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Abstract: This paper presents a model reference attitude tracking controller design for a
quadrotor unmanned aerial vehicle subject to saturated actuators and external disturbances.
The dynamical nonlinear model of the quadrotor’s attitude is represented by an uncertain-
like Takagi-Sugeno model, with exact matching on a compact subset of the state space. The
generalized sector condition is employed to deal with the saturated inputs of the quadrotor.
LMI conditions are derived for the design of the proposed tracking controller from a quadratic
Lyapunov function, together with a performance index used to minimize the L2-norm transfer
between the disturbances and the state tracking errors. Because of the input saturation and
the validity domain of the Takagi-Sugeno model, the obtained results only hold regionally
and an optimization procedure to estimate the closed-loop tracking domain of attraction is
proposed. Simulation results are provided to illustrate the effectiveness of the proposed design
methodology.

Keywords: Quadrotor UAVs, Regional attitude tracking control, Takagi-Sugeno models, Input
saturation, LMIs.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are now often used
in the military and civic sectors, as well as in trans-
portation, agriculture, and in a variety of other fields.
Quadrotors are highly popular in these situations because
of their lightweight, simple structure, and maneuverability.
Therefore, researchers have focused on developing mathe-
matical tools enabling these nonlinear systems to fly au-
tonomously, see e.g (Bouabdallah, 2007; Maya-Gress et al.,
2021). Because of the large number of tools available in
linear control, linear controllers were the most commonly
used controllers for such systems. For instance, a Robust
PID controller was proposed by Miranda-Colorado and
Aguilar (2020) to stabilize and track the reference trajec-
tory by optimizing the controller gains through a cuckoo
search technique; the LQR/LQG theory was used to con-
struct a MIMO PID controller for quadrotor trajectory
tracking in Guardeño et al. (2019). However, it is worth
noticing that such linear control strategies only guarantee
the stability of a quadrotor when its attitude stay close to
the hover position. Therefore, when aggressive maneuver
are required, nonlinear control should be considered for
the attitude control loop.

Among nonlinear control approaches, Takagi-Sugeno (T-
S) fuzzy models (Takagi and Sugeno, 1985) have attracted
the attention of the control community due to their ability
to match nonlinear systems precisely by expanding some

control principles that were initially dedicated to linear
systems. As a result, various theoretical articles have
been published, using T-S models for controllers and
observers design to several classes of control problems; e.g.
quadratic design (Tanaka and Wang, 2001), switched T-
S systems (Belkhiat et al., 2019; Chekakta et al., 2021),
output feedback control (Zerar et al., 2008; Jabri et al.,
2020), T-S descriptor control (Taniguchi et al., 2000;
Schulte and Guelton, 2009), tracking control with external
disturbances attenuation from an H∞ performance index
(Mansouri et al., 2009; Seddiki et al., 2010), and so on.
Aside these works, many authors have used T-S modeling
to represent nonlinear quadrotor dynamics for control
purpose. In this context, a fixed quadrotor controller and
observer were constructed, with experimental results in
Lendek et al. (2013). In addition, Yacef (2012) built a
nominal three-rules T-S model for the quadcopter with
Taylor series expansion. Moreover, in Cherifi et al. (2018),
a D-stability robust controller was synthesized to stabilize
the attitude of a quadrotor. In a similar context, in Torres
et al. (2016) and in Sheikhpour and Shouraki (2013),
a fuzzy state feedback controller is proposed based on
experimental and simulation results. A state feedback
controller with all six degrees of freedom (position and
attitude) was developed in Pedro and Kala (2015). Relying
on the work of Cherifi et al. (2018), a T-S model of the
quadrotor is used where nonlinear consequent part are
taking into account as structured uncertainties.
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Model reference tracking control is an important feature
for many practical applications, especially for the attitude
control loop when quadrotors’ aggressive maneuver are
involved. A reference model is introduced in the closed-
loop dynamics to improve tracking performances, despite
the complexity of the trajectory, impacting the system’s
dynamics to improve accuracy and robustness according to
the desired dynamics (Mansouri et al., 2009; Seddiki et al.,
2010). Moreover, in many practical application, input
saturation occurs because actuators are usually physically
limited. To cope with such input constraints, many works
have been done in the linear framework (Tarbouriech et al.,
2011), or in the T-S framework, see e.g. (Nguyen et al.,
2016; Lopes et al., 2020, 2021). However, because of the
domain of validity of the T-S model and the limited input
signals, such designed tracking controllers would be only
suitable regionally.

Based on the above considerations, it is worth noticing
that, to the best of the authors knowledge, there is no
previous studies from the literature, which explore the
regional T-S model-based attitude tracking control of
quadrotors subject to actuators’ saturation and external
disturbances, with the analysis of the closed-loop domain
of attraction. This paper aims at dealing with this issue,
i.e. providing Linear Matrix Inequality (LMI) conditions
as a design methodology of T-S model-based attitude
tracking controllers for disturbed quadrotors involving
input constraints.

The remainder of this paper is organized as follows. Section
2 presents the mathematical model of the quadrotor with
external disturbances and actuators’ saturation, as well
as the problem statement. In section 3, LMI-based condi-
tions for the design of the proposed model reference-based
attitude tracking control scheme is presented with an op-
timization procedure to estimate the closed-loop domain
of attraction with regards to the validity domain of the
T-S model and the input constraints. Finally, simulation
results of the designed closed-loop tracking quadrotor at-
titude dynamics are provided to illustrate the effectiveness
of the proposed control approach.

