the prise de mousse. The aim of this study was to assess
whether a low temperature (13 ◦C) or a high temperature (20 ◦C) during the in-bottle fermentation
might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble
size) of three French sparkling wines (a Crémant de Loire and two Champagne wines), under
standard tasting conditions. Our results showed that sparkling wines elaborated at 13 ◦C and served
in standard tasting conditions (i.e., 100 mL, 18 ◦C) had better ability to keep the dissolved CO2

(between 0.09 and 0.30 g/L) in the liquid phase than those elaborated at 20 ◦C (with P < 0.05). Most
interestingly, we also observed, for the Crémant de Loire and for one Champagne wine, that the
lower the temperature of the prise de mousse, the smaller (with P < 0.05) the bubbles in the foam collar
throughout the wine tasting.

Keywords: sparkling wine; Champagne; Crémant; prise de mousse; CO2; effervescence; bubble; foam;
glass; tasting

1. Introduction

Champagne and sparkling wines from around the world, elaborated through the tradi-
tional method, are supersaturated with CO2 which is forced to dissolve progressively in the
liquid phase during a second in-bottle alcoholic fermentation, the so-called prise de mousse
(literally “capturing the sparkle”). This step is followed by a minimum aging period of 9
or 15 months in contact with the lees, according to the sparkling wine produced, as for
example Crémant de Loire and Champagne, respectively (Figure 1). Actually, a standard
75 cL Champagne or sparkling wine bottle typically holds about 8–9 g of dissolved CO2
(i.e., ≈10–12 g/L−1). This content of dissolved CO2 in the liquid phase is responsible
for bubble formation once the bottle is uncorked and the wine poured into a glass [1].
Dissolved CO2 is a parameter of high importance since it directly impacts the following
sensory properties: the frequency of bubble formation, the growth rate of rising bubble,
the very characteristic tingling sensation in mouth, and the overall olfactory perception
of Champagne and sparkling wines [1]. Moreover, Champagne and sparkling wines
also contain many compounds originating from the grape and yeast that might influence
the stability of bubbles and the height of the foam collar in the glass [2]. Among them,
wine proteins are considered important components for the foam stability of sparkling
wines [3,4].
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Figure 1. (a) Bottles of Champagne hermetically sealed with a natural cork and stacked horizontally
in the course of their prise de mousse, followed by a long period of ageing on lees (Collection CIVC).
Crémant de Loire and Champagne undergoing their prise de mousse in cellars (b) from the Loire area
(Gratien et Meyer) and (c) from the Champagne area (Emmanuel Goulet).

During the prise de mousse and the autolysis that occurs during the ageing of the
wine, yeasts are involved in many biochemical reactions, and changes in the chemical
composition of the wine, through the release of compounds from the yeast and also through
the formation and transformation of molecules and macromolecules that contribute to
the organoleptic quality of the wine [5,6]. Numerous parameters that contribute to the
completion of this secondary fermentation have been studied, as recently reviewed by
Kemp et al. (2015) [6]. Indeed, specific commercial dry yeast strains are usually well
adapted to all and every parameter related to the composition of the changing fermented
wine [7,8]. As for example, their tolerance towards several stress factors, such as high levels
of ethanol and SO2, CO2 overpressure, nitrogen deficiency, low pH and low temperature,
is essential in order to drive the secondary fermentation to successful completion [6,7,9–11].
Recently, the impact of CO2 overpressure has been revealed, through proteomics studies,
on the metabolism of yeast and on the proteins involved in the response to stresses during
the second alcoholic fermentation [12,13]. Such approaches could be used as a tool to
select the appropriate strains of yeast to conduct the prise de mousse as a function of the
organoleptic characteristics of the final product. Martínez-García et al. (2017) [14] have
also demonstrated the effect of CO2 overpressure on the typical aromas of sparkling wines
released during the prise de mousse. Another important parameter that might influence the
kinetics of the prise de mousse and the metabolism of yeast, is the temperature, but it has not
been dealt with in depth.

