Triterpenoid saponins from Anagallis monelli ssp. linifolia (L.) Maire and their chemotaxonomic significance

Chouaib Aouane, Ahmed Kabouche, Laurence Voutquenne-Nazabadioko, Charlotte Sayagh, Agathe Martinez, Abdulmagid Alabdul Magid, Zahia Kabouche

To cite this version:

Chouaib Aouane, Ahmed Kabouche, Laurence Voutquenne-Nazabadioko, Charlotte Sayagh, Agathe Martinez, et al.. Triterpenoid saponins from Anagallis monelli ssp. linifolia (L.) Maire and their chemotaxonomic significance. Phytochemistry, 2022, 202, pp.113305. 10.1016/j.phytochem.2022.113305 . hal-03719312

HAL Id: hal-03719312
https://hal.univ-reims.fr/hal-03719312
Submitted on 11 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Triterpenoid saponins from Anagallis monelli ssp. linifolia (L.) Maire and their chemotaxonomic significance

Chouaib Aouane ${ }^{\text {a,b }}$, Ahmed Kabouche ${ }^{\text {a }}$, Laurence Voutquenne-Nazabadioko ${ }^{\mathrm{b}^{*}}$, Charlotte Sayagh ${ }^{\text {b }}$, Agathe Martinez ${ }^{\text {b }}$, Abdulmagid Alabdul Magid ${ }^{\text {b }}$, Zahia Kabouche ${ }^{\text {a }}$

${ }^{\text {a }}$ Université des frères Mentouri-Constantine 1, Département de chimie, Laboratoire d'Obtention des Substances Thérapeutiques (LOST), Campus Chaabet-Ersas, 25000 Constantine, Algeria
${ }^{\text {b }}$ Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France

Abstract

Thirteen undescribed triterpenoid saponins named monellosides A-M, were isolated from the aerial parts of Anagallis monelli ssp. linifolia (L.) Maire, together with ten known oleanane-type glycosides. Their structures were elucidated by 1D and 2D-NMR spectroscopy (COSY, TOCSY, HSQC, HMBC and ROESY) as well as high resolution mass spectrometry (HR-ESIMS) and acid hydrolysis. Monellosides A-M have a carbohydrate chain linked on the C-3 of the aglycone with a common β-D-glucopyranosyl-($1 \rightarrow 4$)- α-L-arabinopyranosyl sequence which was further glycosylated by a glucose and/or a xylose. The sequence β-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] $\alpha-$ L- arabinopyranosyl was common to all the 13,28-epoxy-oleanane core skeleton except one compound. In order to discuss the reclassification of Anagallis in Primulaceae, we compared saponins from species of Myrsinaceae and Primulaceae families and showed that these species were characterized by a pentacyclic triterpenoid saponin with a 13,28-epoxy bridge skeleton. Our phytochemical results increase the knowledge of saponins of the genus Anagallis, their chemotaxonomy and stimulate the evaluation of the biological activities of these saponins.

Keywords: Anagallis monelli, Primulaceae, Triterpenoid saponins, Chemotaxonomy

1. Introduction

The genus Anagallis currently belongs to the Primulaceae family, although recent studies based on DNA sequences of three chloroplast genes and morphology have suggested its placement in the Myrsinaceae as Lysimachia (Källersjö et al., 2000; Manns and Anderberg, 2009 and 2011). Anagallis contained about 28 species growing as mainly annual herbs, distributed in Africa, Madagascar, Europe and South America. This genus is represented in Algeria by four species A. arvensis L., A. monelli L., A. repens Pomel. and A. enella L. (Quezel and Santa, 1963). The plant Anagallis monelli is an endemic herb from North Africa and is represented in Algeria by two different subspecies, Anagallis monelli ssp. collina (Schousb.) Maire and Anagallis monelli ssp. linifolia (L.) Maire (Quezel and Santa, 1963). Among the
studied species of the genus Anagallis, A. arvensis and A. foemina have been used in traditional medicine in Navarre (Spain) against skin injuries like burns and wounds (López et al., 2011). The whole plant of A. arvensis has been used for liver complications in Taiwan, for skin diseases in Italy and for fish poisoning in rural areas of Nepal (Yasmeen et al., 2020). Chemical investigations on Anagallis spp. have been mainly characterized by the presence of saponins (Aliotta et al., 1992 ; Amoros and Girre, 1987; Glombitza and Kurth, 1987a and b; Shoji et al., 1994a and b; Soberón et al., 2017), pentacyclic triterpenes (Aliotta et al., 1992; De Napoli et al., 1992; Heitz et al.,1971), flavonoids and polyphenols (Ammar et al., 2008; Ishikura, 1981; Kawashty et al., 1998; Rastogi and Norula, 1980), sterols (Rastogi and Norula, 1980), in addition to alkaloids and quinones (Saxena and Rao, 2021). Triterpenoid saponins were found in a wide variety of higher plants and display a wide range of pharmacological activities, including haemolytic, expectorant, anti-inflammatory, hypolipidemic, gastroprotective, immunomodulatory and antimicrobial properties (Netala et al., 2015; Podolak et al., 2010). The potential anticancer activity of saponins has been suggested by their cytotoxic, cytostatic, pro-apoptotic and anti-invasive effects (Koczurkiewicz et al., 2015). The 13,28-epoxy-oleanane type saponins from the plant families Myrsinaceae and Primulaceae show also a wide range of biological activities such as cytotoxic activities (Foubert al., 2008; Podolak et al., 2013a).
Anagallis monelli ssp. linifolia (L.) Maire [Synonym of Anagallis monelli L.], also known under the synonym Lysimachia monelli (L.) U. Mann and Anderb, is an herbaceous, perennial herb. The 8 to 60 cm long stems are woody at the base. The leaves are opposite. The flowers in the axils of the upper leaves are carried by pedicels of 12 to 40 mm , opposite or in 3 veinlets, longer than the leaves. The lobes of the calyx of 3.6 to 7 mm , are lanceolate, with a scarious margin, sometimes finely serrated (Valdes et al., 1987). In this work, we have studied the chemical profile of Anagallis monelli ssp. linifolia and isolated 13 undescribed triterpenoid saponins, namely monellosides A-M (1-13) and ten known triterpenoid saponins (14-23). The chemophenetic significance of the isolated saponins was discussed by comparing saponins from other Primulaceae species.

2. Results and discussion

2.1 Isolation and structural elucidation

The 70% EtOH extract from the aerial parts of A. monelli ssp. linifolia was sequentially partitioned with EtOAc and n - BuOH , respectively. The n - BuOH soluble fraction was subjected to a Diaion HP-20 resin chromatography to give three fractions (A-C). The saponin-containing fraction (C), was subjected to further column chromatography to give ten known compounds and thirteen undescribed saponins named monellosides A-M (1-13) (Fig. 1). Their structures were elucidated by NMR techniques (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}$, TOCSY, ROESY, HSQC, and HMBC) and mass spectrometry (HR-ESI-MS) and by comparison with literature data. The
monosaccharides of monellosides A-M (1-13) obtained by acid hydrolysis of an aliquot of the saponin-containing fraction (C) were identified as L-arabinose, D-glucose and D-xylose by comparison on TLC with authentic samples followed by measurement of their optical rotation values after purification on TLC.
Compound 1 was obtained as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{52} \mathrm{H}_{86} \mathrm{O}_{22}$ based on the negative-ion HR-ESI-MS (1061.5537 [M-H], calcd 1061.5532). The ${ }^{1} \mathrm{H}$ NMR data (Table 1) showed the presence of seven signals corresponding to the tertiary methyls at $\delta_{\mathrm{H}} 1.28,1.17,1.08,1.00,0.98,0.92$ and 0.87 giving correlations with seven carbons signals in the HSQC spectrum at $\delta_{\mathrm{c}} 18.7$ (C-27), 17.4 (C-26), 27.0 (C-23), 32.3 (C-29), 24.6 (C-30), 15.3 (C-25) and 15.3 (C-24), respectively. In addition, the HSQC spectrum showed correlations at $\delta_{\mathrm{H}} 4.33(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-16) / \delta_{\mathrm{C}} 69.8(\mathrm{C}-16), \delta_{\mathrm{H}} 3.16(1 \mathrm{H}, \mathrm{dd}, J=$ $11.7,4.3 \mathrm{~Hz}, \mathrm{H}-3) / 90.0(\mathrm{C}-3)$ and $\delta_{\mathrm{H}} 3.74(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, \mathrm{H}-22) / \delta_{\mathrm{C}} 74.2$ (C-22). Furthermore, a quaternary carbon signal at $\delta_{\mathrm{C}} 86.9$ due to $\mathrm{C}-13$ was linked to an oxygenated methylene at $\delta_{\mathrm{H}} 3.67\left(\mathrm{~m}, \mathrm{H}_{2}-28\right)$ in the HMBC spectrum (Aliotta et al., 1992). HMBC spectrum showed also correlations from $\mathrm{H}_{2}-28$ and $\mathrm{H}-18\left[\delta_{\mathrm{H}} 1.47(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz})\right]$ to two oxygenated methines at $\delta_{\mathrm{C}} 69.8(\mathrm{C}-16)$ and $\delta_{\mathrm{C}} 74.2(\mathrm{C}-22)$ and from $\mathrm{H}-3\left(\delta_{\mathrm{H}} 3.16\right)$ to carbons at $\delta_{c} 27.0$ (C-23), 15.3 (C-24) and a quaternary carbon at $\delta_{c} 39.2$ (C-4) (Fig. 2). Taken together, these data were indicative of a 13,28-epoxy-16,22-dihydroxyoleanan skeleton (priverogenin B) (Kitagawa et al., 1972 ; Yosioka et al., 1967). This assumption was confirmed by detailed analysis of the COSY, ROESY, HSQC and HMBC spectra which allowed the full assignment of the proton and carbon resonances of the aglycone (Table 1). Correlations observed between $\mathrm{H}-3 / \mathrm{H}-5$ and $\mathrm{H}-5 / \mathrm{H}-9$ in the ROESY spectrum indicated their α-axial orientation and thus the β-orientation of the oxygen at C-3 (Aliotta et al., 1992). The 16α configuration of hydroxyl group was evident from the small coupling constant ${ }^{3} J_{H-16 / H-15}$ value (J $=5 \mathrm{~Hz}$), characteristic of an equatorial $\mathrm{H}-16$ proton (Lehbili et al., 2018), which was confirmed by the correlations from $\mathrm{H}-16 / \mathrm{H}-15 \mathrm{ax}$ and $\mathrm{H}-16 / \mathrm{H}_{3}-26 \beta$-oriented in the ROESY spectrum. In the same fashion, the coupling constants of $\mathrm{H}-22$ at $\delta_{\mathrm{H}} 3.74(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.9 \mathrm{~Hz})$ indicated its axial orientation which was confirmed by the correlations $\mathrm{H}-22 / \mathrm{H}-30$ and $\mathrm{H}-22 / \mathrm{H}-28$ in the ROESY spectrum; leading to the α-orientation of the oxygen at C-22 (Aliotta et al., 1992). In addition, the HMBC correlation between the $\mathrm{H}-3$ proton ($\delta_{\mathrm{H}} 3.16$) and an anomeric carbon at $\delta_{\mathrm{C}} 104.2$ (C-1') indicated that a glycosidic moiety was linked to C-3. After acid hydrolysis, the sugar units were identified as L-arabinose, D-glucose and D-xylose by co-TLC with authentic sugar followed by measurement of the optical rotation values of each purified monosaccharide. The 1D and 2D NMR spectra of compound 1 confirmed the presence of one α-L-arabinopyranosyl unit [$\delta_{\mathrm{H}} 4.41$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-1$ '), $\delta_{\mathrm{c}} 104.2, \mathrm{C}-1$ '], two β-Dglucopyranosyl units [$\delta_{\mathrm{H}} 4.71(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-1 "), \delta_{\mathrm{C}} 103.0, \mathrm{C}-1$ "; $\delta_{\mathrm{H}} 4.54(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\left.\left.\mathrm{Hz}, \mathrm{H}-1{ }^{\prime \prime \prime}\right), \delta_{\mathrm{C}} 103.4, \mathrm{C}-1{ }^{\prime \prime \prime}\right]$ and one β-D-xylopyranosyl unit [$\delta_{\mathrm{H}} 4.53\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime \prime \prime}{ }^{\prime \prime}\right)$, $\delta_{\mathrm{C}} 105.9, \mathrm{C}-1^{1 " \prime "]}$ (Table 2). The coupling constant of $\mathrm{H}-1^{\prime}\left({ }^{3} \mathrm{~J}_{\mathrm{H}-1^{\prime} / \mathrm{H}-2^{\prime}}=6.6 \mathrm{~Hz}\right)$ and the axial
correlations observed between $\mathrm{H}-1 / / \mathrm{H}-3$ ' and $\mathrm{H}-1 / / \mathrm{H}-5$ ' in the ROESY spectrum of 1 , indicated the α-anomer configuration of the arabinose unit. The large coupling constants from anomeric protons ($>7 \mathrm{~Hz}$) of the xylose and glucoses units, indicated their β-configurations (Liang et al., 2011). Extensive 2D-NMR analysis (COSY, TOCSY, ROESY, HSQC and HMBC) enabled the full assignments of all proton and carbon resonances of each monosaccharide (Table 2). HMBC correlation between $\mathrm{H}-1$ ' and $\mathrm{C}-3$ indicated that the arabinose unit was linked to $\mathrm{C}-3$ of the aglycone. The glycoside sequence of compound 1 was determined by analysis of the HMBC and ROESY spectra. Thus, HMBC correlations were observed between H-1" / C-2' (δ_{C} 78.0), H-1"' / C-4' ($\delta_{\mathrm{C}} 78.8$) and H-1""' / C-2"' ($\delta_{\mathrm{c}} 83.7$) (Fig. 2). In addition, ROESY correlations confirming the interglycosidic linkage and the point of attachment of the tetra-saccharide at the C-3 of the aglycone were observed between H-1'/ H-3, H-1" / H-2', H-1"' / H-4' and H-1""' / H2 "' (Fig. 2). According to the above results, the structure of compound $\mathbf{1}$ was elucidated as 3-O- β-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-priverogenin B, named monelloside A.

Compound 2, isolated as white amorphous powder, had a molecular formula of $\mathrm{C}_{58} \mathrm{H}_{96} \mathrm{O}_{27}$ determined by the negative-ion HR-ESI-MS (1223.6061 [M-H], calcd 1223.6071), and differed from 1 by 162 amu corresponding to a supplementary hexosyl group. Comparison of the NMR data of $\mathbf{2}$ with those of $\mathbf{1}$ (Tables 1 and 2) showed that they shared the same aglycone but differed by the presence in 2 of an additional hexose unit identified as β-D-glucopyranose
 linkage of GlcIII to Glcll on C-4"' (Shoji et al., 1994a). Therefore, the structure of compound 2 was established as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl-($1 \rightarrow 2$)-] β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-priverogenin $\quad B$, named monelloside B .