Notations. The notations used in this paper are standard,
a star (∗) in a matrix denotes a transpose quantity; we
denote the finite set of integers Ir = {1, ..., r}; H(M)
is a shorthand of M + MT , M(l) denotes the lth line of
M ; moreover, convex combinations of matrices Mi (i ∈
Ir) with appropriate dimensions are denoted as Mh =r

i=1 hiMi.

2. PRELIMINARIES AND PROBLEM STATEMENT

By extending quadrotor’s modelling proposed in (Bouab-
dallah, 2007), let us consider the attitude dynamics of a
quadrotor, affected by actuators saturation and external
disturbances, described by:



ϕ̈(t)=
Jr θ̇(t)
Ixx

ug(t)+Iyzxθ̇(t)ψ̇(t)+
sat(u1(t))

Ixx
+φ1(t)

θ̈(t)=
−Jr ϕ̇(t)

Iyy
ug(t)+Izxyϕ̇(t)ψ̇(t)+

sat(u2(t))
Iyy

+φ2(t)

ψ̈(t)=Ixyzϕ̇(t)θ̇(t)+
sat(u3(t))

Izz
+φ3(t)

(1)

where ϕ(t), θ(t) and ψ(t) denote respectively the roll,

pitch and yaw angles, ϕ̇(t), θ̇(t) and ψ̇(t) represent their
angular velocities, for i ∈ I3, ui(t), are the attitude torque

Table 1. Quadrotor parameters (Jeurgens,
2017)

Symbols Value Unit Description

l 0.178 m
Distance from the center
of gravity to the rotors

Ix 2.23 · 10−3 kg ·m2 Moment of inertia for x-axes

Iy 2.98 · 10−3 kg ·m2 Moment of inertia for y-axes

Iz 4.80 · 10−3 kg ·m2 Moment of inertia for z-axes

Ir 2.029 · 10−5 kg ·m2 Moment of inertia of each rotor

b 1.7231 · 10−6 N Thrust Coefficient

d 2.2169 · 10−7 N ·m Drag Coefficient

control inputs, ug(t) = −w1(t)+w2(t)−w3(t)+w4(t) is
the gyroscopic effect depending on the rotors’ angular
velocities wj (j ∈ I4), φi(t) are the external disturbances,
assumed to belong to L2[0,+∞). Moreover, we denotes

Iyzx =
Iyy−Izz

Ixx
, Ixyz =

Ixx−Iyy

Izz
and Izxy =

Izz−Ixx

Iyy
, with the

inertial parameters given in Table 2.

In this paper, it is assumed that input saturation occurs,
that is to say, ∀i = I3, |ui(t)| ≤ ūi, and:

sat(ui(t))=sign(ui(t))min{|ui(t)|, ūi} (2)

Let us recall that the input torques ui(t) result from the
combination of 4 rotor forces Fj = bϖ2

j (for j ∈ I4),
assuming the X quadrotor configuration, where b is a
thrust constant. In this context, the following application
define the relation between the input signals ui(t) (i ∈ I3)
and the pwm commands ϖj (j ∈ I4) (Jeurgens, 2017):

u1(t)
u2(t)
u3(t)


=




bl√
2

−bl√
2

−bl√
2

bl√
2

−bl√
2

−bl√
2

bl√
2

bl√
2

−d
b

d
b

−d
b

d
b





w2

1(t)
w2

2(t)
w2

3(t)
w2

4(t)


, ϖj(t)=

wj(t)−κb

κa
, (3)

where κa = 3.71 and κb = 138.8 rad.s−1 are parameters
of the linear relation between each rotor angular velocity
wj(t) and the pwm (pulse width modulation) motor com-
mands ϖj(t)∈ [0, 100] (%), l is the length from the center
of the UAV to the rotors and d is the drag coefficient.

Let x(t) =

ϕ(t), θ(t), ψ(t), ϕ̇(t), θ̇(t), ψ̇(t)

T
and u(t) =

[u1(t), u2(t), u3(t)]
T be respectively the state and input

vectors. The nonlinear dynamics (1) can be written as the
following affine-in-control nonlinear state space model:

ẋ(t) = A(x(t), ug(t))x(t)+Bsat(u(t))+Wφ(t) (4)

with:

A(x(t), ug(t))=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0
Jrug(t)

Ixx
Iyzxx5(t)

0 0 0 −Jrug(t)

Iyy
0 Izxyx4(t)

0 0 0 Ixyzx5(t) 0 0



,

BT=



0 0 0 1

Ixx
0 0

0 0 0 0 1
Iyy

0

0 0 0 0 0 1
Izz


,WT=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Thanks to the sector nonlinearity approach (Tanaka and
Wang, 2001), a T-S model matching exactly (4) can be
obtained. However, note that (4) contains a nonlinear
entry ug(t), which depends on the input variables. There-
fore, for control purpose and to avoid algebraic loop for
practical implementation, such nonlinear term should be
removed from the fuzzy membership functions. To cope
with that issue, since we have |ug(t)| ≤ ūg, Cherifi et al.
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Model reference tracking control is an important feature
for many practical applications, especially for the attitude
control loop when quadrotors’ aggressive maneuver are
involved. A reference model is introduced in the closed-
loop dynamics to improve tracking performances, despite
the complexity of the trajectory, impacting the system’s
dynamics to improve accuracy and robustness according to
the desired dynamics (Mansouri et al., 2009; Seddiki et al.,
2010). Moreover, in many practical application, input
saturation occurs because actuators are usually physically
limited. To cope with such input constraints, many works
have been done in the linear framework (Tarbouriech et al.,
2011), or in the T-S framework, see e.g. (Nguyen et al.,
2016; Lopes et al., 2020, 2021). However, because of the
domain of validity of the T-S model and the limited input
signals, such designed tracking controllers would be only
suitable regionally.