In France, from a regulatory point of view, there is no obligation to conduct the
prise de mousse at a specific temperature (nor for the hygrometry). The National Institute
of origin and quality (INAO) supervises the specifications of French sparkling wines
produced with an official sign of quality such as Champagne and cCémant de Loire. Only
historical references mention the advantages of using cellars dug in the tuffeau of the
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Loire (Figure 1b) or in the chalk (chalk pits) in the Champagne area (Figure 1c), to develop
the production of Crémant de Loire and Champagne, and above all to conduct a slow
prise de mousse at a low temperature [15,16]. Until the first half of the 20th century, the
second fermentation conducted in cellars, between 10 and 15 ◦C, also made it possible
to limit the breakage of bottles which were less pressure-resistant and the prise de mousse
process being less controlled than nowadays [17,18].

Nevertheless, in the Champagne area and for decades, it has often been said about
the prise de mousse that: “if it is too rapid and it produces large, flabby bubbles that soon
go flat. But taken slowly, at a cool even temperature, it leaves the wine with fine, delicate
bubbles that seemingly last forever”, as mentioned on the official website of the Union
of the Champagne Houses [19]. To the best of our knowledge, although the second in-
bottle fermentation is traditionally carried out in cellars where the temperature is close
to 13 ◦C and constant all year along, no studies have examined the relation between this
parameter and the persistence and the finesse of the effervescence, or of the foam collar of
the sparkling wines elaborated through the traditional method. Higher temperatures might
likely influence the release of compounds by yeasts, as well as the chemical and biochemical
reactions undergone by the wine. The first report on the influence of temperature (12 or
16 ◦C) during the second fermentation and aging of Spanish sparkling wines was conducted
in 2015 by Esteruelas et al. [20]. Interestingly, better foaming properties were observed
for the Cavas elaborated at a low temperature (i.e., 12 ◦C), which might be explained by
their higher content in low molecular weight proteins (below 40 kDa) and oligosaccharides
(below 7.5 kDa). However, the foaming properties were studied through a gas sparging
method on a degassed sparkling wine, and thus far from real tasting conditions.

As such, the aim of our study was to unveil the impact of two distinct temperatures
for the prise de mousse (namely, 13 and 20 ◦C) on several characteristics of sparkling wines,
in real tasting conditions: (i) the progressive loss of dissolved CO2 as well as (ii) the collar
height and (iii) the average bubble size in the collar. Three batches of base wines were
used for these experiments: one Crémant de Loire and two Champagnes. A campaign of
analysis was carried out on the wines that were disgorged two weeks after the end of the
secondary fermentation.

2. Results
2.1. Initial Concentrations of Dissolved CO2

The first comparison on the influence of the temperature of the prise de mousse was
made on a typical characteristic of Champagne or sparkling wines: their dissolved CO2
concentration (responsible for bubble formation and foam). As first observed by Liger-
Belair et al. [21], losses of dissolved CO2 are indeed experienced by a Champagne wine
during the pouring step, because turbulence and eddies vigorously agitate the liquid phase
as Champagne progressively invades the glass. Immediately after pouring Champagne
into a glass, the dissolved CO2 concentration falls to a level in a range between about 6 and
9 g.L−1, depending on several parameters, such as the Champagne temperature [22], bottle
type [23], or glass shape [24]. Table 1 displays the average concentration of dissolved CO2
initially found in the bottle before pouring (cbottle) and the one measured just after pouring
each sample into a flute (c0 f lute ).

Before pouring, samples A13 and A20 had a similar cbottle whereas for samples B and C,
the concentration of dissolved CO2 found in the bottle was higher in the Champagne wines
elaborated at 20 ◦C for their prise de mousse than those elaborated at a lower temperature.
Then, it was crucial to measure the initial concentration of dissolved CO2 in the flute,
immediately after pouring each sample of wine, (c0 f lute ). Indeed, it is preferable that each
pair of compared wines hold the same concentration of dissolved CO2 in the flute, in order
to provide a rigorous comparison of the loss of dissolved CO2 and of the foaming properties
of these wines. We can observe from Table 1 that the initial dissolved CO2 concentrations
found in the flute (c0 f lute ) were statistically similar for each batch of sparkling wine. We can
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thus conclude that the temperature of the prise de mousse had no impact on this parameter,
whatever the batch of sparkling wine.