Compound 3 was obtained as a white amorphous powder. Its molecular formula was determined as $\mathrm{C}_{54} \mathrm{H}_{88} \mathrm{O}_{23}$ on the basis of its negative-ion HR-ES-IMS (1103.5629 [M-H], calcd 1103.5638) and it differed from 1 by 42 amu corresponding to an additional acetyl group. Extensive 1D and 2D-NMR analysis (Tables 1 and 2) showed that compound $\mathbf{3}$ differ from 2 by the absence of a hydroxyl group at C-22 and the presence of a hydroxyl group at C-23 of the aglycone, as in anagalligenin B (Mahato et al., 1991, Shoji et al., 1994b). Additional signals assigned to an acetyl group linked to C-6" of GIcl, was evidenced by the HMBC correlations between a carbonyl carbon signal at $\delta_{\mathrm{C}} 171.5$ with methyl protons at $\delta_{\mathrm{H}} 2.08$ and the same carbonyl carbon signal with $\mathrm{H}_{2}-6$ " of $\mathrm{Glcl}\left(\delta_{\mathrm{H}-6 "} 4.20(1 \mathrm{H}, \mathrm{dd}, J=11.5,2.5 \mathrm{~Hz})\right.$; indicating that $\mathbf{3}$ was an acetylated derivative of desglucoanagalosine B(20) (Shoji et al., 1994b). According to the above results, the structure of compound 3 was elucidated as $3-O-\beta$-D-xylopyranosyl$(1 \rightarrow 2)-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[6-O-acetyl- β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-anagalligenin B, named monelloside C

Compound 4 had a molecular formula of $\mathrm{C}_{59} \mathrm{H}_{98} \mathrm{O}_{28}$, determined on the basis of its negativeion HR-ESI-MS (1253.6169 [M-H]; calcd 1253.6166). Extensive 1D and 2D NMR analysis showed that compounds 4 and 2 differed only by the aglycone part (Tables 1 and 2). Compound 4 revealed six signals corresponding to tertiary methyls at $\delta_{\mathrm{H}} 1.25\left(\mathrm{H}_{3}-27\right), 1.20$ $\left(\mathrm{H}_{3}-26\right), 0.96\left(\mathrm{H}_{3}-25\right), 0.94\left(\mathrm{H}_{3}-29\right), 0.90\left(\mathrm{H}_{3}-30\right)$ and $0.73\left(\mathrm{H}_{3}-24\right)$ and two oxygenated methine protons at $\delta_{H} 3.62(\mathrm{H}-3)$ and $3.83(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-16)$ correlating with six methyl carbons signals at $\delta_{\mathrm{C}} 18.4,17.5,15.8,32.5,23.5,11.7$ and two oxygenated methine carbons signals at $\delta_{c} 82.5,75.8$, respectively in the HSQC spectrum. The disappearance of the hydroxyl group at $\mathrm{C}-22$ led to the deshielding of C -16. In addition, two oxygenated methylene protons signal at $\delta_{\mathrm{H}} 3.30(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{a})$ and $\delta_{\mathrm{H}} 3.73(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{~b})$ correlated with the carbon signal at $\delta_{\mathrm{C}} 63.2(\mathrm{C}-23)$, in the HSQC spectrum. HMBC cross-peaks from $\delta_{\mathrm{H}-24} 0.72$ to $\delta_{\mathrm{C}-23} 63.3$ suggested the location of a hydroxyl function at $\mathrm{C}-23$ (Bechkri et al., 2020). In addition, a quaternary carbon signal at $\delta_{C} 87.6(\mathrm{C}-13)$ and a singlet resonance at $\delta_{\mathrm{H}} 4.19(1 \mathrm{H})$ corresponding to $\mathrm{H}-28$ indicated the presence of 13,28 -epoxy-oleanane skeleton. The $\mathrm{H}-28$ proton correlated in the HSQC spectrum with C-28 ($\delta_{\mathrm{c}} 105.5$) indicating the presence of another alkoxy unit. The resulting acetal was confirmed by the HMBC correlation between the $\mathrm{C}-28$ and the methyl of a methoxy group at $\delta_{\mathrm{H}} 3.33\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Assignments of other proton and carbon signals of the aglycone were accomplished by extensive 2D-NMR analyses which led to the elucidation of the aglycone part of 4 as 13,28-epoxy-($3 \beta, 16 \alpha, 23$)-trihydroxy-28-methoxyoleanane, which differ from anagalligenin B (Mahato et al., 1991) by the presence of a methoxy group at $\mathrm{C}-28$. Thus, compound 4 was identified as $3-O-\beta-D-g l u c o p y r a n o s y l-(1 \rightarrow 4)[\beta-D-$ xylopyranosyl-($1 \rightarrow 2$)-] β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl $(1 \rightarrow 2)$-] α-L-arabinopyranosyl-13,28-epoxy-3 $3,16 \alpha, 23$-trihydroxy-28-methoxy-oleanane or $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl-($1 \rightarrow 2$)-] β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-Dglucopyranosyl($1 \rightarrow 2$)-] α-L-arabinopyranosyl-28-methoxy-anagalligenin B, named monelloside D.

Compound 5 was obtained as a white amorphous powder. Its molecular formula was determined as $\mathrm{C}_{53} \mathrm{H}_{88} \mathrm{O}_{23}$ based on its negative-ion mode HR-ESI-MS (1091.5646 [M-H], calcd 1091. 5638). Comparison of the NMR data of 5 with those of 4 (Tables 1 and 2) and analysis of the NMR spectra showed that compounds 4 and 5 had the same aglycone moiety (28-methoxy-anagalligenin B), while comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values of the oligosaccharide part of $\mathbf{5}$ with those of $\mathbf{1}$ indicated that $\mathbf{5}$ had the same tetrasaccharide moiety as in 1, linked to C-3. Location of all proton and carbon signals was achieved by extensive 2DNMR analyses, which elucidated compound 5 as $3-O-\beta$-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-13,28-epoxy$3 \beta, 16 \alpha, 23$-trihydroxy-28-methoxy-oleanane, or $\quad 3-O-\beta$-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-28-methoxyanagalligenin B, named monelloside E.

Compound 6, isolated as a white amorphous powder, had a molecular formula of $\mathrm{C}_{62} \mathrm{H}_{104} \mathrm{O}_{28}$, determined on the basis of its HR-ESI-MS negative-ion (1295.6633 [M-H], calcd 1295.6636). Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 6 to those of 4 and analysis of the 2D NMR spectra of 6 showed that both possessed the same penta-saccharide chain (Tables 2 and 4), while slight differences were observed in the aglycone part, notably those due to the D and E rings (Tables 1 and 3). Compound 6 did not show the signals of a methoxy group bound to $\mathrm{C}-28$ in its NMR spectra, but proton and carbon signals for an n-butyloxy group [$\delta_{C} 12.8,19.1,31.7$ and $66.5 ; \delta_{H} 0.95,1.42,1.56,3.33$ and 3.70$]$. The COSY spectrum supported the presence of the n-butyloxy group by correlations observed between CH_{2}-a ($\delta_{\mathrm{H}} 3.33$ and 3.70) $/ \mathrm{CH}_{2}$-b (δ_{H} 1.56), $\mathrm{CH}_{2}-\mathrm{b} / \mathrm{CH}_{2}-\mathrm{C}\left(\delta_{\mathrm{H}} 1.42\right)$, and $\mathrm{CH}_{2}-\mathrm{c} / \mathrm{CH}_{3}$-d ($\delta_{\mathrm{H}} 0.95$). The linkage of n-butyloxy group at the $\mathrm{C}-28$ position of the aglycone was evidenced by the HMBC correlation between $\delta_{\mathrm{H}} 4.28$ (1 H , brs, $\mathrm{H}-28$)/ $\delta_{\mathrm{c}} 66.5(\mathrm{C}-\mathrm{a})$ and $\delta_{\mathrm{H}} 1.56\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{b}\right) / \delta_{\mathrm{c}} 12.8$ (C-d). These evidences led to the assignment of 6 as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl$(1 \rightarrow 2)$-]- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-13,28-epoxy- $3 \beta, 16 \alpha, 23$-trihydroxy-28-n-butyloxy-oleanane, or $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl-($1 \rightarrow 2$)-]- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] $\alpha-$ L-arabinopyranosyl-28-n-butyloxy-anagalligenin B, named monelloside F.

Compound 7 was obtained as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{56} \mathrm{H}_{94} \mathrm{O}_{23}$ on the basis of its negative-ion in HR-ESI-MS (1133.6107 [M-H], calcd 1133.6108), and corresponds to the loss of 162 amu compared to 6 . Comparison of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of $\mathbf{7}$ with those of $\mathbf{6}$ and 5 showed that the NMR data of 7 exhibited many similarities with those of 6 , particularly for resonances assigned to n-butyloxyanagalligenin B (Table 3), whereas the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals due to the saccharide moieties showed that $\mathbf{7}$ and $\mathbf{5}$ shared the same tetra-saccharide chain (Tables 2 and 4). These data were confirmed by extensive 2D-NMR analyses and the assignments of all proton and carbon signals of 7, leading to the elucidation of its structure as $3-O-\beta$-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-13,28-epoxy$3 \beta, 16 \alpha, 23$-trihydroxy-28-n-butyoxy-oleanane, named monelloside G.
Compound 8, isolated as an amorphous white powder, had a molecular formula of $\mathrm{C}_{58} \mathrm{H}_{94} \mathrm{O}_{27}$ (negative-ion HR-ESI-MS (1221.5913 [M-H]; calcd 1221.5904)). Comparison of the NMR data of $\mathbf{8}$ with those of $\mathbf{4}$ (Tables 2 and 4) and analysis of the NMR spectra showed that $\mathbf{8}$ had the same penta-saccharide moiety as 4 . Most of the aglycone NMR signals were directly attributed by comparison with the corresponding signals of 4 (Tables 1 and 3), but detailed analysis of the NMR spectra showed dissimilarities in the ring D and different chemical shifts for $C-14, C-$ $15, \mathrm{C}-16, \mathrm{C}-27$, and $\mathrm{C}-28$, due to the replacement of the hydroxyl at $\mathrm{C}-16$ by a carbonyl group and the absence of signals due to the methoxy group at C-28 in 8 (Tables 1 and 3). The position of the carbonyl group was indicated by HMBC correlations of $\mathrm{H}-28$ [$\delta_{\mathrm{H}} 3.93$ and 3.48; 1 H each, $\mathrm{d}, J=8.4 \mathrm{~Hz}$] and $\mathrm{H}-15\left[\delta_{H} 2.80\right.$ and $1.81 ; 1 \mathrm{H}$ each, $\mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-15$] with the
ketocarbonyl at $\delta_{\mathrm{C}} 214.3$ (C-16) (Liang et al., 2006 ; Liang et al., 2011). The aglycone part was identified as anagalligenone B (Mahato et al., 1991). According to the above results, the structure of compound 8 was elucidated $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl$(1 \rightarrow 2)-] \beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)]- α-L-arabinopyranosylanagalligenone B, named monelloside H.
Compound 9, isolated as an amorphous white powder, had a molecular formula of $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{O}_{22}$, determined on the basis of its HR-ESI-MS negative-ion (1059.5370 [M-H], calcd 1059.5376), indicating the loss of 162 amu compared to 8 . The complete assignments of each ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR signals were achieved by analysis of the 2D-NMR experiments. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Tables 3 and 4), were identical to those of compound 8 , except for signals due to the β -D-glucopyranosyl (GIcl) unit linked in C-2' position of the arabinosyl unit which disappeared in compound 9. Accordingly, the structure of 9 was elucidated as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-$[\beta$-D-xylopyranosyl-($1 \rightarrow 2$)-] β-D-glucopyranosyl-($1 \rightarrow 4$)- α-L-arabinopyranosyl- anagalligenone B, named monelloside I.

Compound 10 was obtained as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{58} \mathrm{H}_{94} \mathrm{O}_{27}$ on the basis of its HR-ESI-MS negative-ion (1221.5911 [M-H], calcd 1221.5904). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra of $\mathbf{1 0}$ (Tables 5 and 6) showed signals assignable to six angular methyl groups at $\delta_{\mathrm{H}} 0.75 / \delta_{\mathrm{C}-24} 11.9,1.00 / \delta_{\mathrm{C}-25} 15.1,0.76 / \delta_{\mathrm{C}-26} 16.5$, $1.41 / \delta_{\mathrm{C}-27} 25.9,0.93 / \delta_{\mathrm{C}-29} 32.0$ and $0.98 / \delta_{\mathrm{C}-30} 23.1$, one olefinic proton at $\delta_{\mathrm{H}-12} 5.42(1 \mathrm{H}, \mathrm{t}, J=$ $\left.3.6 \mathrm{~Hz} ; \delta_{\mathrm{C}-12} 123.0\right)$, two oxygenated methine protons at $\delta_{\mathrm{H}-3} 3.63\left(1 \mathrm{H}, \mathrm{m} ; \delta_{\mathrm{C}-3} 82.5\right)$, and $\delta_{\mathrm{H}-16}$ $4.29\left(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz} ; \delta_{\mathrm{C}-16} 72.5\right)$ and one oxygenated methylene ($\delta_{\mathrm{H}-23} 3.30$ and 3.73 ; $\delta_{\mathrm{C} 23}$ 63.3), corresponding to a $3 \beta, 16 \alpha, 23-$ trihydroxyolean-12-en skeleton (Bechkri et al., 2020). Moreover, an HSQC correlation between a proton singlet at $\delta_{H} 9.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}-28\right)$ and its carbon at $\delta_{C} 205.6$ (C-28) indicated the presence of an aldehyde group. This was confirmed by the HMBC correlations observed between $\mathrm{H}-18, \mathrm{H}-16$ with $\mathrm{C}-28$ (Fig. 3) (Lakhal et al., 2014, Zhang et al., 2002). The aglycone of compound 10 was identified as $3 \beta, 16 \alpha, 23-$ trihydroxyolean-12-en-28-al. Detailed analysis of the 2D-NMR spectra of 10 and comparison of its NMR data with those of $\mathbf{2}$ (Tables 2 and 6) identified the same penta-saccharide as in $\mathbf{2}$. The HMBC correlations observed between the signal at $\delta_{H} 3.63(\mathrm{H}-3)$ and the anomeric carbon of L-arabinose at $\delta_{C-1} 103.31$ in the HMBC spectrum (Fig. 3) confirmed that the glycosidic moiety was linked to $\mathrm{C}-3$ of the aglycone (Zhang et al., 2002). According to the above results, the structure of compound 10 was elucidated as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-xylopyranosyl-($1 \rightarrow 2$)-] β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-3 $\beta, 16 \alpha, 23$-trihydroxyolean-12-en-28-al, named monelloside J.
Compound 11 was obtained almost as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{O}_{22}$ on the basis of its HR-ESI-MS negative-ion (1059.5367 [M-H], calcd 1059.5376). Comparison of the NMR data of $\mathbf{1 1}$ with those of $\mathbf{1 0}$ (Tables 5 and 6) showed that it had the same aglycone as 10 but differed in its saccharide units. The NMR spectroscopic
data of the saccharide part of $\mathbf{1 1}$ were identical to those of $\mathbf{1}$ (Tables 2 and 6). Extensive 2DNMR analysis enabled the full assignments of the same tetra-saccharide as in 1. The correlation between $\mathrm{H}-3$ of aglycone ($\delta_{\mathrm{H}} 3.64,1 \mathrm{H}, \mathrm{dd}, J=11.7,4.3 \mathrm{~Hz}$,) and the anomeric carbon of the arabinose unit ($\delta_{\mathrm{C}-1} 103.3$) on the HMBC spectrum confirmed that the glycosidic moiety was linked to $C-3$. According to the above evidences, the structure of 11 was elucidated as $3-O-\beta$-D-xylopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl- $3 \beta, 16 \alpha, 23$-trihydroxyolean-12-en-28-al, named monelloside K.