Based on the above considerations, it is worth noticing
that, to the best of the authors knowledge, there is no
previous studies from the literature, which explore the
regional T-S model-based attitude tracking control of
quadrotors subject to actuators’ saturation and external
disturbances, with the analysis of the closed-loop domain
of attraction. This paper aims at dealing with this issue,
i.e. providing Linear Matrix Inequality (LMI) conditions
as a design methodology of T-S model-based attitude
tracking controllers for disturbed quadrotors involving
input constraints.

The remainder of this paper is organized as follows. Section
2 presents the mathematical model of the quadrotor with
external disturbances and actuators’ saturation, as well
as the problem statement. In section 3, LMI-based condi-
tions for the design of the proposed model reference-based
attitude tracking control scheme is presented with an op-
timization procedure to estimate the closed-loop domain
of attraction with regards to the validity domain of the
T-S model and the input constraints. Finally, simulation
results of the designed closed-loop tracking quadrotor at-
titude dynamics are provided to illustrate the effectiveness
of the proposed control approach.

Notations. The notations used in this paper are standard,
a star (∗) in a matrix denotes a transpose quantity; we
denote the finite set of integers Ir = {1, ..., r}; H(M)
is a shorthand of M + MT , M(l) denotes the lth line of
M ; moreover, convex combinations of matrices Mi (i ∈
Ir) with appropriate dimensions are denoted as Mh =r

i=1 hiMi.

2. PRELIMINARIES AND PROBLEM STATEMENT

By extending quadrotor’s modelling proposed in (Bouab-
dallah, 2007), let us consider the attitude dynamics of a
quadrotor, affected by actuators saturation and external
disturbances, described by:



ϕ̈(t)=
Jr θ̇(t)
Ixx

ug(t)+Iyzxθ̇(t)ψ̇(t)+
sat(u1(t))

Ixx
+φ1(t)

θ̈(t)=
−Jr ϕ̇(t)

Iyy
ug(t)+Izxyϕ̇(t)ψ̇(t)+

sat(u2(t))
Iyy

+φ2(t)

ψ̈(t)=Ixyzϕ̇(t)θ̇(t)+
sat(u3(t))

Izz
+φ3(t)

(1)

where ϕ(t), θ(t) and ψ(t) denote respectively the roll,

pitch and yaw angles, ϕ̇(t), θ̇(t) and ψ̇(t) represent their
angular velocities, for i ∈ I3, ui(t), are the attitude torque

Table 1. Quadrotor parameters (Jeurgens,
2017)

Symbols Value Unit Description

l 0.178 m
Distance from the center
of gravity to the rotors

Ix 2.23 · 10−3 kg ·m2 Moment of inertia for x-axes

Iy 2.98 · 10−3 kg ·m2 Moment of inertia for y-axes

Iz 4.80 · 10−3 kg ·m2 Moment of inertia for z-axes

Ir 2.029 · 10−5 kg ·m2 Moment of inertia of each rotor

b 1.7231 · 10−6 N Thrust Coefficient

d 2.2169 · 10−7 N ·m Drag Coefficient

control inputs, ug(t) = −w1(t)+w2(t)−w3(t)+w4(t) is
the gyroscopic effect depending on the rotors’ angular
velocities wj (j ∈ I4), φi(t) are the external disturbances,
assumed to belong to L2[0,+∞). Moreover, we denotes

Iyzx =
Iyy−Izz

Ixx
, Ixyz =

Ixx−Iyy

Izz
and Izxy =

Izz−Ixx

Iyy
, with the

inertial parameters given in Table 2.

In this paper, it is assumed that input saturation occurs,
that is to say, ∀i = I3, |ui(t)| ≤ ūi, and:

sat(ui(t))=sign(ui(t))min{|ui(t)|, ūi} (2)

Let us recall that the input torques ui(t) result from the
combination of 4 rotor forces Fj = bϖ2

j (for j ∈ I4),
assuming the X quadrotor configuration, where b is a
thrust constant. In this context, the following application
define the relation between the input signals ui(t) (i ∈ I3)
and the pwm commands ϖj (j ∈ I4) (Jeurgens, 2017):

u1(t)
u2(t)
u3(t)


=




bl√
2

−bl√
2

−bl√
2

bl√
2

−bl√
2

−bl√
2

bl√
2

bl√
2

−d
b

d
b

−d
b

d
b





w2

1(t)
w2

2(t)
w2

3(t)
w2

4(t)


, ϖj(t)=

wj(t)−κb

κa
, (3)

where κa = 3.71 and κb = 138.8 rad.s−1 are parameters
of the linear relation between each rotor angular velocity
wj(t) and the pwm (pulse width modulation) motor com-
mands ϖj(t)∈ [0, 100] (%), l is the length from the center
of the UAV to the rotors and d is the drag coefficient.