Table 1. Initial concentrations of dissolved CO2 found in the bottle (cbottle) and in the flute (c0 f lute ).

Concentration of Dissolved
CO2 (g.L−1) 1

Temperature of the
prise de mousse (◦C) Batch A Batch B Batch C

cbottle
13 9.65 ± 0.07 a 8.79 ± 0.08 a 9.38 ± 0.08 b

20 9.60 ± 0.08 a 8.92 ± 0.08 a 9.52 ± 0.09 a

c0 f lute
13 6.50 ± 0.23 a 5.90 ± 0.16 a 6.32 ± 0.16 a

20 6.37 ± 0.18 a 5.96 ± 0.24 a 6.30 ± 0.08 a

1 Data represent mean value ± standard deviation (n = X). Values with different letters, within a column and for a concentration (cbottle or
c0 f lute ) are significantly different (P < 0.05).

2.2. Influence of the Temperature of the prise de mousse on the Losses of Dissolved CO2 versus Time

Once each sample of sparkling wine was poured into the flute, the progressive loss
of dissolved CO2 concentration with time, denoted ∆c(t) and expressed in g.L−1, was
easily accessed by retrieving the following relationship established from the cumulative
mass-time series (m(t)) corresponding to each sample of wine:

∆c(t) = c f lute(t)− c0 f lute = − m(t)
Vf lute

(1)

with Vf lute corresponding to the volume of sparkling poured into the flute in L (i.e., 0.1 L
in these experiments). Losses of dissolved CO2 concentration experienced by each pair
of sparkling wines (A13/A20; B13/B20; C13/C20) during the ten minutes following the
pouring process, were calculated from the above equation and are presented in Figure 2.

Figure 2. Cont.
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Figure 2. Progressive losses of dissolved CO2 concentration (g.L−1) during the ten minutes following
pouring of each pair of sparkling wine into a flute; (a) sparkling wines A13 (blue, n = 12) and A20
(red, n = 10); (b) sparkling wines B13 (blue, n = 10) and B20 (red, n = 9); (c) sparkling wines C13 (blue,
n = 11) and C20 (red, n = 10). Each point of each curve corresponds to the mean of values recorded
from at least nine successive pourings. Error bars corresponds to standard deviations of the values
obtained by the successive data recordings.

It is worth noting that, for a given sparkling wine sample, the concentration of dis-
solved CO2 found within a flute progressively decreases in the course of the 10 min
following pouring. As displayed in Figure 2a, for sparkling wine A, a significant difference
appears between the two progressive loss–time curves of dissolved CO2 concentration.
At 600 s, the cumulative loss of dissolved CO2 for sparkling A20 and A13, was 2.19 g/L
and 1.89 g/L, respectively. Thus, a lower temperature of the prise de mousse, for this wine,
allowed a significant reduction (P < 0.05) in the loss of dissolved CO2 during the ten
minutes of this experiment. Indeed, sparkling wines B20 and C20 also suffered larger losses
of dissolved CO2 than the corresponding wines elaborated at 13 ◦C for the prise de mousse,
but differences were only significantly different (at P < 0.05) between 50 s and 600 s after
the beginning of monitoring. Depending on the wine sample, between 0.09 and 0.30 g/L of
dissolved CO2 can be kept in the liquid during the ten min of tasting, if the sparkling wine
is elaborated at a lower temperature during the prise de mousse. As far as we know, this is
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the first time that the impact of the temperature of the prise de mousse was shown to reduce
the loss of dissolved CO2 under standard tasting conditions.

2.3. Influence of the Temperature of the prise de mousse on CO2 Volume Fluxes

Once poured into the flute, the driving force behind the desorption of dissolved CO2
from Champagne or sparkling wines being its bulk concentration of dissolved CO2, it
seemed relevant to propose a correlation between the CO2 volume flux outgassing from
the flute (see Section 4.3) and the continuously decreasing bulk concentration of dissolved
CO2 (Figure 3) [25].