Compound 12 was obtained as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{53} \mathrm{H}_{86} \mathrm{O}_{23}$ on the basis of its HR-ESI-MS negative-ion (1089.5490 [M-H], calcd 1089.5482). Comparison of the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of $\mathbf{1 2}$ with those of $\mathbf{1 0}$ (Tables 5 and 6) showed that it had the same aglycone but differed in its saccharide units. The NMR spectroscopic data of 12 were almost identical to those of 10, except for the absence of the signals of β-D-xylopyranosyl. Detailed analysis of the 2D-NMR spectra of 12 led to the identification of its structure as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β -D-glucopyranosyl-($1 \rightarrow 2$)-] α-L-arabinopyranosyl-3 $\beta, 16 \alpha, 23$-trihydroxyolean-12-en-28-al, named monelloside L.

Compound 13 was obtained as an amorphous white powder. Its molecular formula was determined as $\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{O}_{18}$ on the basis of its HR-ESI-MS negative-ion (927.4966 [M-H], calcd 927.4953). Comparison of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{1 3}$ (Tables 5 and 6) and $\mathbf{1 0}$ indicated a similarity of these two compounds, with the exception of the disappearance of the glucose (GIcIII) and xylose units in the glycosidic part of 13. Extensive analysis of the 1D- and 2D-NMR spectra of 13 established that the glycosidic sequence was 3 -O-glc- $(1 \rightarrow 4)$-[glc-($1 \rightarrow 2$)-]ara. Thus, the structure of compound 13 was elucidated as $3-O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($1 \rightarrow 2$)] α-L-arabinopyranosyl-3 $\beta, 16 \alpha, 23-$
trihydroxyolean-12-en-28-al, named monelloside M .
The known compounds were identified as repandoside (14), lysikoianoside (15) (Dall'acqua et al., 2010), capilliposide A (16) (Tian et al., 2006), anagallosaponin I (17), anagalloside C (18), anagalloside B (19), desgluconagalloside B(20), (Shoji et al., 1994a), anagallosaponin IX (21) (Hifnawy et al., 2020), anagallisin D (22) (Mahato et al., 1991), heterogenoside D (23) (Huang et al., 2009) (Fig. S103 in supporting material). Their spectroscopic data were in perfect agreement with those reported in the literature.

2.1 Chemophenetic significance

Phytochemical studies of the genus Anagallis revealed its richness of triterpenoids saponins with an oleanane skeleton. Until now, 38 compounds were isolated from only one species Anagallis arvensis (Aliotta et al., 1992; Amoros et al., 1987; De Napoli et al., 1992; Glombitza and Kurth, 1987a; Kitagawa et al., 1976; Mahato et al., 1991; Shoji et al., 1994). The present study, which was carried out on the Algerian subspecies Anagallis monelli ssp.
linifolia (L). Maire, allowed the isolation and identification of 13 undescribed monodesmoside saponins (Fig. 1), as well as 10 known monodesmoside saponins (Fig. S103 in supporting material). The aglycones of theses triterpenoid glycosides were found to be priverogenin $B(1-2)$, anagalligenin $B(3,19,20)$, 28-alkoxy-anagalligenin $B(4-7)$, anagalligenone $B(\mathbf{8}, \mathbf{9}, \mathbf{2 2})$, 16,23-dihydroxy-oleanolicaldehyde (10-13), protoprimulagenin A (14-15), 28-hydroxy-protoprimulagenin $A(16-17), 22$-acetyl-priverogenin $B(18), 22-$ acetoxy-anagalligenin B (21), and longispinogenin (23). All the 23 saponins isolated from A. monelli ssp. linifolia in the present study shared a carbohydrate chain linked to C-3 of the aglycone with a common sequence glc-($1 \rightarrow 4$)-ara- which was further glycosylated by glc and/or ara. In 22 of the 23 isolated saponins, arabinose unit was substituted at its C-2' by another glucose unit (glcll) to give the motif S6: glc-($1 \rightarrow 4$)-[glc-($1 \rightarrow 2$)-]ara-. In all the bridged oleanane skeleton, except for compound 9 (Fig. 1, S1, S2 and S3), a xylose unit was linked to C -2 of glcl making the sequence $\mathbf{S 2}$: $\mathrm{xyl}-(1 \rightarrow 2)$-glc-($1 \rightarrow 4$)-[glc-($1 \rightarrow 2$)-]ara-, and this sequence was also found in three $(\mathbf{1 0}, \mathbf{1 1}, \mathbf{2 3})$ of the five compounds exhibiting ring-opening of the 13,28-epoxy-oleanane skeleton (Fig. 1, F.S103). About half of the compounds isolated from A. monelli ssp. linifolia were substituted at C-4 of glcll by a third glucose unit (Fig. 1) to give the sequence S1: glc-($1 \rightarrow 4$)-[xyl-($1 \rightarrow 2$)-]glc-($1 \rightarrow 4$)-[glc$(1 \rightarrow 2)$-]ara- which has been encountered in saponins isolated from A. arvensis (Glombitza and Kurth 1987b). Similarly, the sequences S4: glc-($1 \rightarrow 4$)-[xyl-($1 \rightarrow 2$)-]glc-($1 \rightarrow 4$)-ara-, S5: glc- $(1 \rightarrow 4)$-glc- $(1 \rightarrow 4)$-[glc- $(1 \rightarrow 2)$-]ara- and $\mathbf{S 6}$: glc- $(1 \rightarrow 4)$-[glc- $(1 \rightarrow 2)$-]ara- at $\mathrm{C}-3$ of compounds 9, 12 and 13, respectively, were previously encountered in saponins isolated from of A. arvensis (Shoji et al., 1994a; Mahato et al., 1991). In addition, all aglycone parts of A. monelli ssp. linifolia with $13 \beta, 28$-epoxy bridge were previously identified in saponins isolated from A. arvensis (Shoji et al., 1994b), except for compounds 4-7, which showed novel features including the C-28 alkoxy group. The known anagallosaponin I (17), anagalloside C (18), anagalloside B (19), desgluconagalloside B (20), anagallosaponin IX (21) anagallisin D (22) were previously isolated from A. arvensis (Shoji et al., 1994a; Mahato et al., 1991). It worth to note that the aglycones of compounds 10-13 were formerly identified in saponins from Lysimachia candida (Zhang et al., 2002), while repandoside (14), lysikoianoside (15), capilliposide $A(16)$ and heterogenoside $D(23)$ were previously isolated from Cyclamen repandum (Dall'acqua et al., 2010), Lysimachia sikokiana (Dall'acqua et al., 2010; Kohda et al., 1989) (14, 15), Lysimachia capillipes (16) (Tian et al., 2006) and Lysimachia heterogenea (23) (Huang et al., 2009).
This genus Anagallis has traditionally been assigned to the family Primulaceae (Quezel and Santa, 1963). However, data from phylogenetic analyses suggest that Anagallis, along with eight other genera, Lysimachia, Trientalis, Glaux, Asterolinon, Pelletiera, Coris, Ardisiandra, and Cyclamen, be re-located to the family Myrsinaceae (Källersjö et al., 2000; Hao et al., 2004). Moreover, Manns and Anderberg (2009 and 2011) have suggested to re-located

Anagallis species in Lysimachia genus. In order to discuss the reclassification of Anagallis species in the Lysimachia genus, both transferred from the Primulaceae to the Myrsinaceae, we analysed some saponin characteristics of species from the Myrsinaceae and Primulaceae families which showed that these species were characterized by a pentacyclic triterpenoid saponin with 16 - α-hydroxy and 13 3,28 -epoxy bridge skeleton (Foubert al., 2008). Actually, the Primulaceae family is divided into four subfamilies: Maesoideae, Theophrastoideae, Primuloideae and Myrsinoideae. Anagallis was in the Myrsinoideae subfamily, which is consistent of 41 genera and 1435 species including the genus Ardisia, Cyclamen, Lysimachia, and Myrsine (Stevens, 2017). So the species previously included in Myrsinaceae family are in the subfamily Myrsinoideae in the Primulaceae family.
In the present species, we have identified a four-unit branched sugar chain linked at $\mathrm{C}-3$ of the aglycone S2 \{ xyl-($1 \rightarrow 2$)-glc-($1 \rightarrow 4$)-[glc-($1 \rightarrow 2$)-]ara-\} (Fig. 4). This chain was found in saponins of Anagallis (Glombitza et al., 1987b, Shoji et al., 1994a and b), Lysimachia (Kohda et al., 1989, Podolack et al., 2013), Cyclamen (Altunkeyik et al., 2012; Bencharif-Betina et al., 2012, Dall'acqua et al., 2010, El Hosry et al., 2014), Ardisia (Jia et al., 1994), Myrsine (Bloor and QI, 1994), and Androsace genera (Waltho et al., 1986) (Table 7). This tetrasaccharide sequence S2 can be substituted with glucose at C-4 of glcll or glcl in the case of Anagallis saponins (Shoji et al., 1994a and b; Soberón et al., 2017), at C-3 or C-6 of glcll in the case of Cyclamen saponins (Çalis et al., 1997), or at C-4 of the terminal glucose (glcl) in the case of Androsace saxifragaefolia saponins (Waltho et al., 1986); however, it was the only study found for the genus Androsace. In addition, this common chain was substituted with xylose at C-4 of glcll in the case of Lysimachia saponins (Podolak et al., 2013b), or with rhamnose at C-3 of glcll in saponins of Ardisia gigantifolia (Mu et al., 2010). Many saponins contain rhamnose in the sequence of the sugar moiety in the genera Ardisia and Myrsine (Foubert al., 2008). For Primula denticulata, it was the only species that had similarity in saponin content with the genus Anagallis, the other species had completely different osidic chains (Foubert al., 2008). We can conclude that the genera Anagallis, Lysimachia, and Cyclamen are very similar with respect to chemotaxonomic markers and thus can confirm their place in the Myrsinoideae subfamily. Triterpene saponins identified so far from the genus Lysimachia, generally have oleananederived sapogenols of two structural types: I. 13ß,28-epoxy and II. $\Delta^{12}-17-\mathrm{CH}_{2} \mathrm{OH}$. Compounds of type I are considered very rare and are found almost exclusively in the Myrsinaceae and Primulaceae families (Foubert et al., 2008; Podolack et al., 2013). In the present study, eighteen type I and one type II triterpene saponins were obtained from Anagallis monelli ssp. linifolia. It is interesting to observe that the known compounds $\mathbf{1 4 - 2 3}$ were reported previously in various species belonging exclusively to genera traditionally assigned to the family Myrsinaceae or genera which were re-located to this family from the Primulaceae, i.e., Anagallis, Lysimachia and Cyclamen. Four of the ten known compounds isolated form A. monelli ssp. linifolia (14-16, and 23), having the sequence S2 at C-3 of the aglycone were
previously isolated from Lysimachia species. They may therefore be considered as chemotaxonomic markers for this family, and provide chemical support for phylogenetic analyses, which suggest the transfer of the genus Lysimachia to the family Myrsinaceae. It worth to note that Lysimachia saponins possess a second tetrasacharide C-3 linked chain, in which a rhamnose can replace the xylose at C-2 of glcll (Dai et al., 2017, Podolak et al., 2013b). The present study reinforces previous reports which indicated that sapogenols with $13 \beta, 28$ -epoxy-bridge are the predominant triterpenoid skeleton in species of the Myrsinaceae, including the genus Anagallis and can be considered as a chemotaxonomic marker for this plant family (Foubert et al., 2008). A branched four-unit sugar chain S2, with arabinose substituted at C-2 with glucose and at C-4 with glucose and terminal xylose, seems to be typical for these Primulaceae saponins.
In conclusion, in our phytochemical research on A. monelli ssp. inifolia, the chemotaxonomic significance associated with Anagallis was discussed. Our results confirmed the richness of Anagallis species in oleanan-type glycosides and showed that the sequence $\mathbf{S 1}$ (glc-(1 $\rightarrow 4$)-[xyl-($1 \rightarrow 2$)-]glc-($1 \rightarrow 4$)-[glc-($1 \rightarrow 2$)-]ara-) can be suggested as a chemotaxonomic marker for the genus Anagallis, but that proposal needs to be confirmed since only the species Anagallis arvensis had been studied before this work. Finally, our phytochemical results increase the knowledge on saponins of the genus Anagallis and its family Primulaceae and stimulate to evaluate the biological activities of these saponins.