Let x(t) =

ϕ(t), θ(t), ψ(t), ϕ̇(t), θ̇(t), ψ̇(t)

T
and u(t) =

[u1(t), u2(t), u3(t)]
T be respectively the state and input

vectors. The nonlinear dynamics (1) can be written as the
following affine-in-control nonlinear state space model:

ẋ(t) = A(x(t), ug(t))x(t)+Bsat(u(t))+Wφ(t) (4)

with:

A(x(t), ug(t))=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0
Jrug(t)

Ixx
Iyzxx5(t)

0 0 0 −Jrug(t)

Iyy
0 Izxyx4(t)

0 0 0 Ixyzx5(t) 0 0



,

BT=



0 0 0 1

Ixx
0 0

0 0 0 0 1
Iyy

0

0 0 0 0 0 1
Izz


,WT=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Thanks to the sector nonlinearity approach (Tanaka and
Wang, 2001), a T-S model matching exactly (4) can be
obtained. However, note that (4) contains a nonlinear
entry ug(t), which depends on the input variables. There-
fore, for control purpose and to avoid algebraic loop for
practical implementation, such nonlinear term should be
removed from the fuzzy membership functions. To cope
with that issue, since we have |ug(t)| ≤ ūg, Cherifi et al.

(2018) propose a T-S modeling approach with nonlinear
consequent part, where the terms depending on ug(t)
are treated like structural uncertainties. To do so, let us
rewrite A(x(t), ug(t)) as:

A(x(t), ug(t))=A(x(t)) + ∆A(ug(t)) (5)

where ∆A(ug(t)) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
Jrug(t)

Ixx
0

0 0 0 −Jrug(t)

Iyy
0 0

0 0 0 0 0 0




= Hδ(t)Ea

with δ(t) =
ug(t)

max(ug(t))
satisfying δ2(t) ≤ 1, H =


0 0 0 0 1 0
0 0 0 1 0 0

T
and Ea=


0 0 0

−ūgJr

Iyy
0 0

0 0 0 0
ūgJr

Ixx
0


.

Now, assuming |x4(t)| ≤ x̄4 and |x5(t)| ≤ x̄5 (defining a
compact set of the state space Dx ⊂ R6), then applying
the sector nonlinearity approach (see Tanaka and Wang
(2001)) on A(x(t)) = A(x4(t), x5(t)) = A(x(t), ug(t))−
∆A(ug(t)) with the vector of premises z(t)=[x4(t) x5(t)]

T ,
we obtain the following uncertain-like T-S model with r=4
vertices, which exactly match (4) on Dx.

ẋ(t)=
4

i=1

hi(z(t))(Ai+∆A(ug(t)))x(t)+Bsat(u(t))+Wφ(t)

(6)
with the matrices A1 = A(−x̄4,−x̄5), A2 = A(−x̄4, x̄5),
A3 = A(x̄4,−x̄5), A4 = A(x̄4, x̄5) and the positive mem-
bership functions h1(z(t))=(x̄4−x4(t))(x̄5−x5(t))/4x̄4x̄5,
h2(z(t))=(x̄4−x4(t))(x5(t)+x̄5)/4x̄4x̄5, h3(z(t))=(x4(t)+
x̄4)(x̄5 − x5(t))/4x̄4x̄5, h4(z(t)) = (x4(t) + x̄4)(x5(t) +
x̄5)/4x̄4x̄5, which satisfy the convex sum properties4

i=1hi(z(t))=1.

Let us now consider the tracking control scheme depicted
in Fig. 1 with a linear reference model given by:

ẋr(t) = Arxr(t) +Brr(t) (7)

with Ar ∈ R6×6 a Hurwitz matrix, xr(t) ∈ R6 the reference
state vector and r(t) ∈ Rm (m ≤ 6) the desired trajectory
to be tracked by the reference model.

PDC
Controller

Quadrotor
Dynamics

 Reference 

Model
-
+

Fig. 1. Quadrotor Attitude Control Strategy

We consider a tracking PDC control law given by:

u(t) =

4
i=1

hi(z(t))Ki

�
x(t)− xr(t)


(8)

Let us define the function Ψ(u(t))=sat(u(t))−u(t), the ex-
tended state vector x̃(t) =


xT (t)−xT

r (t) xT
r (t)

T
and ex-

tended external disturbance vector ω(t) =

φT (t) rT (t)

T
,

the closed loop dynamics can be written as:
˙̃x(t) = (Ãh + B̃K̃h)x̃(t) + B̃Ψ(u(t)) + F̃ω(t) (9)

with Ãh =

Ah+∆A Ah−Ar+∆A

0 Ar


, K̃T

h =

Kh

0

T
, B̃ =


B
0



and F̃ =

W −Br

0 Br


.

It is worth noticing that, with the considered extended
state vector, the domain of validity of the considered
closed-loop T-S model can be rewritten as:

Dx̃ = {x̃ ∈ R12 : |Lx̃(t)| ≤ Q} (10)

with L=




0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 0



and Q=




2x̄4

2x̄4

2x̄5

2x̄5

x̄r4

x̄r4

x̄r5

x̄r5



.

It should be highlighted that the T-S model (6) is valid and
guaranteed to be an exact polytopic convex representation
of the nonlinear model (1) inside the domain of validity
Dx, according to the premise variables defined above (6)
and their bounds |x4(t)| ≤ x̄4 and |x5(t)| ≤ x̄5. Therefore,
integrating a reference model in the design leads to the
construction of the domain of validity for the reference
model Dxr with the same bounds |xr,4(t)| ≤ x̄4 and
|xr,5(t)| ≤ x̄5. Furthermore, from Dx and Dxr we can get
the domain of validity of the tracking error e(t) = x(t)−
xr(t) denoted as De with |x4(t) − xr,4(t)| ≤ 2x̄4 and
|x5(t) − xr,5(t)| ≤ 2x̄5. Hence, the closed-loop dynamics
(9) belong to the domain of validity Dx̃ = De ×Dxr . This
explains the size and entries of L and Q given in (10).