Figure 3. CO2 volume flux (in cm3.s−1) desorbing from a 100 mL flute filled with wine samples
(a) A13 and A20, (b) B13 and B20, and (c) C13 and C20, as function of its dissolved-CO2 concentration
(in g.L−1). Each data of each time series is the arithmetic average of at least nine successive values
recorded from at least nine successive pourings.
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It is clear from Figure 3 that the higher the concentration of dissolved CO2 in a
sparkling wine, the higher the CO2 volume flux escaping from the flute. Most interestingly,
for a given dissolved CO2 concentration, the lower the temperature of the prise de mousse,
the lower the CO2 volume fluxes found to be released from the flute. Nevertheless, this
result was exclusively significant for more than half of the data for sparkling wines A, more
than a third for sparkling wines C, and a few points for sparkling wines B.

Therefore, the lower the temperature of the prise de mousse of the wine, the lower the
progressive loss of dissolved CO2 concentration with time. The observed increase in the
CO2 volume fluxes for samples A20, B20 and C20 could be interpreted as being a result
of bubbles with a higher diameter. The concentration of dissolved CO2 influences the
effervescence and thus the CO2-degassing process of Champagne and sparkling wines. It
is also correlated to the bubble size at the air–liquid surface that forms the foam collar [26].

To determine whether the temperature of the prise de mousse had an effect on bubble
size, the evolution of the foaming properties (i.e., foam collar and bubble size) was studied
under real tasting and standardized conditions, as described in the following paragraph.

2.4. Foaming Properties in Real Tasting Conditions

Various methods exist to study the foaming properties of Champagne and sparkling
wines [27]. The widely used gas-sparging method, namely the Mosalux, has been previ-
ously employed to determine the influence of temperature during the second fermentation
and aging of Spanish sparkling wines (AOC Cava) on various foam parameters (maximum
foam height and stable foam height) [20]. They showed that a lower temperature during
the prise de mousse (i.e., 12 ◦C) led to better foaming properties. In order to analyze the
foaming properties of our samples in real tasting conditions, it was decided that the opti-
mal procedure was to take pictures of the foam collar every 30 s during the ten minutes
following the end of pouring.

2.4.1. Foam Collar

The so-called effervescence process of Champagne and sparkling wines leads to the
formation of a foam ring at the periphery of the glass, also known as the collar or foam
collar. The evolution of the foam collar of each sparkling wine was monitored during the
first ten minutes following the end of pouring (Figure 4).

Figure 4. Cont.



Molecules 2021, 26, 4434 8 of 15

Figure 4. Evolution of the foam collar under standardized tasting conditions, during ten minutes
after the end of pouring of (a) wine samples A, (b) wine samples B, and (c) wine samples C. Heights
of foam that are significantly different, are denoted with an asterisk (with P < 0.05).

At 0 s, the height of the foam was often much higher, as it is most related to the amount
of foam formed during the pouring of the sparkling wine into the glass. Depending on the
sample, this foam might disappear more or less quickly. Furthermore, the amount of foam
formed during the pouring process is dependent on the concentration of dissolved CO2
and also on the presence of molecules that are able to promote foam. In our experiments,
all the laser-etched glasses provided a standardized effervescence, only restricted to the
artificial nucleation sites.

The evolution of the foam collar was similar between samples B13 and B20 (Figure 4b)
and between samples C13 and C20 (Figure 4c) for the ten minutes following the end of
pouring. As seen in Figure 4a, the collar of sparkling wine A elaborated at 20 ◦C (A20) was
significantly thicker than the collar of the same wine elaborated at 13 ◦C (A13), between
30 s and 480 s after the end of pouring. Thus, our study performed under real tasting
conditions did not confirm previous results from Esteruelas et al. (2015) [20] obtained with
the Mosalux method.
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2.4.2. Bubble Size

The diameter of the bubbles in the foam collar was measured at 1 min after the end of
pouring and at 10 min (Figure 5). One minute was chosen as it corresponds approximately
to the end of the collapse of the foam after the pouring process, and to the beginning of a
rather stable plateau related to the foam stability. Then, as the foam collar remained stable
until the end of the experiment (as seen in Figure 4), it was interesting to compare the
bubble sizes at 10 min, in order to examine if the temperature of the prise de mousse might
also have an impact on it.