3. Experimental

3.1 General experimental procedures

The values of the optical rotations were measured by an Anton Paar MCP 5100 polarimeter (Graz, Austria). 1D- and 2D-NMR spectra (${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ROESY, HSQC and HMBC) were recorded on a Bruker Avance III-600 spectrometer (Karlsruhe, Germany) equipped with a 5 mm TCI cryoprobe. 2D-NMR experiments were performed using a standard Bruker microprograms (TopSpin 4.0.6 software). HR-ESI-MS experiments were performed on a Waters SYNAPT G2-Si High Resolution Q-TOF Mass Spectrometer equipped with electrospray ionization (ESI) source (Waters Corp., Manchester, UK). Flash chromatography was performed on a GRACE Reveleris X1 system (Flawil, Switzerland) equipped with a Reveleris Navigator and dual UV and ELSD detection using Grace® cartridges (silica gel or RP- C_{18}). Preparative high-performance liquid chromatography (HPLC) was performed on a Gilson PLC 2050 (Saint-Avé, France) equipped with Gilson Glider software, Armen pump and Ecom UV detector, using a RP-C ${ }_{18}$ column (Interchim uptisphere strategy C18-HQ, $5 \mu \mathrm{~m}$, $250 \times 21.2 \mathrm{~mm})$. The mobile phase was composed of $\mathrm{H}_{2} \mathrm{O}$ with TFA $(0.0025 \%) / \mathrm{CH}_{3} \mathrm{CN}$ with a flow rate $250 \mathrm{~mL} / \mathrm{min}$. The chromatograms were monitored at 205, 215 and 360 nm . Semipreparative HPLC was performed on an Agilent LC Series instrument (1200 Infinity Series 1220, Les Ulis, France) equipped with an agilent G1329A sample injector, Jasco CO-4060
column oven (Lisses, France), agilent G1311A pump, Ultimate DAD3000 thermofisher detector (Villebon sur Yvette, France) and chromeleon® 7.2 software. An RP-C ${ }_{18}$ prep column (Interchim uptisphere strategy C18(2), $5 \mu \mathrm{~m}, 250 \times 10 \mathrm{~mm}$, Montlucon, France). The mobile phase for semi-preparative HPLC was a mixture of $\mathrm{H}_{2} \mathrm{O}$ with TFA (0.0025%) and $\mathrm{CH}_{3} \mathrm{CN}$ with a flow rate of $5 \mathrm{~mL} / \mathrm{min}$. The chromatograms were monitored at 205, 215 and 360 nm . Analytical HPLC experiments were performed using a Thermofisher Ultimate 3000 (Thermo Fischer Scientific, Villebon sur Yvette, France), equipped with an LPG 3400 SD pump, a WPS 3000 SL injector and a UV-DAD-3000 detector with Chromeleon® software version 6.8 and an Interchim uptisphere strategy C18(2) column, $5 \mu \mathrm{~m}, 250 \times 10 \mathrm{~mm}$, using the same eluent as semi-preparative HPLC with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The chromatograms were monitored at 205, 215 and 360 nm . Thin layer chromatography (TLC) was carried out on silica gel plates (Merck 60 F $_{254}$, Darmstadt, Germany) and visualized under UV lamps at 254 and 366 nm , then by spraying with $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, followed by heating. All solvents used for Flash chromatography were of analytical grade (Carlo Erba Reactifs SDS, Val de Reuil, France), and solvents used for analytical, semi-preparative and preparative HPLC were of HPLC grade (Carlo Erba Reactifs SDS, Val de Reuil, France). Trifluoroacetic acid (TFA) was purchased from Carlo Erba Reactifs SDS (Val de Reuil, France).

3.2 Plant material

The aerial parts of Anagalis monelli ssp. linifolia (L.) Maire were collected at Boulilhet, in the province of Oum el Bouaghi, northeast Algeria (latitude $35^{\circ} 43^{\prime} 53.1^{\prime \prime} \mathrm{N}$, longitude $6^{\circ} 41^{\prime} 34.0^{\prime \prime} \mathrm{E}$ and altitude of 970 m) in May 2019. The plant was authenticated by Mr. Kamel Kabouche. A voucher specimen (LOST.Am.05.9.19) was preserved in the LOST laboratory of Université des Freres Mentouri-Constantine 1, Algeria.

3.3. Extraction and isolation

The dried powder of the aerial parts of Aanagallis monelli ssp. linifolia (L.) Maire (1 kg) was macerated in $70 \% \mathrm{EtOH}(4 \times 5 \mathrm{~L}, 24 \mathrm{~h})$ at room temperature. After filtration and removal of the solvent by evaporation under reduced pressure, the dried 70% EtOH extract ($300 \mathrm{~g}, 30 \%$ yield) was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and then partitioned successively with EtOAc and $n-\mathrm{BuOH}$. The $n-\mathrm{BuOH}$ extract (70 g) was fractionated by Diaion HP-20 resin column (4.340 cm), which was eluted with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(25,50$ and 100%, each 2 L), to obtain fractions $\mathrm{A}(10 \mathrm{~g}), \mathrm{B}(6 \mathrm{~g})$ and $\mathrm{C}(40 \mathrm{~g})$, respectively. Fraction C (40 g) (the saponin-containing fraction) was applied to vacuum liquid chromatography (VLC) over silica gel, using as eluent a mixture of $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1:0, 8:2:0, 7:3:0, 7:3:0.1, 7:3:0.2, 7:3:0.5 and 100\% MeOH) to give 7 fractions (C1-C7). The C4, C6 and C7 fractions (5.4 g), (3.9 g) and (5.1 g) were subjected to flash chromatography on RPC_{18}, eluted by a gradient of ($20 \rightarrow 60 \% \mathrm{CH}_{3} \mathrm{CN}$, in 35 min), to afford the fractions $\mathrm{C}_{1}-\mathrm{C}_{32}, \mathrm{C}_{1}-$ C_{32} and $\mathrm{C}_{1}-\mathrm{C}_{31}$, respectively. Fractions $\mathrm{C}_{21}(1.1 \mathrm{~g}), \mathrm{C} 4_{22-24}(600 \mathrm{mg})$ and $\mathrm{C}_{26-27}(500 \mathrm{mg})$ were purified by silica gel flash chromatography, using a gradient system of $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2:0 $\rightarrow 7: 3: 2$, in 45 min) to give 15 fractions $\mathrm{C}_{21 \mathrm{F1}-}-\mathrm{C}_{2178}, \mathrm{C} 4_{22-24 F 1}-\mathrm{C} 4_{22-24 F 14}$ and $\mathrm{C}_{26-27 \mathrm{~F} 1^{-}}$
$\mathrm{C}_{26-27 \mathrm{~F} 10}$, respectively. Fraction $\mathrm{C}_{21 \mathrm{F7}-8}(130 \mathrm{mg})$ was purified by flash chromatography over RP- C_{18}, eluted by a gradient of $\left(25 \rightarrow 60 \% \mathrm{CH}_{3} \mathrm{CN}\right.$, in 35 min$)$, to obtain 4 fractions $\mathrm{C}_{2177-81-4}$, including compound $\mathbf{1}(32.4 \mathrm{mg})$ as a pure compound in fraction $\mathrm{C}_{21 \mathrm{F7}-883}$. The purification of fraction $C 4_{21 F 7-884}(78.5 \mathrm{mg})$ was realised by semi-prep. HPLC with a gradient of $(30 \rightarrow 70 \%$ $\mathrm{CH}_{3} \mathrm{CN}$, in 30 min) to give compounds $11\left(2.5 \mathrm{mg}, t_{R} 15.8 \mathrm{~min}\right), 5\left(5.3 \mathrm{mg}, t_{R} 17.1 \mathrm{~min}\right)$ and 7 $\left(1.1 \mathrm{mg}, t_{R} 26.1 \mathrm{~min}\right)$. Fractions $\mathrm{C} 4_{21 \mathrm{~F} 10-11}$ and $\mathrm{C}_{22-24 \mathrm{~F} 145-6}$ were purified separately by preparative HPLC using the same gradient ($30 \rightarrow 50 \% \mathrm{CH}_{3} \mathrm{CN}$, in 60 min) to afford compounds $\mathbf{6}(1.5 \mathrm{mg}), \mathbf{2}(2.7 \mathrm{mg})$ and $\mathbf{1 8}(1.3 \mathrm{mg})$ and compounds $\mathbf{1 7}(1.5 \mathrm{mg}), \mathbf{1 9}(2.4 \mathrm{mg}), \mathbf{1 4}(10.2 \mathrm{mg}), \mathbf{2 0}$ $(1.4 \mathrm{mg})$ and $8(2.8 \mathrm{mg})$, respectively. Fractions $\mathrm{C}_{26-27 \mathrm{~F} 4}$ and C_{16} were purified separately by semi-prep HPLC with a gradient of $\left(20 \rightarrow 80 \% \mathrm{CH}_{3} \mathrm{CN}\right.$, in 45 min$)$ to yield compounds 15 $\left(2.8 \mathrm{mg}, t_{R} 8.1 \mathrm{~min}\right), 9\left(1.5 \mathrm{mg}, t_{R} 11.8 \mathrm{~min}\right)$, and $3\left(2.2 \mathrm{mg}, t_{R} 12.8 \mathrm{~min}\right)$ from $\mathrm{C}_{26-27 \mathrm{~F} 4}$ and
 C_{16}. The fractions C_{14} and C_{22} were purified by preparative HPLC, eluted by the gradient $\left(20 \rightarrow 30 \% \mathrm{CH}_{3} \mathrm{CN}\right.$, in 45 min) to give compounds 23 (1.4 mg), 22 (1.2 mg), and 4 (3.0 mg) from $\mathrm{C} 6_{14}$, whereas the gradient ($30 \rightarrow 60 \% \mathrm{CH}_{3} \mathrm{CN}$, in 45 min) was used for C_{22} to give compounds 16 (1.4 mg) and 21 (1.8 mg).

3.4. Monelloside A (1)

Amorphous white powder, $[\alpha]^{20} \mathrm{D}-9.5(c 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 1 and 2 ; HR-ESI-MS m/z: 1061.5537 [M-H] (calcd for $\mathrm{C}_{52} \mathrm{H}_{85} \mathrm{O}_{22}, 1061.5532$).

3.5. Monelloside B (2)

Amorphous white powder, $[\alpha]^{20} \mathrm{D}-3.0(c 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 1 and 2 ; HR-ESI-MS m/z: 1223.6071 [M-H] (calcd for $\mathrm{C}_{58} \mathrm{H}_{95} \mathrm{O}_{27}, 1223.6061$).
3.6. Monelloside C (3)

Amorphous white powder, $[\alpha]^{20} \mathrm{D}-0.9$ (c $\left.0.20, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 1 and 2 ; HR-ESI-MS m/z:1103.5629 [M-H] (calcd for $\mathrm{C}_{54} \mathrm{H}_{87} \mathrm{O}_{23}, 1103.5638$).

3.7. Monelloside D (4)

Amorphous white powder; $[\alpha]^{20} \mathrm{D}+3.2(c 0.28, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 1 and 2 ; HR-ESI-MS m/z : (1253.6169 $[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{59} \mathrm{H}_{97} \mathrm{O}_{28}, 1253.6166$).

3.8. Monelloside E (5)

Amorphous white powder; $[\alpha]^{20} \mathrm{D}+12.8(c 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 1 and 2 ; HR-ESI-MS m/z:1091.5646 [M-H] (calcd for $\mathrm{C}_{53} \mathrm{H}_{87} \mathrm{O}_{23}, 1091.5638$).
3.9. Monelloside F (6)

Amorphous white powder; $[\alpha]^{20}{ }_{\mathrm{D}}+1.3(c 0.15, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 3 and 4 ; HR-ESI-MS m/z: 1295.6633 [M-H] (calcd for $\mathrm{C}_{62} \mathrm{H}_{103} \mathrm{O}_{28}, 1295.6636$).

3.10. Monelloside G (7)

Amorphous white powder; $[\alpha]^{20} \mathrm{D}+10.0(c 0.11, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 3 and 4 ; HR-ESI-MS m/z: 1133.6107 [M-H] (calcd for $\mathrm{C}_{56} \mathrm{H}_{93} \mathrm{O}_{23}, 1133.6108$).

3.11. Monelloside H (8)

Amorphous white powder, $[\alpha]^{20} \mathrm{D}-9.3$ (c $\left.0.14, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 3 and 4; HR-ESI-MS m/z:1221.5913 [M-H] (calcd for $\mathrm{C}_{58} \mathrm{H}_{93} \mathrm{O}_{27}, 1221.5904$).

3.12. Monelloside I (9)

Amorphous white powder; [$\alpha]^{20} \mathrm{D}-5.5(c 0.11, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 3 and 4; HR-ESI-MS m/z: 1059.5370 [M-H] (calcd for $\mathrm{C}_{52} \mathrm{H}_{83} \mathrm{O}_{22}, 1059.5376$).
3.13. Monelloside J (10)

Amorphous white powder; $[\alpha]^{20} \mathrm{D}+15.7(c 0.14, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 5 and 6 ; HR-ESI-MS m/z: 1221.5911 [M-H] (calcd $\mathrm{C}_{58} \mathrm{H}_{93} \mathrm{O}_{27}$, 1221.5904).

3.14. Monelloside K (11)

Amorphous white powder; $[\alpha]^{20} \mathrm{D}-1.2(c 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 5 and 6 ; HR-ESI-MS m/z: $1059.5367[\mathrm{M}-\mathrm{H}]$ - (calcd for $\mathrm{C}_{52} \mathrm{H}_{83} \mathrm{O}_{22}, 1059.5376$).

3.15. Monelloside L (12)

Amorphous white powder; [$\alpha]^{20} \mathrm{D}-1.7$ (c 0.12, MeOH); ${ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 5 and 6 ; HR-ESI-MS m/z:1089.5490 [M-H] (calcd for $\mathrm{C}_{53} \mathrm{H}_{85} \mathrm{O}_{23}$, 1089.5482).

3.16. Monelloside M (13)

Amorphous white powder; $[\alpha]^{20}{ }_{\mathrm{D}}+2.5(c 0.12, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data: see Tables 5 and 6 ; HR-ESI-MS m / z : $927.4966[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{47} \mathrm{H}_{75} \mathrm{O}_{18}, 927.4953$).