Moreover, because of the occurrence of input saturation,
the following lemma will be used to characterize the input
operation domain Du.

Lemma 1. (Tarbouriech et al., 2011) Given two matrices
Ki ∈ Rm×n and Ti ∈ Rm×n, let Du be the polyhedral set
related with these matrices and defined by:

Du =

x̃ ∈ R2n :

(Ki(s)−Ti(s)) 01×n


x̃
 ≤ ū(s)


, s ∈ Im

(11)
Then, the nonlinearity Ψ(u) satisfies the inequality:

Ψ(u)T
r

i=1

hiΥi

�
Ψ(u)−

r
i=1

hiTi(x− xr)

≤ 0 (12)

for any m×m positive diagonal matrix Υi.

Problem Statement. Synthesize the gain matrices of the
tracking PDC controller (8) such that:

i. The closed loop tracking dynamics is regionally
asymptotically stable when ω(t)=0 (i.e. ϕ(t)=0 and
r(t)=0), with an estimate of the closed-loop domain
of attraction Da ⊆ Dx̃ ∩ Du.

ii. For all non zero ω(t)∈L2[0,∞), the L2-norm transfer
γ > 0 between ω(t) and x(t)−xr(t) is minimized, i.e.:

min γ, s.t.
||x(t)− xr(t)||2

||ω((t)||2
< γ (13)

or equivalently, with Q̃ = diag(I, 0):

min γ, s.t.

 ∞

0

x̃T (t)Q̃x̃(t)dt < γ2

 ∞

0

ωT (t)ω(t)dt (14)

To achieve these goals, the following lemma will be em-
ployed to obtain the main result in the next section.

Lemma 2. (Mansouri et al., 2009) For real matrices A,
B, W , Y , Z and a regular matrix M with appropriate
dimensions one has:

Y +BTM−1B (∗)
W Z+AMAT


<0⇒


Y (∗)

W+AB Z


<0 (15)
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3. MAIN RESULT

Theorem 1. Given symmetric input saturation ū(s), the
uncertain-like T-S model (6) with saturated actuators,
driven by the PDC controller (8), satisfies the above
defined problem statements i and ii, if there exist the
matrices X̃ = X̃T = diag(X1, X2) > 0, Υi, Yi, Ni and
the scalars α > 0 and γ > 0, such that the following
optimization problem is satisfied:

min γ, maxTrace(X1)

s.t. LMIs (17), (18) and (19).
(16)


X̃ (∗)

Yi(s)−Ni(s) 01×n


ū2
(s)


≥ 0, ∀s ∈ I3, ∀i ∈ I4 (17)


X̃ (∗)

L(s)X̃ Q2
(s)


≥ 0, ∀s ∈ I4, (18)


Γi (∗) (∗)

ῩiB̃
T +Ni 0 −2Ῡi (∗)
F̃T 0 0 −γ2I


< 0, ∀i ∈ I4 (19)

with Γi=




Γ11
i (∗) (∗) (∗) (∗)

X1(AT
i −AT

r ) H(X2AT
r ) (∗) (∗) (∗)

EaXT
1 0 −αI (∗) (∗)

0 EaX1 0 −αI (∗)
X1 0 0 0 −I


 and Γ11

i =

H(X1AT
i +Y T

i BT )+2αHHT .

In that case, the PDC controller gain and Lyapunov
matrices can be respectively recovered by the changes of
variables Ki = YiX

−1
1 (∀i ∈ I4) and P̄ = X̃−1, so that

an estimate of the closed-loop domain of attraction Da

is given by the Lyapunov level set L(1), which edge is
characterized by the surface x̃T P̄ x̃ = 1.

Proof. Consider the quadratic Lyapunov function can-
didate V (x̃(t)) = x̃(t)T P̄ x̃(t) with P̄ = P̄T > 0. The
closed loop system (9) satisfies the above defined problem
statements i and ii, and the input sector constraint is
respected from Lemma 1, if:

˙̃xT P̄ x̃+x̃T P̄ ˙̃x+x̃T Q̃x̃−γ2ωTω−2ΨT (u)Υh(Ψ(u)−Th(x−xr))

= x̃T (ĀT
h P̄+P̄ Āh+Q̃)x̃+x̃T P̄ F̃ω+ωT F̃T P̄ x̃+x̃T P̄ B̃Ψ(u)

+Ψ(u)T B̃T P̄ x̃−γ2ωTω−2Ψ(u)TΥh(Ψ(u)−Th(x−xr))< 0

(20)
That is to say, ∀


x̃T (t) ΨT (u) ωT (t)


̸= 0, if:

ÃT
h P̄ + P̄ Ãh + Q̃ (∗) (∗)
B̃T P̄ +ΥhT ∗

h −2Υh (∗)
F̃T P̄ 0 −γ2I


< 0 (21)

where T ∗
h = [Th 0].

Let X̃ = P̄−1, Ῡh = Υ−1
h . Multiplying (21) left by

diag(X̃, Ῡh, I) and right by its transpose, it yields:
X̃ĀT

h + ĀhX̃
T + X̃Q̃X̃T (∗) (∗)

ῩhB̃
T +Nh −2Ῡh (∗)
F̃T 0 −γ2I


< 0 (22)

with = Nh = T ∗
h X̃.