Figure 5. Average diameter of bubbles in the foam collar from the six wine samples, measured at 1
and 10 min after the end of pouring. (a) Wine samples A and (b) wine samples C.

At 1 min after the end of pouring (Figure 5a,b), the average diameter of the bubbles in
the foam collar was significantly higher for the wines A20 and C20. Furthermore, as seen
in Figure 5, the bubbles retained in the foam collar, at 10 min after the end of pouring, were
also significantly smaller for the wines A13 and C13, elaborated at a lower temperature
during the prise de mousse. No significant difference was observed for the bubbles of the
wines B13 and B20 (data not shown). We also observed that, rather counterintuitively, the
size of the bubbles in the foam collar increased during the ten min after pouring. Indeed,
Liger-Belair showed in 2005 that the average size of the bubbles rising to the liquid surface
progressively decreases as time proceeds in a glass of Champagne or sparkling wine, due
to the progressive loss of dissolved CO2 from the liquid (through the effervescence and
through the diffusion of CO2 across the air/wine interface) [26]. Interestingly, in 2015,
White and Heyman [28], also showed a decrease in the visual effervescence attributes
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(i.e., size and concentration of bubbles in the liquid) over time. In our case, we have
followed the size of the bubbles that form the foam collar. We can thus suppose that
the chemistry of these sparkling wines leads to a better stability of the bubbles, and
thus leads to a higher size at 10 min after the end of pouring, whatever the temperature
of the prise de mousse. This might be the result of a good balance between the bubble
coalescence, bubble disproportionation and foam drainage that would occur at a lower
rate [27]. Moreover, the presence of tensioactive macromolecules in the liquid film (such as
proteins and polysaccharides) would lead to an expansion of the CO2 inside the bubbles,
leading to larger bubbles with a better stability.

Finally, the photographs displayed in Figure 6 compare the foam collar from the
batches of sparkling wines A and C, at 10 min after pouring. It is clear that the bubble’s size
distribution is different between the wines elaborated at 13 ◦C for the prise de mousse and
those elaborated at 20 ◦C. Thus, A13 and C13 showed significantly smaller bubbles than the
wines A20 and C20, respectively. These differences observed between the wines elaborated
at 13 ◦C and those elaborated at 20 ◦C might be explained by the differences in the chemical
composition that occurred during the period of the in-bottle fermentation [29,30]. Indeed,
we have noted that the quantity of total yeast cells at the end of the prise de mousse was much
lower at 13 ◦C than at 20 ◦C, for sparkling wines A and C (see Figure S1). Nevertheless,
viable yeast cells were only present in the sparkling wines elaborated at 13 ◦C. Thus, the
quantity and, also the nature of the compounds released by these yeast populations might
vary according to the final yeast population (and to the proportion of viable and dead yeast
cells), but also thanks to the effect of the temperature of the prise de mousse that should
accelerate the autolytic process [5,9,10].

Figure 6. Closeup of the foam collar at 10 min after the end of pouring, from wine samples A and C
(bar = 1 cm).