3.17. Acid hydrolysis :

The acid hydrolysis of fraction $\mathrm{C}(200 \mathrm{mg})$ rich in saponins was realized with 35 mL of 2 N TFA (trifluoroacetic acid, aqueous solution) at $90{ }^{\circ} \mathrm{C}$ for 4 h . After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times$ 3), the aqueous phase was concentrated under vacuum to obtain the sugar residues (100 mg). Three sugars was confirmed by comparison on TLC with pure samples of glucose, xylose and arabinose, using (MeCOEt:iso- $\mathrm{PrOH}: \mathrm{Me}_{2} \mathrm{CO}: \mathrm{H}_{2} \mathrm{O}, 20: 10: 7$:2). The purification of sugars by preparative TLC using the same solvent system afford L-arabinose $\left[5.9 \mathrm{mg}, \mathrm{R}_{\mathrm{f}}=0.52,[\alpha]^{20} \mathrm{D}\right.$
$\left.+31.7\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)\right]$; D-glucose [10 mg, $\left.\mathrm{R}_{\mathrm{f}}=0.46,[\alpha]^{20} \mathrm{D}+56\left(c 0.9, \mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\mathrm{D}-\mathrm{xylose}[3.2 \mathrm{mg}$, $\left.\mathrm{R}_{\mathrm{f}}=0.63,[\alpha]^{20} \mathrm{D}+15.3\left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right)\right]$.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are gratefully acknowledging MESRS Algeria for the PNE grant to M. Chouaib Aouane, ICMR-UMR-7312 as well as URCA PIAneT platform (University Reims ChampagneArdenne) for giving the possibility to perform all the necessary manipulations for the realization of this publication. Anthony Robert et Carine Machado-Rodrigues were also acknowledge for NMR and MS spectra recording, respectively.

Appendix A. Supplementary data

The original spectra of monellosides A-M, including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, 2D NMR, and HR-ESIMS are given as supplementary data

References

Ahmad, V. U., Sultana, V., Arif, S., Saqib, Q. N., 1988. Saponins from Primula denticulate. Phytochemistry 27(1), 304-306. https://doi.org/10.1016/0031-9422(88)80644-7
Aliotta, G., De Napoli, L., Giordano, F., Piccialli, G., Piccialli, V., Santacroce, C., 1992. An oleanane triterpene from Anagallis arvensis. Phytochemistry 31(3), 929-933. https://doi.org/10.1016/0031-9422(92)80041-C
Altunkeyik, H.,Gülcemal, D., Masullo, M., Alankus-Caliskan, O., Piacente, S., Karayildirim, T.,2012. Triterpene saponins from Cyclamen hederifolium. Phytochemistry 73, 127-133. https://doi.org/10.1016/j.phytochem.2011.09.003
Ammar, S., Mahjoub, M.A., Abdelkader, Ben-Abdlkader, H., Liouane, K., Skandrani, I., Chekirghedira, L., Mighri, Z., 2008. Mutagenic, antimutagenic and antioxidant activities of a new polyphenolic and a flavonoid substances isolated from Anagallis monelli. Nat. Prod. Res. 22(8), 658-665. https://doi: 10.1080/14786410701669287
Amoros, M., Girre, R., 1987. Structure of two antiviral triterpene saponins from Anagallis arvensis. Phytochemistry 26(3), 787-791. https://doi: 10.1016/s0031-9422(00)84787-1
Bechkri, S., Alabdul Magid, A., Sayagh, C., Berrehal, D., Harakat, D., VoutquenneNazabadioko, L., Kabouche, Z., Kabouche, A., 2020. Triterpene saponins from Silene gallica collected in North-Eastern Algeria. Phytochemistry 172, 112274. https://doi:10.1016/j.phytochem.2020.112274

Bencharif-Betina, S., Miyamoto, T., Tanaka, C., Kabouche, Z., Mitaine-Offer, A-C., LacailleDubois, M.A., 2012. Two new triterpene saponins from Cyclamen africanum Boiss. \& Reuter. Helv. Chim. Acta 95, 1573-1580. https://doi.10.1002/hlca. 201200041
Bloor, S.J., Qi, L., 1994. Cytotoxic saponins from New Zealand Myrsine species. J. Nat. Prod. 57, 1354-1360. https://doi.10.1021/np50112a004
Çalis, I.,Satana, M. E., Yürüker, A., Kelican, P., Demirdamar, R., Alaçam, R., Tanker, N., Rüegger, H., Sticher, O., 1997a. Triterpene saponins from Cyclamen mirabile and their biological activities J. Nat. Prod. 60(3), 315-318. https://doi/10.1021/np960658j
Çalis, I., Yürüker, A., Tanker, N., Wright, A.D., Sticher, O., 1997b. Triterpene saponins from Cyclamen coum var. coum. Planta Med. 63(2), 166-170. https://doi:10.1055/s-2006957637
Dai L.-M., Huang R.-Z., Zhang B., Hua J., Wang H.-S., Liang D., Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum Phytochemistry 2017 165-174. https://doi.org/10.1016/i.phytochem.2017.01.021
Dall'Acqua, S., Castagliuolo, I., Brun, P., Ditadi, F., Palù, G., Innocenti, G., 2010. Triterpene glycosides with in vitro anti-inflammatory activity from Cyclamen repandum tubers. Carbohydr. Res. 345(5), 709-714. https://doi: 10.1016/j.carres.2009.12.028
De Napoli, L., Piccialli, G., Piccialli, V., Santacroce, C., Carolla, R., 1992. Two oleanane triterpenes from Anagallis arvensis. Phytochemistry 31(11), 3965-3968. https://doi: 10.1016/S0031-9422(00)97564-2

El Hosry, L., Di Giorgio, C., Birer, C., Habib, J., Tueni, M., Bun, S-S., Herbette, G-T., De Meo, M., Ollivier, E., Elias, R., 2014. In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm Biol, 52(9), 1134-1140. https://doi:10.3109/13880209.2013.879600
Foubert, K., Theunis, M., Apers, S., Vlietinck, A. J., Pieters, L. 2008. Chemistry, distribution and biological activities of 13, 28-epoxy-oleanane saponins from the plant families Myrsinaceae and Primulaceae. Curr. Org. Chem. 12(8), 629-642. https://doi.org/10.2174/138527208784577376
Glombitza, K.W., Kurth, H., 1987a. Die Struktur einiger Triterpensaponine aus Anagallis arvensis. Planta Med. 53(6), 548-555. https://doi:10.1055/s-2006-962809

Glombitza, K.W., Kurth, H., 1987b. Saponine aus Anagallis arvensis L.(Primulaceae). Arch. Pharm. 320(10), 1083-1087. https://doi:10.1002/ardp. 198700012

Hao, G., Yuan, Y.M., Hu, C.M., Ge, X.J., Zhao, N.X., 2004. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences. Mol. Phylogen. Evol. 31, 323-339. https://doi.org/10.1016/S1055-7903(03)00286-0
Heitz, S., Billet, D., Raulais, D., 1971. Triterpenes d'Anagallis arvensis L.(Primulaceae). I. Structure de l'anagalligenone B. Soc. Chim. France Bull. 230-243

Hifnawy, M. S., Aboseada, M. A., Hassan, H. M., AboulMagd, A. M., Tohamy, A. F., AbdelKawi, S. H., Rateb, M. E., El-Naggar, E. B., Liu, M., Quinn, R. J., Alhadram, H. A., Abdelmohsen, U. R., 2020. Esticular caspase-3 and β-catenin regulators predicted via comparative metabolomics and docking studies. Metabolites 10(1), 31. https://doi: 10.3390/metabo10010031

Huang, X.A., Liang, Y.J., Cai, X.I., Feng, X.Q., Zhang, C.H.,Fu, L.W., 2009. Four new cytotoxic oligosaccharidic derivatives of 12-oleanene from Lysimachia heterogenea Klatt. Bioorg. Med. Chem. lett. 19(23), 6515-6518. https://doi: 10.1016/j.bmcl.2009.10.056
Huang, X-A., Shen, X-L., Hu, Y-J., Liu, Y-M., Liu, K-L., Zhang, F-X., Zhou, X-X., 2011. Two New Triterpenoids from Lysimachia heterogenea Klatt and Evaluation of Their Cytotoxicity. Molecules 16, 8076-8082. https://doi:10.3390/molecules16098076
Ishikura, N., 1981. Flavonoids in the petal cells of Anagallis arvensis f. coerulea containing a blue crystalline anthocyanin. Z. Pflanzenphysiol. 103(5), 469-473. https://doi: 10.1016/s0044-328x(81)80170-5

Jia, Z., Koike, K., Ohmoto, T., Ni, M., 1994. Triterpenoid saponins from Ardisia crenata. Phytochemistry 37,1389-1396. https://doi.org/10.1016/S0031-9422(00)90418-7

Jansakul, C., Baumann, H., Kenne, L., Samuelsson, G., 1987. Ardisiacrispin A and B, two utero-contracting saponins from Ardisia crispa. Planta Med. 53(5) 405-409. https://doi: 10.1055/s-2006-962758.

Källersjö, M., Bergqvist, G., Anderberg, A., 2000. Generic realignment in primuloid families of the Ericales sl: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am. J. Bot. 87(9), 1325-1341. https://doi: 10.2307/2656725

Kawashty, S. A., El-Garf, I. A., El-Negoumy, S. I., 1998. Chemosystematics of Anagallis arvensis L. (Primulaceae). Biochem. System. Ecol. 26(6), 663-668. https://doi: 10.1016/s0305-1978(98)00008-8
Kohda, H., Takeda, O., Tanaka, S., 1989. Molluscicidal triterpenoidal saponin from Lysimachia sikokiana. Chem. Pharm. Bull. 37(12), 3304-3305. https://doi.org/10.1248/cpb.37.3304 Kitagawa, I., Matsuda, A., Yosioka, I., 1972. Saponin and sapogenol. VII. Sapogenol constituents of five primulaceous plants. Chem. Pharm. Bull. 20(10), 2226-2234. https://doi: 10.1248/cpb.20.2226
Kitagawa, I., Ikenishi, Y., Yoshikawa, M., Yosioka, I., 1976. Saponin and sapogenol. XVII. Structure of sakuraso-saponin, a pentaglycoside of protoprimulagenin A from the root of Primula sieboldi E. Morren. Chem. Pharm. Bull. 24(10), 2470-2479. https://doi: 10.1248/cpb.24.2470
Koczurkiewicz, P., Czyz, J., Podolak, I. Wojcik, K. Galanty, A. Janeczko, Z., Michalik, M., 2015. Multidirectional effects of triterpene saponins on cancer cells - mini-review of in vitro studies. Acta Biochim. Pol. 62(3), 383-393. https://doi:10.18388/abp. 20151089

Lakhal, H., Kabouche, A., Alabdul Magid, A., Voutquenne-Nazabadioko, L., Harakat, D., Kabouche, Z., 2014. Triterpenoids from Salvia argentea var. aurassiaca (Pomel) Batt.\& Trab. and their chemotaxonomic significance. Phytochemistry 102, 145-151. https://doi:10.1016/j.phytochem.2014.03.009
Lavaud, C., Massiot, G., Barrera, J. B., Moretti, C., Le Men-Olivier, L., 1994. Triterpene saponins from Myrsine pellucida. Phytochemistry 37(6), 1671-1677. https://doi: 10.1016/s0031-9422(00)89590-4.

Lehbili, M., Alabdul Magid, A., Kabouche, A., Voutquenne-Nazabadioko, L., Morjani, H., Harakat, D., Kabouche, Z., 2018. Triterpenoid saponins from Scabiosa stellata collected in North-eastern Algeria. Phytochemistry 150, 40-49. https://doi: 10.1016/j.phytochem.2018.03.005
Liang, B., Tian, J.-K., Xu, L.-Z., Yang, S.L., 2006. Triterpenoid saponins from Lysimachia davurica. Chem. Pharm. Bull. 54(10), 1380-1383. https://doi: 10.1248/cpb.54.1380
Liang, D., Hao, Z.Y., Zhang, G.J., Zhang, Q.J., Chen, R.Y., Yu, D.Q., 2011. Cytotoxic triterpenoid saponins from Lysimachia clethroides. J. Nat. Prod. 74(10), 2128-2136. https://doi: 10.1021/np2004038
López, V., Jäger, A., Akerreta, S., Covero,R., Calvo, M., 2011. Pharmacological properties of Anagallis arvensis L.("scarlet pimpernel") and Anagallis foemina Mill. ("blue pimpernel") traditionally used as wound healing remedies in Navarra (Spain). J. Ethnopharmacol. 134(3), 1014-1017. https://doi: 10.1016/j.jep.2010.12.036
Mahato, S.B., Sahu, N.P., Roy, S.K., Sen, S., 1991. Structure elucidation of four new triterpenoid oligoglycosides from Anagallis arvensis. Tetrahedron 47(28), 5215-5230. https://doi: 10.1016/s0040-4020(01)87133-7

Manns, U and Anderberg, A.A., 2009. New combinations and names in Lysimachia (Myrsinaceae) for species of Anagallis, Pelletiera and Trientalis. Willdenowia 39, 49-54. https://doi: org/10.3372/wi.39.39103
Manns, U., Anderberg, A.A., 2011. Biogeography of 'tropical Anagallis'(Myrsinaceae) inferred from nuclear and plastid DNA sequence data. J. biogeogr. 38(5), 950-961. https://doi:org/10.1111/j.1365-2699.2010.02454.x.
Mihci-Gaidi, G., Ozbey, S., Orhan, I., Sener, B., Miyamoto, T., Mirjolet, J.F., Duchamp, O., Mitaine-Offer, A.C., Lacaille-Dubois, M.A., 2010. Triterpene saponins from Cyclamen trocopteranthum. Planta Med. 76(8), 818-821. https://doi:10.1055/s-0029-1240727
Mu, L-H., Gong, Q-Q., Zhao, H-X., Liu, P., 2010. Triterpenoid saponins from Ardisia gigantifolia. Chem. Pharm. Bull. 58(9), 1248-1251 https://doi.org/10.1248/cpb.58.1248
Netala, V.R., Ghosh, S.B., Bobbu, P., Anitha, D., Tartte, V., 2015. Triterpenoid saponins: a review on biosynthesis, applications and mechanism of their action. Int. J. Pharm. Pharm. Sci. 7(1), 24-28.

Podolak, I., Elas, M., Cieszka, K., 1998. In vitro antifungal and cytotoxic activity of triterpene saponosides and quinoid pigments from Lysimachia vulgaris L. Phytother. Res. 12, S70. https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+S70::AID-PTR2543.0.CO;2-9
Podolak, I., Galanty, A. Sobolewska, D., 2010. Saponins as cytotoxic agents: a review. Phytochem. Rev. 9:425-474. https://doi:10.1007/s11101-010-9183-z
Podolak, I., Koczurkiewicz, P., Galanty, A., Michalik, M., 2013. Cytotoxic triterpene saponins from the underground parts of six Lysimachia L. species. Biochem. System. Ecol. 47, 116-120. https://doi: 10.1016/j.bse.2012.10.003
Quezel, P., Santa, S., 1963. Nouvelle flore de l'Algérie et des régions désertiques méridionales. Retrieved from French National Center for Scientific Research, pp.726727.

Rastogi, J., Norula, J., 1980. Chemical investigations of Anagallis arvensis flowers. J Indian Chem. Soci. 57, 761-762.