Let Γh = X̃ĀT
h+ĀhX̃

T+X̃Q̃X̃T , then opening the matrix

Āh, X̃ and Q̃, we have:

Γh=

H(X1(AT

h +∆AT +KT
h BT ))+X1X1 (∗)

X1(AT
h −AT

r +∆AT ) H(X2Ar)


<0 (23)

Then, applying Lemma 2 with M = αI, we can write:

Γh≤

H(X1(AT

h +KT
h BT ))+X1X1+Ω1 (∗)

X1(AT
h −AT

r ) H(X2AT
r )+Ω2


<0 (24)

with Ω1 = 2αHHT + α−1X1E
T
a EaX

T
1 and Ω2 =

α−1X1E
T
a EaX

T
1 .

Therefore, from (24) we can major (23) then apply the
Schur complement lead to the conditions expressed as
LMIs (19).

Now, to provide an estimate Da of the closed-loop domain
of attraction, note that, from inequalities (17) respectively
(18), the inclusion Da ⊆ Du respectively Da ⊆ Dx̃ is
ensured. Indeed, without loss of generality, let us consider
the Lyapunov level set L(1) defined, at t = 0, by:

L(1) = {x̃(0) : x̃T (0)P̄ x̃(0) ≤ 1} (25)

Then, applying the Schur complement on (17), we get:

X̃−


Yi(s)−Ni(s) 01×n

T 
Yi(s)−Ni(s) 01×n


ū2
(s)

≥ 0 (26)

Pre and post multiplying (26) by x̃T(0)X̃−T and its
transpose, it yields:

x̃T(0)


Ki(s)−Ti(s) 01×n

T
Ki(s)−Ti(s) 01×n


ū2
(s)

x̃(0)−x̃T(0)P̄ x̃(0)≤0

(27)
Then, it follows:

Ki(s)−Ti(s) 01×n


x̃(0)

 ≤ ū2
(s), so, from

Lemma 1, all initial condition x̃(0) ∈ L(1) ⊆ Du.

Moreover, from (18) and the Schur complement we get:

X̃TLT
(s)

L(s)X̃

Q2
(s)

− X̃ ≤ 0 (28)

Similarly, after congruence by X̃−1x̃(0), this provides
|L(s)x̃(0)| ≤ Q(s), so all initial conditions x̃(0) ∈ L(1) ⊆ Dx̃.

Consequently Da = L(1) ⊆ Dx̃ ∩ Du. Finally, a simple
procedure to enlarge L(1) is to minimize the trace of P̄ .
However, since we are mainly concerned to enlarge the do-
main of attraction with regards to the tracking error e(t) =
x(t)−xr(t), we can restrict such optimization procedure by
only maximizing the trace of X1. �

4. SIMULATION RESULTS

In the previous section, LMI conditions for model reference-
based tracking PDC controller designed for a class of
uncertain-like T-S systems under actuators saturation
have been proposed. Simulation results are presented in
this section to illustrate their effectiveness. To do so, we
assume a linear reference model (7) (with Ar Hurwitz)
specified by:

Ar =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−6 0 0 −4 0 0
0 −6 0 0 −4 0
0 0 −6 0 0 −4



, Br =




0.05 0 0
0 0.05 0
0 0 0.05
6 0 0
0 6 0
0 0 6




The bounds for the actuators saturation are computed
from (3), assuming ϖj(t) ∈ [0, 100] (%, j ∈ I4), such that
ū1 = 0.102, ū2 = 0.102, ū3 = 0.104, ūg = (4ϖmax)κa +
κb = 1615.8. Also, we assume x̄4 = x̄5 = π, which define
Dx (see (10)). The LMI conditions presented in Theorem
1 are solved using Yalmip in MATLAB with SeDuMi
Solver (Lofberg, 2004). We obtained the minimized H∞
attenuation level γ = 0.71 with the following gain matrices
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3. MAIN RESULT

Theorem 1. Given symmetric input saturation ū(s), the
uncertain-like T-S model (6) with saturated actuators,
driven by the PDC controller (8), satisfies the above
defined problem statements i and ii, if there exist the
matrices X̃ = X̃T = diag(X1, X2) > 0, Υi, Yi, Ni and
the scalars α > 0 and γ > 0, such that the following
optimization problem is satisfied:

min γ, maxTrace(X1)

s.t. LMIs (17), (18) and (19).
(16)


X̃ (∗)

Yi(s)−Ni(s) 01×n


ū2
(s)


≥ 0, ∀s ∈ I3, ∀i ∈ I4 (17)


X̃ (∗)

L(s)X̃ Q2
(s)


≥ 0, ∀s ∈ I4, (18)


Γi (∗) (∗)

ῩiB̃
T +Ni 0 −2Ῡi (∗)
F̃T 0 0 −γ2I


< 0, ∀i ∈ I4 (19)

with Γi=




Γ11
i (∗) (∗) (∗) (∗)

X1(AT
i −AT

r ) H(X2AT
r ) (∗) (∗) (∗)

EaXT
1 0 −αI (∗) (∗)

0 EaX1 0 −αI (∗)
X1 0 0 0 −I


 and Γ11

i =

H(X1AT
i +Y T

i BT )+2αHHT .

In that case, the PDC controller gain and Lyapunov
matrices can be respectively recovered by the changes of
variables Ki = YiX

−1
1 (∀i ∈ I4) and P̄ = X̃−1, so that

an estimate of the closed-loop domain of attraction Da

is given by the Lyapunov level set L(1), which edge is
characterized by the surface x̃T P̄ x̃ = 1.