3. Conclusions

The “prise de mousse” is a key step of the traditional method, which has been thoroughly
studied since the end of the 17th century, from the first elaboration of sparkling wines
in Champagne and worldwide. Many renowned scientists and men have contributed to
acquire better knowledge and control of this second alcoholic fermentation, enabling its
success in order to obtain high quality sparkling wines [17].
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As far as we know, this is the first set of analyses that investigated the impact of
the temperature of the prise de mousse on the effervescence and the foaming properties
under standard tasting conditions. Our results showed that the sparkling wines elaborated
at 13 ◦C and served in standardized tasting conditions had a better ability to keep the
dissolved CO2 in the liquid phase than those elaborated at 20 ◦C (with P < 0.05). Most
interestingly, we also observed that two batches of sparkling wines (one Crémant de Loire
and one Champagne wine) which underwent their prise de mousse at 13 ◦C presented
slightly smaller bubbles in the foam collar (with P < 0.05). Further experiments are under
investigation to confirm these results on Champagne wines and sparkling wines aged
during a longer period (i.e., 15 months). A detailed knowledge of the chemical and
biochemical differences between the sparkling wines elaborated at 13 ◦C and 20 ◦C may
help to better understand the different behaviors observed in this study.

4. Materials and Methods
4.1. Sparkling Wines Samples

Three batches of sparkling wines, namely A, B and C, were elaborated from three
distinct base wines. Sample A correspond to a base wine from Crémant de Loire and
samples B and C are Champagne base wines. All base wines were elaborated under
standard winemaking practices. The same conditions (yeast IOC 18-2007, IOC, France;
sucrose; caps PE.DI, Ivrea, Italy) were applied for the 2nd in-bottle alcoholic fermentation
to the three batches of base wines, except for the temperature. Indeed, each batch was
divided into two groups: one elaborated at 13 ◦C, and defined as A13, B13 and C13; and
another group elaborated at 20 ◦C (i.e., A20, B20 and C20). All wines were disgorged
manually two weeks after the end of the 2nd alcoholic fermentation, and stored at their
respective temperatures, 13 ◦C or 20 ◦C for the two weeks before the pouring experiment.
Enological parameters were determined, through standard OIV analytical methods, on one
bottle for each sparkling wine (see Figure S2).

4.2. Standardized Tasting Conditions

For the determination of the CO2 content in the flute and the measurement of the
flux of CO2 desorbing from the flute poured with sparkling wines, 100 mL of each sample
were poured into a standard flute (Lehmann glass, Reims, France). In order to provide
a standardized effervescence for each sample, the flute was engraved at its bottom with
twenty laser beam impacts. Prior to each experiment, the flute was thoroughly washed
in a dilute acetic acid solution, rinsed using hot tap water and distilled water, and then
oven-dried at 60 ◦C. This cleaning procedure forbids the formation of tartrate crystals on
the glass wall as well as the adsorption of any dust particle acting as “natural” bubble
nucleation sites. In this way, the CO2 bubble nucleation process is essentially restricted to
the laser beam impacts, so that differences in CO2 release are attributed only to physico-
chemical differences between sparkling samples themselves. For 24 h prior to the pouring
experiments, all sparkling wine samples were stored at 18 ± 1 ◦C. This temperature was
chosen in order to avoid condensation on the glass wall, which would modify the mass
loss of the flute and prevent a correct observation of the foam collar.

4.3. Measuring Concentrations of Dissolved CO2 in Sparkling Wines Samples

The determination of the dissolved CO2 concentration (in g.L−1) was achieved by the
official method recommend by the International Office of Vine and Wine (OIV), based on
the article by Caputi et al. (1970), using carbonic anhydrase (Sigma-Aldrich, USA) [31].
The dissolved CO2 content of each sparkling wine sample was measured in-bottle (cbottle)
and, just after pouring the wine in the flute (cflute). Both measurements techniques were
thoroughly described in Moriaux et al. (2021) [32].



Molecules 2021, 26, 4434 12 of 15

4.4. Measuring the Flux of CO2 Desorbing from the Flute Poured with Sparkling Wines

A measure of 100 ± 3 mL of Champagne were carefully poured into a flute. Just after
pouring, the glass was then manually placed on the weighing chamber base plate of a
precision weighing balance (Sartorius, Secura 324 1S) with a total capacity of 320 g and a
standard deviation of ±0.0001 g. The Sartorius balance was interfaced with a laptop PC
recording data every 5 s from the start signal, activated just before the glass poured with
sparkling wine was placed on the weighing chamber base plate. The total cumulative mass
loss experienced by the glass poured with sparkling wine was recorded during the first
10 min following the pouring process. Actually, the mass loss of the flute poured with
sparkling wine sample is the combination of both (i) CO2 progressively desorbing from the
supersaturated liquid phase, and (ii) its evaporation. The mass loss attributed to sparkling
wine evaporation only was accessible by recording the mass loss of a flute poured with a
sample of 100 mL of sparkling wine first degassed under vacuum.