Reznicek, G., Jurenitsch, J., Robien, W., Kubelka, W., 1989. Saponins in Cyclamen species: configuration of cyclamiretin C and structure of isocyclamin. Phytochemistry 28(3), 825828. https://doi.org/10.1016/0031-9422(89)80123-2

Saxena, S., Rao, P., 2021. Pharmacological and phytochemical assessment of Anagallis arvensis L. leaf extracts. Asian J. Chem. 33(8), 1831-1841. https://doi: org/10.14233/ajchem.2021.23265
Shoji, N., Umeyama, A., Yoshikawa, K., Arihara, S., 1994a. Triterpenoid glycosides from Anagallis arvensis. Phytochemistry 37(5), 1397-1402. https://doi:10.1016/s0031-9422(00)90419-9

Shoji, N., Umeyama, A., Yoshikawa, K., Arihara, S., 1994b. Structures of anagallosaponins IV and their companion substances from Anagallis arvensis L. Chem. Pharm. Bull. 42(9): 1750-1755. https://doi: 10.1248/cpb.42.1750
Soberón, J.R., Sgariglia, M.A., Pastoriza, A.C., Soruco, E.M., Jäger, S.N., Labadie, G.R.,Sampietro D.A., Vattuone, M.A., 2017. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L. J. Ethnopharmacol. 203, 233-240. https://doi: 10.1016/j.jep.2017.03.056

Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. " http://www.mobot.org/MOBOT/research/APweb/.

Tian, J.K., Xu, L.Z., Zou, Z.M., Yang, S.L., 2006. Three novel triterpenoid saponins from Lysimachia capillipes and their cytotoxic activities. Chem. Pharm. Bull. 54(4), 567-569. https://doi: $10.1248 / \mathrm{cpb} .54 .567$
Valdes, B., Talavera, S., Fernandez-Galiano, E., 1987. Flora Vascular de Andalucia Occidental. Ketres editora. vol.1.pp 465

Waltho, J. P., Williams, D. H., Mahato, S. B., Pal, B. C., Barna, J.C. J., 1986. Structure elucidation of two triterpenoid tetrasaccharides from Androsace saxifragifolia. J. Chem. Soc. Perkin Trans. I, 1527-1531. https://doi.org/10.1039/P19860001527
Yasmeen, Z., Basit, A., Tahir, S., 2020. Traditional uses and pharmacological effects of Anagallis arvensis : A Review. Int. J. Front. Sci. 4, 97-100 https://doi.org/10.37978/tijfs.v4i2.294

Yosioka, I., Nishimura, T., Watani, N., Kitagawa, I., 1967. On the unexpected identity of theasapogenol D (= camelliagenin A), a minor sapogenol of tea seeds, with dihydropriverogenin A. Tetrahedron Lett. 8(52), 5343-5347. https://doi.org/10.1016/S0040-4039(01)89675-1
Zhang, X.R., Peng, S.L., Wang, M.K., Ding, L.S., 2002. A new triterpenoid saponin from Lysimachia candida. Zhongcaoyao 33(6), 481-483.

List of Figure caption

Fig. 1. Structures of compounds 1-13 isolated from Anagallis monelli ssp. linifolia
Fig. 2. Key HMBC and ROESY correlations for compound 1.
Fig. 3. Key HMBC correlations for compound 10.
Fig. 4. The common carbohydrate chain linked on the C-3 of 13,28-epoxy-3,16-oleananediol derivatives skeleton structure of species in the Myrsinaceae and Primulaceae

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$
$\mathbf{1}$	\mathbf{H}	OH	CH_{3}	S 2
$\mathbf{2}$	\mathbf{H}	OH	CH_{3}	S 1
$\mathbf{3}$	H	H	$\mathrm{CH}_{2} \mathrm{OH}$	S 3
$\mathbf{4}$	OCH_{3}	H	$\mathrm{CH}_{2} \mathrm{OH}$	S 1
$\mathbf{5}$	OCH_{3}	H	$\mathrm{CH}_{2} \mathrm{OH}$	S 2

R_{4}
S2
S1
S3
S1
S2

Fig. 1. Structures of compounds 1-13 isolated from Anagallis monelli ssp. Linifolia

Fig. 2. Key HMBC and ROESY correlations for compound 1.

Fig. 3. Key HMBC correlations for compound 10.

Fig. 4. The common carbohydrate chain linked on the C-3 of 13,28-epoxy-3,16-oleananediol derivatives skeleton structure of species in the Myrsinaceae and Primulaceae

Table 1
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of aglycone moieties for compounds $1-5$ in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{a}, \mathrm{b}}$

Position	1		2		3		4		5	
	δ_{C}	δ_{H}	$\delta_{\text {c }}$	$\delta_{\text {H }}$	δ_{C}	δ_{H}	$\delta_{\text {c }}$	δ_{H}	δ_{C}	δ_{H}
1	38.8	0.98 m	38.8	0.97 m	38.5	0.95 m	38.6	0.96 m	38.6	0.96 m
		1.77 m		1.77 m		1.75 m		1.77 m		1.77 m
2	25.8	1.76 m	25.8	1.76 m	25.3	1.77 t (12.5)	25.2	1.80 m	25.2	1.80 m
		1.88m		1.87 m		1.88 m		1.89 m		1.89 m
3	90.0	3.16 dd (11.7, 4.3)	90.0	3.16 dd (11.7, 4.3)	81.9	3.58 dd (11.9, 4.7)	82.5	3.62 m	82.5	3.62 m
4	39.2	-	39.2	-	42.9	-	42.9	-	42.9	-
5	55.4	0.74 dd (9.4, 4.5)	55.4	0.74 dd (11.3, 2.8)	46.4	1.19 m	46.8	1.17 dd (9.9, 2.7)	46.8	1.17 dd (9.9, 2.7)
6	17.4	1.47 m	17.3	1.46 m	16.8	1.41 m	16.9	1.42 m	16.9	1.42 m
		1.54 m		1.54 m		1.45 m		1.46 m		1.46 m
7	33.7	1.26 t (13.4)	33.7	1.25 m	33.2	1.19 m	33.2	1.19 m	33.2	1.19 m
		1.56 m		1.56 m		1.67 td (13.2, 3.8)		1.69 m		1.69 m
8	42.1	-	42.1	-	41.8	-	41.9	-	41.9	-
9	50.0	1.28 m	49.9	1.27 m	49.9	1.32 m	50.0	1.29 m	50.0	1.29 m
10	36.4	-	36.4	-	36.2	-	36.2	-	36.2	-
11	18.5	1.49 m	18.5	1.49 m	18.5	1.49 m	18.6	1.47 m	18.6	1.47 m
		1.64 dd (12.5, 4.4)		1.64 dd (12.7, 3.4)		1.64 m		1.69 m		1.69 m
12	32.1	1.31 m	32.1	1.31 m	31.9	1.29 m	32.3	1.32 m	32.3	1.32 m
		2.06 m		2.06 m		2.07 m		2.01 m		2.01 m
13	86.9	-	86.9	-	87.0	-	87.6	-	87.6	-
14	44.5	-	44.5	-	44.0	-	42.7	-	42.7	-
15	35.5	1.28 m	35.5	1.27 m	35.6	1.23 d (15.7)	35.7	1.22 d (15.2)	35.7	1.22 d (15.2)
		2.09 m		2.08 m		2.13 m		2.01 m		2.01 m
16	69.8	4.33 d (5.0)	69.8	4.32 br s	76.7	3.90 d (4.7)	75.8	3.83 d (5.2)	75.8	3.83 d (5.2)
17	49.1	-	49.1	-	43.9	-	47.9	-	47.9	-
18	50.7	$1.47 \mathrm{dd}(14.0,2.5)$	50.7	1.46 dd (12.5, 2.1)	51.0	1.52 dd (14.0, 4.7)	46.7	1.71 m	46.7	1.71 m
19	37.6	$\begin{aligned} & 1.15 \mathrm{~m} \\ & 2.46 \mathrm{dd}(14.1,12.3) \end{aligned}$	37.6	$\begin{aligned} & 1.15 \mathrm{~m} \\ & 2.45 \mathrm{dd}(13.9,12.5) \end{aligned}$	38.4	$\begin{aligned} & 2.40 \mathrm{dd}(14.0,12.2) \\ & 1.21 \mathrm{~d}(12.6) \end{aligned}$	38.4	$\begin{aligned} & 1.17 \mathrm{~m} \\ & 2.30 \mathrm{dd}(14.5,12.0) \end{aligned}$	38.4	$\begin{aligned} & 1.17 \mathrm{~m} \\ & 2.30 \mathrm{dd}(14.5,12.0) \end{aligned}$
	32.5	-	32.5	${ }_{-}$	31.0	-	31.0	-	31.0	$-$
21	44.7	$1.40 \mathrm{dd}(12.3,4.9)$	44.7	1.39 m	36.0	1.15 m	36.0	1.15 m	36.0	1.15 m
		2.20 t (12.3)		2.19 t (11.7)		2.10 m		2.06 t (13.3)		2.06 t (13.3)
22	74.2	3.74 dd (11.6, 4.9)	74.2	3.72 m	30.8	$\begin{aligned} & 1.52 \mathrm{td}(13.2,4.4) \\ & 1.79 \mathrm{~d}(13.2) \end{aligned}$	25.1	$\begin{aligned} & 1.98 \mathrm{~m} \\ & 1.42 \mathrm{dm} \text { (12.4) } \end{aligned}$	25.1	$\begin{aligned} & 1.98 \mathrm{~m} \\ & 1.42 \mathrm{dm} \text { (12.4) } \end{aligned}$
23	27.0	1.08 s	27.0	1.07 s	62.9		63.2		63.2	3.30 d (11.5)
						$3.79 \mathrm{~d}(11.2)$		$3.73 \mathrm{~d}(11.5)$		3.73 d (11.5)
24	15.3	0.87 s	15.3	0.86 s	11.9	0.68 s	11.7	0.73 s	11.7	0.73 s
25	15.3	0.92 s	15.3	0.92 s	15.8	0.93 s	15.8	0.96 s	15.8	0.96 s
26	17.4	1.17 s	17.4	1.17 s	17.4	1.17 s	17.5	1.20 s	17.5	1.20 s
27	18.7	1.28 s	18.7	1.28 s	18.5	1.27 s	18.4	1.25 s	18.4	1.25 s
28	76,7	3.67 m	76,7	3.67 s	77.3	$\begin{aligned} & 3.14 \mathrm{~d}(7.6) \\ & 3.52 \mathrm{~d}(7.6) \\ & 0.97 \mathrm{~s} \end{aligned}$	105.5	4.19 s	105.5	4.19 s
29		1.00 s		1.00 s	32.5		32.5	0.94 s	32.5	0.94 s
30	24.6	0.98 s	24.6	0.96 s	23.5	0.93 s	23.5	0.90 s	23.5	0.90 s
OAc					171.5	-		-		-
CH_{3}					19.6	2.08 s	53.9	3.33 s	53.9	3.33 s

${ }^{\text {a }}$ in $p p m, ~ J$ in parentheses in Hz .
${ }^{\mathrm{b}} \mathrm{NMR}$ spectra recorded at 500 or $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at 125 or $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$.

Table 2
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of the sugar moieties for compounds $1-5$ in $\mathrm{CD}_{3} \mathrm{OD} .{ }^{\mathrm{a}, \mathrm{b}}$

Position	1		2		3		4		5	
	δ_{C}	δ_{H}	δ_{C}	$\delta_{\text {H }}$	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}
C3	Ara									
$1{ }^{\prime}$	104.2	4.41 d (6.6)	104.2	4.42 d (6.3)	103.4	4.43 d (6.8)	103.3	4.46 d (6.3)	103.3	4.46 d (5.8)
2^{\prime}	78.0	3.82 m	78.0	3.82 m	79.9	3.73 dd (8.2, 6.8)	78.3	3.79 m	78.3	3.79 dd (8.7, 5.8)
$3 '$	72.9	3.81 m	72.9	3.81 m	73.3	3.79 d (9.0)	73.1	3.80 m	73.0	3.80 dd (5.8, 3.3)
$4 '$	78.8	3.90 m	78.8	3.90 m	78.7	3.92 m	78.8	3.91 m	78.7	3.91 m
5'	64.4	3.55 dd (12.5, 3.8)	64.3	3.55 dm (12.5)	64.5	3.53 d (12.5)	64.4	3.55 dm (12.6)	64.4	3.55 dd (12.7, 1.2)
		4.23 dd (12.5, 2.8)		4.22 d (12.5)		4.19 dd (11.9, 5.4)		4.22 dd (12.6, 2.9)		$4.24 \mathrm{dd}(12.7,2.5)$
	Glc I									
$1 "$	103.0	4.71 d (7.7)	103.1	4.43 d (8.3)	103.7	4.71 d (7.6)	102.9	4.73 d (7.7)	102.9	4.73 d (7.8)
$2 "$	74.6	3.21 dd (8.9, 7.7)	73.5	3.24 t (8.9)	74.6	3.25 t (7.6)	74.6	3.24 t (9.4, 7.7)	74.6	3.22 dd (9.1, 7.8)
$3{ }^{\prime \prime}$	76.4	3.39 t (9.3)	76.6	3.30 m	76.4	3.41 t (9.0)	76.4	3.39 t (9.2)	76.4	3.40 t (9.1)
4"	70.6	3.19 t (9.2)	69.9	3.32 m	69.8	3.35 t (9.5)	70.4	3.20 t (9.3)	70.4	3.21 t (9.1)
$5 "$	76.7	3.29 m	76.7	3.30 m	76.8	3.46 m	76.7	3.29 m	76.7	3.29 m
6"	61.9	3.62 dd (12.0, 6.7)	61.0	3.68 dd (10.4, 2.6)	63.5	4.20 dd (11.5, 2.5)	61.7	3.62 dd (12.1, 6.7)	61.7	3.62 dd (11.9, 6.6)
		3.86 dd (12.0, 2.0)		3.89 m		4.34 dd (11.5, 2.0)		3.87 dd (12.1, 2.1)		3.86 dd (11.9. 4.3)
	GIc II		Glc II		Glc II		Glc II		Glc II	
$1{ }^{\prime \prime}$	103.4	4.54 d (7.8)	103.3	4.57 d (8.8)	103.2	4.56 d (7.2)	103.2	4.58 d (7.8)	103.3	4.54 d (7.8)
2 "'	83.7	3.41 dd (8.9, 7.8)	83.1	3.48 t (9.0)	83.6	3.44 dd (9.0, 7.2)	83.1	3.48 dd (9.0, 7.8)	83.7	3.40 t (8.5)
3'"	76.2	3.57 t (8.9)	74.7	3.75 t (9.0)	76.2	3.56 t (9.0)	74.6	3.75 t (9.1)	76.2	3.55 t (9.3)
4"'	69.7	3.35 m	78.5	3.63 t (8.9)	69.6	3.37 t (9.0)	78.5	3.63 t (9.2)	69.7	3.35 t (9.4)
5 "'	76.7	3.34 m	75.1	4.30 m	76.5	3.28 m	75.1	$3.44 \mathrm{dt}(9.6,3.6)$	76.5	3.30 m
6'"	61.2	3.69 dd (12.4, 6.2)	60.3	3.89 m	61.1	3.68 dd (12.2, 5.4)	60.3	3.88 m	61.1	3.68 dd (11.9, 5.6)
		3.88 d (12.4)		3.88 m		3.87 d (12.2, 2.2)		3.88 m		3.87 dd (11.9, 4.1)
			GIc III				Glc III			
1 ""			102.9	4.71 d (7.3)			103.1	4.43 d (7.9)		
2""			74.6	3.10 dd (8.9, 7.3)			73.5	3.23 dd (9.0, 7.9)		
$3^{\prime \prime \prime}$			76.4	3.39 m			76.4	3.37 t (9.0)		
4""			70.6	3.18 t (8.9)			69.9	3.32 m		
5""			76.7	3.30 m			76.7	3.35 m		
6""			61.9	3.60 dd (11.0, 4.7)			61.0	3.68 dd (11.7, 5.2)		
				3.86 d (11.0)				3.89 dd (11.7, 1.9)		
	Xyl		Xyl		XyI		XyI		XyI	
1 ""	105.9	4.53 d (7.6)	105.9	4.56 d (7.8)	105.9	4.55 d (6.8)	106.0	4.56 d (7.5)	105.9	4.53 d (7.8)
2""'	74.5	3.27 dd (8.7, 7.6)	74.6	3.26 t (7.8)	74.5	3.27 dd (9.0, 6.8)	74.6	3.26 dd (8.2, 7.5)	74.5	3.27 dd (9.2, 7.8)
3""'	76.5	3.39 m	76.1	3.37 m	76.3	3.36 t (9.0)	76.1	3.37 m	76.2	3.37 t (9.2)
4""	69.6	3.54 m	69.6	3.52 m	69.5	3.52 m	69.6	3.52 m	69.6	3.53 m
5""'	66.0	3.32 m	66.0	3.32 m	66.0	3.30 m	66.0	3.32 m	66.0	$\begin{aligned} & 3.31 \mathrm{~m} \\ & 4.00 \mathrm{dd}(11.4,5.4) \end{aligned}$
		4.01 dd (11.3, 5.2)		4.01 dd (11.5, 5.7)		3.99 dd (11.5, 5.4)		4.00 dd (11.4, 5.2)		
OAc					171.5	-				
CH_{3}					19.6	2.08 S				