Proof. Consider the quadratic Lyapunov function can-
didate V (x̃(t)) = x̃(t)T P̄ x̃(t) with P̄ = P̄T > 0. The
closed loop system (9) satisfies the above defined problem
statements i and ii, and the input sector constraint is
respected from Lemma 1, if:

˙̃xT P̄ x̃+x̃T P̄ ˙̃x+x̃T Q̃x̃−γ2ωTω−2ΨT (u)Υh(Ψ(u)−Th(x−xr))

= x̃T (ĀT
h P̄+P̄ Āh+Q̃)x̃+x̃T P̄ F̃ω+ωT F̃T P̄ x̃+x̃T P̄ B̃Ψ(u)

+Ψ(u)T B̃T P̄ x̃−γ2ωTω−2Ψ(u)TΥh(Ψ(u)−Th(x−xr))< 0

(20)
That is to say, ∀


x̃T (t) ΨT (u) ωT (t)


̸= 0, if:

ÃT
h P̄ + P̄ Ãh + Q̃ (∗) (∗)
B̃T P̄ +ΥhT ∗

h −2Υh (∗)
F̃T P̄ 0 −γ2I


< 0 (21)

where T ∗
h = [Th 0].

Let X̃ = P̄−1, Ῡh = Υ−1
h . Multiplying (21) left by

diag(X̃, Ῡh, I) and right by its transpose, it yields:
X̃ĀT

h + ĀhX̃
T + X̃Q̃X̃T (∗) (∗)

ῩhB̃
T +Nh −2Ῡh (∗)
F̃T 0 −γ2I


< 0 (22)

with = Nh = T ∗
h X̃.

Let Γh = X̃ĀT
h+ĀhX̃

T+X̃Q̃X̃T , then opening the matrix

Āh, X̃ and Q̃, we have:

Γh=

H(X1(AT

h +∆AT +KT
h BT ))+X1X1 (∗)

X1(AT
h −AT

r +∆AT ) H(X2Ar)


<0 (23)

Then, applying Lemma 2 with M = αI, we can write:

Γh≤

H(X1(AT

h +KT
h BT ))+X1X1+Ω1 (∗)

X1(AT
h −AT

r ) H(X2AT
r )+Ω2


<0 (24)

with Ω1 = 2αHHT + α−1X1E
T
a EaX

T
1 and Ω2 =

α−1X1E
T
a EaX

T
1 .

Therefore, from (24) we can major (23) then apply the
Schur complement lead to the conditions expressed as
LMIs (19).

Now, to provide an estimate Da of the closed-loop domain
of attraction, note that, from inequalities (17) respectively
(18), the inclusion Da ⊆ Du respectively Da ⊆ Dx̃ is
ensured. Indeed, without loss of generality, let us consider
the Lyapunov level set L(1) defined, at t = 0, by:

L(1) = {x̃(0) : x̃T (0)P̄ x̃(0) ≤ 1} (25)

Then, applying the Schur complement on (17), we get:

X̃−


Yi(s)−Ni(s) 01×n

T 
Yi(s)−Ni(s) 01×n


ū2
(s)

≥ 0 (26)

Pre and post multiplying (26) by x̃T(0)X̃−T and its
transpose, it yields:

x̃T(0)


Ki(s)−Ti(s) 01×n

T
Ki(s)−Ti(s) 01×n


ū2
(s)

x̃(0)−x̃T(0)P̄ x̃(0)≤0

(27)
Then, it follows:

Ki(s)−Ti(s) 01×n


x̃(0)

 ≤ ū2
(s), so, from

Lemma 1, all initial condition x̃(0) ∈ L(1) ⊆ Du.

Moreover, from (18) and the Schur complement we get:

X̃TLT
(s)

L(s)X̃

Q2
(s)

− X̃ ≤ 0 (28)

Similarly, after congruence by X̃−1x̃(0), this provides
|L(s)x̃(0)| ≤ Q(s), so all initial conditions x̃(0) ∈ L(1) ⊆ Dx̃.

Consequently Da = L(1) ⊆ Dx̃ ∩ Du. Finally, a simple
procedure to enlarge L(1) is to minimize the trace of P̄ .
However, since we are mainly concerned to enlarge the do-
main of attraction with regards to the tracking error e(t) =
x(t)−xr(t), we can restrict such optimization procedure by
only maximizing the trace of X1. �

4. SIMULATION RESULTS

In the previous section, LMI conditions for model reference-
based tracking PDC controller designed for a class of
uncertain-like T-S systems under actuators saturation
have been proposed. Simulation results are presented in
this section to illustrate their effectiveness. To do so, we
assume a linear reference model (7) (with Ar Hurwitz)
specified by:

Ar =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−6 0 0 −4 0 0
0 −6 0 0 −4 0
0 0 −6 0 0 −4



, Br =




0.05 0 0
0 0.05 0
0 0 0.05
6 0 0
0 6 0
0 0 6




The bounds for the actuators saturation are computed
from (3), assuming ϖj(t) ∈ [0, 100] (%, j ∈ I4), such that
ū1 = 0.102, ū2 = 0.102, ū3 = 0.104, ūg = (4ϖmax)κa +
κb = 1615.8. Also, we assume x̄4 = x̄5 = π, which define
Dx (see (10)). The LMI conditions presented in Theorem
1 are solved using Yalmip in MATLAB with SeDuMi
Solver (Lofberg, 2004). We obtained the minimized H∞
attenuation level γ = 0.71 with the following gain matrices

of the PDC tracking controller (8) and Lyapunov matrices
(P̄ = diag(P̄1, P̄2)).