Experiments were conducted in a thermo-regulated room with a constant temperature
of 22 ± 1 ◦C. Between the successive pourings, bottles were hermetically closed and stored
at 18 ± 1 ◦C. Due to likely variations in hygrometric conditions from day-to-day, sparkling
wine evaporation was measured with a degassed sparkling wine sample, just before each
series of total mass loss recordings were carried out. The cumulative mass loss versus
time attributed only to CO2 molecules progressively desorbing from sparkling wine may
therefore be readily available by subtracting the data series attributed to evaporation
only from the total mass loss data series. Moreover, from a cumulative mass loss–time
curve, the mass flux of CO2 desorbing from the sparkling wine surface (denoted FCO2)
was thus experimentally deduced all along the degassing process in the flute, by dividing
the mass loss ∆m between two data recordings by the time interval ∆t between two data
recordings (i.e., FCO2 = ∆m

∆t ). In champagne and sparkling wine tasting, it is nevertheless
certainly more pertinent to deal with volume fluxes rather than with mass fluxes of CO2. By
considering gaseous CO2 desorbing from sparkling wine as an ideal gas, the experimental
total volume flux of CO2 (in cm3 s−1), denoted FT , is therefore deduced as follows, all along
the degassing process:

FT = 106
(

RT
MP

)
∆m
∆t

(2)

with R being the ideal gas constant (equal to 8.31 J K−1 mol−1), T being the sparkling wine
temperature (i.e., 291 K in the present case), M being the molar mass of CO2 (equal to
44 g mol−1), P being the ambient pressure (close to 105 N m−2), the loss of mass between
two successive data records ∆m being expressed in g, and ∆t being the time interval
between two data recordings (i.e., 5 s in this case).

To enable a statistical treatment, at least three successive pourings from two distinct
bottles and time series data recordings were done, for each sparkling wine (A13, A20, B13,
B20, C13, C20). At each step of the time series (i.e., every 5 s), an arithmetic average of the
six data provided by the six successive time series was calculated, to finally produce one
single “average” data series (with standard deviations corresponding to the root-mean-
square deviations of the values provided by the six successive data recordings).

4.5. Foaming Properties (Collar Height and Bubbles Size) in Tasting Conditions

Fluxes of gaseous CO2 released from a sparkling wine flute and foaming properties
(collar height and bubble size) were simultaneously monitored under standard tasting
conditions, throughout the 10 min following pouring (Figure 7).
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Figure 7. Experimental setup used to monitor simultaneously fluxes of gaseous CO2 and foaming
properties, under standard tasting conditions.

Indeed, collar height and bubble size were measured through a collection of images
captured by a digital camera every 30 s, during the 10 min following the pouring process.
Collar height was precisely measured at 0, 30, 60, 120, 240, 360, 480 and 600 s, and bubble
sizes of the foam collar were measured at 1 min and 10 min after the end of pouring. All
measurements were performed using the ImageJ software (National Institute of Health,
Bethesda, MD, USA, https://imagej.nih.gov/ij/, accessed on 21 July 2021).

4.6. Statistical Analysis

A one-way ANOVA with Student’s t-test using JMP Pro 12 software (SAS Institute)
was carried out to determine whether average concentrations of dissolved CO2, fluxes of
gaseous CO2, collar height and bubble size were considered as statistically different from
sparkling wines elaborated at 13 ◦C to those elaborated at 20 ◦C. Differences at P < 0.05
were considered as significant.

Supplementary Materials: The following are available online, Figure S1: Yeast population at the end
of the prise de mousse.
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