${ }^{\text {a }}$ in $p p m, J$ in parentheses in Hz .
${ }^{\mathrm{b}} \mathrm{NMR}$ spectra recorded at 500 or $600 \mathrm{MHz}\left({ }^{(1} \mathrm{H}\right)$ and at 125 or $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$.

Table 3
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of aglycone moieties for compounds 6-9 in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{a}, \mathrm{b}}$

Position	6		7		8		9	
	$\delta_{\text {c }}$	$\delta_{\text {H }}$						
1	38.6	0.95 m	38.6	0.95 m	38.5	$\begin{aligned} & \hline 0.97 \mathrm{~m} \\ & 1.78 \mathrm{~m} \end{aligned}$	38.5	$\begin{gathered} 0.95 \mathrm{~m} \\ 1.76 \mathrm{~m} \end{gathered}$
		1.77 m		1.77 m				
2	25.2	1.81 m	25.2	1.82 t (12.9)	25.2	$\begin{aligned} & 1.81 \mathrm{~m} \\ & 1.90 \mathrm{~m} \end{aligned}$	25.1	$1.77 \mathrm{~m}$
		1.89 m		1.90 m				$1.90 \mathrm{~m}$
3	82.5	3.62 m	82.5	3.63 m	82.3	3.63 d (8.9)	81.7	3.63 dd (12.0, 4.8)
4	42.9	-	42.9	-	42.9	-	42.7	,
5	46.8	1.17 m	46.8	1.18 m	46.6	1.18 dd (10.2, 2.9)	46.7	1.19 dd (9.5, 5.3)
6	16.9	1.42 m	16.9	1.42 m	16.7	1.47 m	16.7	1.47 m
		1.46 m		1.43 m		1.49 m		1.49 m
7	33.2	1.18 m	33.2	1.19 m	32.7	$1.11 \mathrm{dt}(12.7,3.2)$	32.8	$\begin{aligned} & 1.11 \mathrm{dt}(12.7,3.2) \\ & 1.60 \mathrm{~m} \end{aligned}$
		1.68 m		1.68 m		1.62 m		
8	41.9	-	41.9		42.5	-	42.5	-
9	50.0	1.28 m	49.9	1.28 m	49.8	1.26 m	49.8	1.26 m
10	36.2	-	36.2	-	36.1	-	36.1	-
11	18.6	1.47 m	18.6	1.47 m	18.3	1.57 m	18.3	1.57 m
		1.68 m		1.68 m		1.74 m		1.74 m
12	32.4	1.31 m	32.4	$1.31 \mathrm{t}(13.6)$	31.1	1.51 m	31.1	1.51 m
13	87.4	$\underline{-}$	87.4	2.01 m	86.2	${ }_{-}^{2.05 ~ m}$	86.2	2.05 m
14	42.7	-	42.7	-	49.7	-	49.7	-
15	35.7	1.22 m	35.7	1.22 m	45.0	1.81 d (15.8)	45.0	1.81 d (15.8)
		2.01 m		2.01 m		2.80 d (15.8)		2.80 d (15.8)
16	75.9	3.82 d (4.6)	75.9	3.82 m	214.3	-	214.3	
17	48.0	-	48.4	-	55.8	-	55.8	-
18	46.7	1.76 m	46.7	1.77 m	54.5	2.02 dd (12.1, 2.7)	54.5	2.01 dd (13.8, 3.2)
19	38.5	$\begin{aligned} & 1.17 \mathrm{~m} \\ & 2.28 \mathrm{t}(12.8) \end{aligned}$	38.5	$\begin{aligned} & 1.18 \mathrm{~m} \\ & 2.29 \mathrm{dd}(14.2,12.6) \end{aligned}$	39.6	$\begin{aligned} & 1.36 \mathrm{t}(13.8) \\ & 1.48 \mathrm{~m} \end{aligned}$	39.6	$\begin{aligned} & 1.36 \mathrm{t}(13.8) \\ & 1.48 \mathrm{~m} \end{aligned}$
20	31.1	-	31.0	-	31.1	-	31.1	-
21	36.1	1.16 m	36.1	1.17 m	35.0	$\begin{aligned} & 1.23 \mathrm{~m} \\ & 1.57 \mathrm{~m} \end{aligned}$	35.0	$\begin{aligned} & 1.23 \mathrm{~m} \\ & 1.57 \mathrm{~m} \end{aligned}$
		2.04 m		2.05 m				
22	25.2	1.41 m	25.2	1.41 m	24.2	$\begin{aligned} & 1.25 \mathrm{~m} \\ & 2.11 \mathrm{~d}(11.7) \end{aligned}$	24.2	$\begin{aligned} & 1.25 \mathrm{~m} \\ & 2.11 \mathrm{dt}(12.7,2.1) \end{aligned}$
	63.2	2.04 m		2.05 m				
23		3.30 m	63.2	$3.30 \mathrm{~m}$	63.1	$\begin{aligned} & 3.29 \mathrm{~m} \\ & 3,73 \mathrm{~d}(11.3) \end{aligned}$	63.1	$\begin{aligned} & 3.31 \mathrm{~m} \\ & 3,65 \mathrm{~d}(11.1) \end{aligned}$
		$3.72 \mathrm{~m}$		3.73 d (11.6)				
24	11.7	0.73 s	11.7	0.73 s	11.7	$\begin{aligned} & 3,73 \mathrm{~d}(11.3) \\ & 0.74 \mathrm{~s} \end{aligned}$	11.7	$0.75 \mathrm{~s}$
25	15.9	0.95 s	15.9	0.96 s	15.5	0.96 s	15.6	0.96 s
26	17.5	1.20 s	17.5	1.20 s	17.8	1.28 s	17.8	
27	18.3	1.24 s	18.3	1.25 s	20.8	1.08 s	20.8	$1.08 \mathrm{~s}$
28	104.1	4.28 brs	104.1	4.28 brs	74.7	$\begin{aligned} & 3.48 \mathrm{~d}(8.4) \\ & 3.93 \mathrm{~d}(8.4) \end{aligned}$	74.7	$\begin{aligned} & 3.48 \mathrm{~d}(8.5) \\ & 3.93 \mathrm{~d}(8.5) \end{aligned}$
29	32.5	0.95 s	32.3	0.94 s	32.4		32.4	$\begin{aligned} & 3.93 \mathrm{~d}(8.5) \\ & 0.95 \mathrm{~s} \end{aligned}$
30	23.4	0.91 s	23.5	0.91 s	22.4	0.91 s	22.4	0.91 s
a	66.5	3.33 m	66.5	3.34 m				
		3.70 m		3.71 m				
b	31.7	1.56 t (6.5)	31.7	1.56 t (6.7)				
c	19.1	1.42 m	19.1	1.42 m				
d	12.8	0.95 t (6.9)	12.8	0.95 t (6.9)				

${ }^{\text {a }}$ in $\mathrm{ppm}, ~ J$ in parentheses in Hz .
${ }^{\mathrm{b}}$ NMR spectra recorded at 600 and $150 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$.

Table 4
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of the sugar moieties for compounds 6-9 in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{a}, \mathrm{b}}$

Position	6		7		8		9	
	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$
C3	Ara		Ara		Ara		Ara	
$1{ }^{\prime}$	103.3	4.46 d (6.3)	103.3	4.46 d (5.4)	103.3	4.46 d (6.1)	105.1	4.28 d (7.2)
$2 '$	78.3	3.79 m	78.3	3.79 m	78.3	3.79 m	72.7	3.43 m
$3 '$	73.1	3.80 m	73.1	3.80 m	73.1	3.80 m	73.2	3.47 dd (9.2,4.0)
4'	78.8	3.91 m	78.7	3.90 m	78.7	3.91 m	80.0	3.85 dm (2.8)
5^{\prime}	64.4	3.55 dd (11.9, 1.5)	64.4	3.54 m	64.4	3.55 m	65.5	$3.56 \mathrm{~d}(12.8)$
		4.22 d (11.9)		4.24 dd (12.7, 3.3)		4.22 dd (12.7, 2.8)		$4.20 \mathrm{dd}(12.8,2.0)$
	Glc I		Glc I		Glc I			
$1 "$	102.9	$4.73 \mathrm{~d}(7.7)$	102.9	4.73 d (7.6)	102.9	$4.72 \mathrm{~d}(7.7)$		
$2 "$	74.6	$3.21 \mathrm{dd}(9.2,7.7)$	74.6	$3.22 \mathrm{dd}(8.8,7.6)$	74.6	3.21 dd (8.9, 7.7)		
3"	76.4	3.39 m	76.4	3.39 t (9.2)	76.4	3.39 t (9.4)		
4"	70.4	3.20 m	70.4	3.21 t (9.1)	70.4	3.20 t (9.4)		
5"	76.7	3.29 m	76.7	3.30 m	76.7	3.29 m		
$6 "$	61.7	3.62 dd (11,9, 4.5)	61.7	3.63 m	61.7	$\begin{aligned} & 3.61 \mathrm{dd}(11,9,6.6) \\ & 3.86 \mathrm{dd}(11,9,2.0) \end{aligned}$		
		3.86 dd (11,9, 2.3)		3.86 dd (11.9, 4.8)				
	Glc II		Glc II		Glc II		Glc II	
1 "'	103.2	4.58 d (7.7)	103.3	$4.54 \mathrm{~d}(7.8)$	103.2	4.58 d (7.7)	103.7	4.56 d (8.0)
2"'	83.1	3.48 dd (8.9, 7.7)	83.8	3.40 t (8.7)	83.1	3.49 dd (8.9, 7.7)	84.1	3.50 dd (9.0, 8.0)
3"'	74.6	3.74 m	76.1	3.56 m	74.6	3.74 t (9.1)	74.5	3.74 t (9.0)
4"'	78.5	3.62 t (9.2)	69.7	3.35 m	78.5	3.63 t (9.4)	78.3	3.66 t (9.2)
5"'	75.1	3.44 m	76.5	3.34 m	75.1	3.44 m	75.0	4.43 m
6"'	60.3	3.87 m	60.1	3.69 dd (11.9, 5.7)	60.3	3.87 m	60.3	3.87 m
		3.89 m		3.87 d (11.9, 4.8)		3.89 m		3.89 m
	Glc III				Glc III		Glc III	
1 "'"	103.1	4.43 d (8.6)			103.1	$4.43 \mathrm{~d}(7.9)$	103.1	4.44 d (7.6)
2'"'	73.5	3.24 m			73.5	3.24 dd (8.8, 7.9)	73.5	3.24 dd (8.8, 7.6)
3"'"	76.4	3.38 t (8.9)			76.1	3.37 m	76.4	3.37 t (9.0)
4"'"	69.9	3.33 m			69.9	3.33 m	69.9	3.32 m
5"'"	76.6	3.34 m			76.7	3.43 m	76.6	3.30 m
6"'"	61.0	3.67 dd (11.6, 3.4)			60.9	3.68 dd (11.9, 5.6)	61.0	3.68 dd (12.0, 5.6)
		3.88 m				3.89 m		3.89 dd (12.0, 2.0)
	XyI		Xyl		XyI		Xyl	
1 "'"	106.0	4.56 d (7.9)	105.9	4.52 d (7.6)	105.9	4.56 d (7.6)	106.6	$4.52 \mathrm{~d}(7.6)$
2 "'"	74.6	3.26 dd (8.9, 7.9)	74.5	3.27 t (7.9)	74.6	3.25 t (8.1)	74.8	3.25 dd (9.6, 7.6)
3"'"	76.1	3.37 m	76.2	3.35 m	76.4	3.37 m	76.2	3.37 t (9.6)
4"'"	69.6	3.53 m	69.5	3.52 m	69.5	3.52 m	69.4	3.52 m
5"'"	66.0	$3.32 \mathrm{t}(11.0)$	66.0	$3.31 \mathrm{~m}$	66.0	$3.32 \mathrm{~m}$	65.7	$3.28 \mathrm{t}(11.6)$
		4.00 dd (11.0, 5.5)		4.00 dd (11.3, 5.4)		4.00 dd (11.4, 5.4)		$4.00 \mathrm{dd}(11.6,5.6)$

[^0]${ }^{\mathrm{b}}$ NMR spectra recorded at 600 MHz and $150\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$.