K1=


−0.8636 −0.0006 −0.0023 −0.7271 −0.0005 −0.0017
0.0075 −1.1589 0.0049 0.0066 −0.9828 0.0035
0.0496 −0.0833 −0.3373 0.0436 −0.0739 −0.2400



K2=


−0.8636 0.0006 0.0023 −0.7271 0.0005 0.0017
−0.0075 −1.1589 0.0049 −0.0066 −0.9828 0.0035
−0.0496 −0.0833 −0.3373 −0.0436 −0.0739 −0.2400



K3=


−0.8636 0.0006 −0.0023 −0.7271 0.0005 −0.0017
−0.0075 −1.1589 −0.0049 −0.0066 −0.9828 −0.0035
0.0496 0.0833 −0.3373 0.0436 0.0739 −0.2400



K4=


−0.8636 −0.0006 0.0023 −0.7271 −0.0005 0.0017
0.0075 −1.1589 −0.0049 0.0066 −0.9828 −0.0035
−0.0496 0.0833 −0.3373 −0.0436 0.0739 −0.2400



P̄1=




2.1900 −0.0000 0.0000 0.2063 0.0000 0.0000
−0.0000 2.1883 0.0000 0.0000 0.2074 0.0000
0.0000 0.0000 1.5130 −0.0000 −0.0000 0.0175
0.2063 0.0000 −0.0000 0.1822 0.0000 0.0000
0.0000 0.2074 −0.0000 0.0000 0.1842 0.0000
0.0000 0.0000 0.0175 0.0000 0.0000 0.0118




P̄2=




0.5701 −0.0000 −0.0000 0.0062 0.0000 −0.0000
−0.0000 0.5690 0.0000 0.0000 0.0063 0.0000
−0.0000 0.0000 0.0088 0.0000 0.0000 0.0041
0.0062 0.0000 0.0000 0.1017 0.0000 0.0000
0.0000 0.0063 0.0000 0.0000 0.1017 0.0000
−0.0000 0.0000 0.0041 0.0000 0.0000 0.0044




Figures 2-4 illustrate the effectiveness of the proposed
tracking control methodology under the input constraints.
For that simulation, the initial conditions are set to x(0) =−π

3
π
3

π
3

π
3

π
3

π
3

T
for the nonlinear model of the quadrotor

(1) and xr(0) = [0 0 0 0 0 0]
T

for the reference model (7).
The disturbance and reference signals are respectively
set, for all t ∈ [0, 10s], to φ(t) = sin(πt + 0.5) and

r(t) = [1.4 sin(0.6πt) 1.5 sin(0.28πt)) 0.8 square(0.2πt)]
T
, and 0

otherwise.

Fig. 2 exhibits the angular positions, roll ϕ(t) = x1(t),
pitch θ(t) = x2(t) and yaw ψ(t) = x3(t) of the quadrotor
with respect to the reference signals denoted as x1,r(t),
x2,r(t) and x3,r(t), respectively. Fig. 3 shows the angular
velocities x4(t), x5(t), x6(t) of the quadrotor following the
reference signals x4,r(t), x5,r(t) and x6,r(t). The control
inputs of the quadrotors, namely u1(t), u2(t) and u3(t)
are depicted in Fig. 4 showing saturation during the state
errors’ transients, the saturated inputs being fed to the
quadrotor. These figures show that the proposed tracking
PDC controller design for the considered quadrotor nonlin-
ear model, which states track the reference model’s ones,
provides good results despite the disturbance signals and
input constraints, then stabilizes when ω(t) gets to 0.

Finally, because of the input constraints, recall that these
results only hold regionally. Of course, because we are
dealing with a twelve order system, it is not possible to plot
the whole estimate of the domain of attraction Da = L(1)
on a 3D graphic. However, to illustrate such estimation,
Fig. 5 shows projections of L(1) on some planes of interest,
respectively (x4, x5), (x4,r, x5,r) and (e4, e5). Moreover, in
this figure, a 3D graphic of u2

s ∈ [0, 0.012] regarding to
(e4, e5) to illustrate the constrained input domain Du.
It is worth noticing that the extended state trajectories
(plotted as blue lines) stays inside L(1), as expected. This
also confirms the effectiveness of our proposal.

Fig. 2. Reference vs Quadrotor’s angular positions.

Fig. 3. Reference vs quadrotor’s angular velocities.

0 0.1 0.2
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-1

0

0 0.1 0.2

-0.6

-0.4

-0.2

0

Fig. 4. Control signals.

Fig. 5. Projection of D∗
a = L(1) (pink lines), Dx (black

lines), Dx̃ = De ∪ Dxr
(black lines) and Du (black

doted lines) on 2D planes and 3D space of interest
with closed-loop trajectories in L(1) (blue lines).
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5. CONCLUSION

In this paper, the regional attitude tracking control of
a quadrotor UAV under actuator saturation’s has been
investigated. The dynamical model of the quadrotor’s at-
titude has been described as an uncertain-like T-S model.
The input saturation of the quadrotors has been dealt with
the generalized sector conditions. Then, LMI conditions
were derived for the design of the model reference tracking
controller using Lyapunov functions, along with the L2

norms minimisation of the transfer between the distur-
bances and the tracking errors. Simulation results were
provided to illustrate the effectiveness of the proposed con-
trol scheme as well as investigate the closed-loop domains
of attraction, with regards to the input constraints. In our
further works the full control of the quadrotor, including
the tracking in its xyz positions, will be investigated in
order to proceed with aggressive maneuvers tracking.
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