Table 5
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of the aglycone moieties for compounds $10-13$ in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{a}, \mathrm{b}}$

Position	10		11		12		13	
	$\delta_{\text {c }}$	δ_{H}	$\delta_{\text {c }}$	δ_{H}	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$	δ_{H}
1	38.2	1.00 m						
		1.65 m		1.66 m		1.66 dt (13.3, 3.6)		1.65 m
2	25.0	1.80 t (14.3)	25.0	1.80 t (12.9)	24.9	1.79 m	24.9	1.80 t (12.6)
3	82.5	1.89 m	82.4	1.89 m $3.64 \mathrm{dd}(11.7,4.3)$	82.4	1.89 m 3.63 m	82.4	1.89 m 3.64 m
4	42.8	-	42.7	-	42.7	-	42.7	-
5	46.9	1.24 d (11.7)	46.8	1.24 d (11.7)	46.8	1.24 d (11.7)	46.8	1.24 d (10.9)
6	17.4	1.37 m	17.4	1.38 m	17.3	1.37 m	17.4	1.37 m
		1.52 m		1.52 m		1.51 m		1.52 m
7	32.3	1.31 m	32.2	1.31 m	32.2	1.31 m	32.2	1.31 m
		1.69 m		1.70 m		1.69 m		1.70 m
8	39.4	-	39.4	-	39.4	-	39.4	-
9	46.7	1.69 t (8.5)	46.6	1.69 m	46.7	1.68 t (8.8)	46.7	1.69 m
10	36.2	-	36.2	-	36.2		36.2	-
11	23.1	$\begin{aligned} & 1.93 \mathrm{~m} \\ & 1.94 \mathrm{~m} \end{aligned}$	23.1	$\begin{aligned} & 1.93 \mathrm{~m} \\ & 1.94 \mathrm{~m} \end{aligned}$	23.1	$\begin{aligned} & 1.92 \mathrm{~m} \\ & 1.94 \mathrm{~m} \end{aligned}$	23.1	$\begin{aligned} & 1.92 \mathrm{~m} \\ & 1.93 \mathrm{~m} \end{aligned}$
12	123.0	5.42 t (3.6)	123.0	5.42 brs	123.0	5.42 t (3.5)	123.0	5.42 t (3.7)
13	142.9		142.9	-	142.9	5.	142.9	(3.7)
14	41.4	-	41.4	-	41.4	-	41.4	-
15	34.6	1.40 m	34.5	1.40 m	34.5	1.40 dd (14.2, 2.7)	34.5	1.40 m
		1.82 dd (14.7, 4.0)		1.82 d (12.9)		1.82 dd (14.2, 3.6)		$1.82 \mathrm{dd}(14.5,3.7)$
16	72.5	4.29 t (3.6)	72.4	4.29 brs	72.4	4.29 t (3.5)	72.4	4.28 t (3.7)
17	50.8	-	50.8	-	50.9		50.8	-
18	40.4	2.68 dd (14.5, 3.9)	40.4	2.68 dd (13.8, 3.3)	40.4	2.68 dd (14.2, 4.4)	40.4	2.68 dd (13.5, 4.3)
19	46.1	$\begin{aligned} & 1.14 \mathrm{dd}(13.3,4.9) \\ & 2.27 \mathrm{t}(13.3) \end{aligned}$	46.0	$\begin{aligned} & 1.13 \mathrm{~d}(13.8) \\ & 2.27 \mathrm{t}(13.8) \end{aligned}$	46.0	$\begin{aligned} & 1.14 \mathrm{dd}(12.7,3.6) \\ & 2.27 \mathrm{t}(14.2) \end{aligned}$	46.0	$\begin{aligned} & 1.13 \mathrm{dd}(13.5,4.3) \\ & 2.27 \mathrm{t}(13.5) \end{aligned}$
20	29.9	${ }_{-}$	29.9	${ }_{-}{ }_{-}$	29.9	-	29.9	-
21	34.2	1.20 m	34.2	1.21 m	34.2	1.20 m	34.2	1.21 m
		1.94 m		1.94 m		1.93 m		1.94 m
22	25.9	1.56 m	25.9	1.55 m	25.9	1.54 m	25.9	1.54 m
23	63.3	$\begin{aligned} & 3.30 \mathrm{~m} \\ & 3.73 \mathrm{~d}(11.6) \end{aligned}$	63.2	$\begin{aligned} & 3.30 \mathrm{~m} \\ & 3.73 \mathrm{~d}(11.4) \end{aligned}$	63.2	$\begin{aligned} & 3.30 \mathrm{~m} \\ & 3.70 \mathrm{~d}(11.4) \end{aligned}$	63.3	$\begin{aligned} & 3.31 \mathrm{~m} \\ & 3.68 \mathrm{~d}(11.6) \end{aligned}$
24	11.9	0.75 s	11.9	0.74 s	11.9	0.73 s	11.9	0.73 s
25	15.1	1.00 s	15.1	1.00 s	15.1	1.00 s	15.1	1.01 s
26	16.5	0.76 s	16.5	0.75 s	16.5	0.76 s	16.5	0.75 s
27	25.9	1.41 s						
28	205.6	9.23 s						
29	32.0	0.93 s	32.0	0.92 s	32.0	0.92 s	32.0	0.92 s
30	23.1	0.98 s						

${ }^{\mathrm{a}}$ in ppm, J in parentheses in Hz .
${ }^{\mathrm{b}} \mathrm{NMR}$ spectra recorded at 600 and $150 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$.

Table 6
${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of the sugar moieties for compounds $10-13$ in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{a}, \mathrm{b}}$

Position 10			11		12		13	
	$\delta_{\text {c }}$	$\delta_{\text {H }}$						
C3	Ara		Ara		Ara		Ara	
$1{ }^{\prime}$	103.3	4.46 d (6.4)	103.3	4.46 d (5.1)	102.9	4.56 d (6.2)	102.9	4.55 d (5.3)
2'	78.3	3.79 m	78.2	3.79 m	77.5	3.89 t (7.7)	77.6	3.89 m
3'	73.1	3.80 m	73.1	3.80 m	72.2	3.87 dd (8.2, 2.3)	72.3	3.87 m
4'	78.8	3.91 m	78.8	3.90 m	77.3	3.98 dd (6.6, 2.7)	77.2	3.99 m
5'	64.4	$\begin{aligned} & 3.55 \mathrm{~d}(12.6) \\ & 4.21 \mathrm{dd}(12.6,2.6) \end{aligned}$	64.5	$\begin{aligned} & 3.55 \mathrm{~m} \\ & 4.24 \mathrm{dd}(12.8,3.3) \end{aligned}$	63.4	$\begin{aligned} & 3.57 \text { dd }(12.4, \end{aligned}$	63.5	$\begin{aligned} & 3.57 \text { dd (12.4, } \\ & 1.9) \end{aligned}$
	Glc I		Glc I		Glc I	$\begin{aligned} & 4.15 \mathrm{dd}(12.4, \\ & 4.3) \end{aligned}$	Glc I103.0	$\begin{aligned} & 4.15 \mathrm{dd}(12.4, \\ & 4.2) \end{aligned}$
$1 "$	103.0	$4.73 \mathrm{~d}(7.7)$	102.9	$4.73 \mathrm{~d}(7.6)$	103.1			
$2{ }^{\prime \prime}$	74.6	$3.21 \mathrm{dd}(9.2,7.7)$	74.5	3.21 dd (8.9, 7.6)	74.4	4.66 d (7.8)	74.4	4.65 d (7.7)
$3 "$	76.5	3.40 t (9.2)	76.4	3.39 t (8.9)	76.6	$3.22 \text { dd (8.9, 7.8) }$	76.6	$3.22 \text { dd (9.1, 7.7) }$
4"	70.4	3.20 t (9.2)	70.4	3.19 t (9.5)	70.4	3.37 t (8.9)	70.4	$3.37 \mathrm{t} \text { (9.0) }$
5"	76.7	3.29 m	76.7	3.29 m	76.8	$3.22 \text { t (9.1) }$	76.9	3.22 t (9.5)
$6 "$	61.8	$\begin{aligned} & 3.62 \mathrm{dd}(12.0,6.6) \\ & 3.87 \mathrm{dd}(12.0,1.6) \end{aligned}$	61.8	$\begin{aligned} & 3.60 \mathrm{dd}(12.0,4.9) \\ & 3.87 \mathrm{dd}(12.0,4.6) \end{aligned}$	61.6	$\begin{aligned} & 3.28 \mathrm{~m} \\ & 3.63 \mathrm{dd}(12.0, \\ & 6.7) \end{aligned}$	61.6	
	Glc II				Glc II			$\begin{aligned} & 3.63 \mathrm{dd}(11.8, \\ & 6.6) \end{aligned}$
1"'	103.2	4.59 d (7.7)	103.4	4.54 d (7.8)	104.1	$3.87 \text { dd (12.0, }$	Glc II	$\begin{aligned} & 3.87 \\ & 2.4) \end{aligned}$
2"'	83.1	3.42 dd (9.2, 7.7)	83.8	3.40 m	73.8		74.0	
3"'	74.6	3.75 t (9.2)	76.2	3.56 t (9.2)	74.8		76.5	
4"'	78.5	3.64 t (9.5)	69.6	3.34 m	79.0	4.53 d (7.8)	70.1	$4.53 \mathrm{~d}(7.7)$
5"'	75.1	3.43 m	76.5	3.29 m	75.1	3.33 m	76.7	3.27 dd (8.9, 7.7)
6"'	60.3	3.87 d (12.4)3.89 m	61.1	3.68 dd (11.7, 5.2)3.88 m	60.4		61.3	3.35 m
						$3.59 \text { t (8.9) }$		$3.29 \text { m }$
	Glc III				GIc III	3.42 m		3.29 m
1""	103.1	4.43 d (7.9)			103.2	3.87 dm (12.5)		3.67 d (11.8, 5.5)
2'"'	73.5	3.24 t (8.2)			73.5	3.91 d (12.5, 2.6)		3.88 d (11.8, 2.4)
3'"'	76.5	3.39 t (8.9)			76.4			
4'"'	69.9	3.33 m			69.9	$4.42 \mathrm{~d}(7.8)$		
5"'"	76.7	3.36 m			76.6	3.23 dd (8.6, 7.7)		
6'"'	61.0	3.68 dd (11.8, 5.5)3.89 m			61.0	$3.38 \mathrm{t} \text { (8.6) }$		
						$3.32 \text { m }$		
	Xyl		Xyl			$\begin{aligned} & 3.35 \mathrm{~m} \\ & 3.68 \mathrm{dd}(11.8, \\ & 5.5) \end{aligned}$		
1 '"'"'"	106.0	4.56 d (7.9)	105,9	$4.52 \mathrm{~d}(8.2)$				
2'"'"	74.6	3.27 dd (9.2, 7.7)	74.5	$3.26 \mathrm{dd}(9.5,8.2)$		$3.89 \mathrm{dd}(11.8,$		
3'"'"	76.1	3.37 t (9.2)	76.2	3.37 t (9.5)		2.8)		
4"'"	69.6	3.53 m	69.5	3.52 m				
5'"'	66.0	3.32 m	66.0	3.32 m				
		4.01 dd (11.3, 5.3)		4.00 dd (11.4, 4.9)				

[^1]Table 7: 3-O- β-d-xyl-($1 \rightarrow 2$)-glc-($1 \rightarrow 4$)-[glc-($1 \rightarrow 2$)-]-arabinopyranosyl-13,28-epoxy-3,16-oleananediol derivatives skeleton of species in the Myrsinaceae and Primulaceae

R1	R2	R3	R4	Name of plant	Reference
Me	H	Me	H	Cyclamen repandum Lysimachia sikokiana Lysimachia vulgaris Lysimachia clethroides Myrsine australis	Dall'acqua et al., 2010 Kohda et al., 1989 Podolack et al., 1998 Podolack et al., 2013 Bloor and QI, 1994
$\mathrm{CH}_{2} \mathrm{OH}$	H	Me	H	Anagallis arvensis Cyclamen africanum Cyclamen repandum Lysimachia ciliata Lysimachia ephemerum Lysimachia heterogenea	Glombitza et al., 1987b Bencharif-Betina et al., 2012 Dall'acqua et al., 2010 Podolack et al., 2013 Podolack et al., 2013 Huang et al., 2011
Me	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	Ardisia crenata Lysimachia thyrsiflora	Jia et al., 1994 Podolack et al., 2013
Me	H	CHO	H	Androsace saxifragaefolia Ardisia crispa Cyclamen africanum Cyclamen libanoticum Cyclamen persicum Cyclamen repandum Cyclamen spp. Cyclamen trocopteranthum Lysimachia nummularia Lysimachia punctata Myrsine australis Myrsine pellucida Myrsine salicina Primula denticulata	Waltho et al., 1986 Jansakul et al., 1987 Bencharif-Betina et al., 2012 El Hosry et al., 2014 El Hosry et al., 2014 Dall'acqua et al., 2010 Rezniek et al., 1989 Minci-Gaidi et al., 2010 Podolack et al., 2013 Podolack et al., 2013 Bloor and QI, 1994 Lavaud et al., 1994 Bloor and QI, 1994 Ahmad et al., 1988
$\mathrm{CH}_{2} \mathrm{OH}$	H	CHO	H	Cyclamen coum var. coum Cyclamen mirabilis	Calis et al., 1997b Calis et al., 1997a
Me	H	COOH	H	Cyclamen hederifolium	Altunkeyik et al., 2012
Me	H	Me	OH	Myrsine australis	Bloor and QI, 1994
Me	OH	Me	H	Anagallis arvensis	Shoji et al., 1994b
Me	OAc	Me	H	Anagallis arvensis Lysimachia ciliata Lysimachia ephemerum	Shoji et al., 1994a Podolack et al., 2013 Podolack et al., 2013
Me	OH	Me	OH	Lysimachia capillipes	Tian et al., 2006

[^0]: ${ }^{\mathrm{a}}$ in ppm, J in parentheses in Hz .

[^1]: ${ }^{\text {a }}$ in $p p m, ~ J$ in parentheses in Hz .
 ${ }^{\mathrm{b}}$ NMR spectra recorded at 600 and $150 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$.

