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Abstract: During the last decades, researchers have developed novel computing methods to help
viticulturists solve their problems, primarily those linked to yield estimation of their crops. This
article aims to summarize the existing research associated with computer vision and viticulture. It
focuses on approaches that use RGB images directly obtained from parcels, ranging from classic
image analysis methods to Machine Learning, including novel Deep Learning techniques. We intend
to produce a complete analysis accessible to everyone, including non-specialized readers, to discuss
the recent progress of artificial intelligence (AI) in viticulture. To this purpose, we present work
focusing on detecting grapevine flowers, grapes, and berries in the first sections of this article. In the
last sections, we present different methods for yield estimation and the problems that arise with this
task.

Keywords: computer vision; viticulture; yield modeling

1. Introduction

Precision viticulture, the application of precision agriculture to viticulture, is a parcel-
management method developed to optimize yield and costs (inputs, required labor, etc.)
while accounting for the variability of the environment [1–3]. Therefore, it is a precise
management method that integrates the heterogeneity of parcels in the decision process.
Precision viticulture is possible thanks to numerous technologies that allow for the acquisi-
tion of large quantities of geolocalized data. The objectives are to have finer control over
crop yield, avoid the appearance and proliferation of grapevine diseases, and produce
better-quality fruits. As of now, manual labor is required for several repetitive tasks: se-
lecting grapevines, counting grapes and berries to estimate yield, inspecting grapevines
for early signs of disease, etc. These tasks are time-consuming because parcels are vast
and contain several thousand grapevines. Moreover, human operators can make many
mistakes (variable training and skills depending on the operator, errors caused by workload
or fatigue, etc.). Today, scientific and technological progress has allowed partial automation
of these tasks.

Numerous different technologies have been studied for practical applications. For
instance, wireless sensor networks allow the collection of data from different locations
of a parcel. The acquired data, such as temperature or humidity, are used to predict the
emergence of diseases [4]. In addition, the sensors can include an embedded camera to
detect the presence of symptoms of illness or deficiencies [5]. Other sensors such as lasers
can estimate the size of the canopy and the number of missing grapevines [6].

Red, green, and blue (RGB), thermal, and spectral cameras also have several appli-
cations. They are the most often fixed on a vehicle to cover a large distance; unmanned
drones equipped with such cameras have been used for disease detection [7], water stress
estimation, vigor, missing grapevine detection [8], and yield estimation [9], with the ad-
vantage of rapidly covering large areas. Several robots dedicated to viticulture were built
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in the 2010s. They are equipped with cameras and lamps, allowing them to acquire high-
quality images in the field on a large scale. They enable several actions in the field such
as the detection of diseases [10], automated trimming of grapevines in the winter [11],
estimation of vigor, detection of fruit [12], fertilization of grapes [13], estimation of grape
size [14], large-scale phenotyping [15,16], automatic bagging of grapes [17], automatic
detection of crates in vineyards [18], and multi-spectral 3D reconstruction of vines [19]. A
more-complete technological survey has already been done by Matese et al. [20].

Improvement in image-processing techniques has accompanied technological evolu-
tion. The emergence of affordable digital cameras and the increase in hard-drive storage
capacities have allowed digital imaging and computer vision development. The progress
of artificial intelligence (AI) and, more specifically, Machine Learning (ML), has enabled
the processing of the entirety of complex scenes and the automation of certain tasks. For
example, a crucial task in viticulture is yield estimation. It is key to organize the harvest and
to select high-quality grapes. It can be solved by counting the number of grapes to predict
the upcoming harvest. The automation of grape counting, and fruit counting in general,
is a central problem in smart agriculture. Several methods have been proposed in recent
years. Some of these methods are based on classical image processing approaches that
consist of developing segmentation, shape recognition, and feature extraction algorithms
that are task-oriented. This concept has been applied to the detection of oranges [21], bell
peppers [22], and lemons [23]. Another approach is based on Deep Learning and, more
specifically, Convolutional Neural Networks [24]. This type of neural network enables
classification, segmentation, and object detection by learning representations from raw
images. This approach uses available data instead of subjective criteria and specialized
algorithms developed by humans. Deep Learning has been popular since 2012 [25] and
now makes up the state-of-the-art for image classification and object and fruit detection
[26–29]. Deep Learning methods in agriculture have been summarized in the work of
Kamilaris et al. [30] and Gikunda et al. [31].

This publication’s objective is to summarize the different computer vision methods
developed for yield estimation in viticulture. This work completes the survey proposed by
Seng et al. by adding the most recent research works based on computer vision and Deep
Learning [32]. In addition, exhaustive reviews of existing works for grape yield prediction,
not limited to computer vision-based methods, can be found in recent publications by
Laurent et al. and Barriguinha et al. [33,34]. We first present the generic framework used by
most Computer Vision methods and common Deep Learning models. We also present the
different problems related to the evaluation of methods, as well as the evaluation metrics
used to measure performance. We then detail the methods used for detecting inflorescences
and counting the flowers. After this, methods for detecting grapes and counting the berries
are developed. Finally, we present the modeling methods using image processing for
yield estimation. Finally, a summary of the challenges and perspectives of future research
conclude this paper.

2. Artificial Intelligence, Machine Learning, and Deep Learning for Computer Vision
2.1. Artificial Intelligence

Artificial Intelligence (AI) is a field of computer science. Its goal is to create algorithms
that mimic human intelligence to solve problems and automate decision-making [35]. AI
research started in the 1940s and was focused on game solving, automatic mathematical
proofs, automatic translation, etc. AI is currently used as a synonym for “Deep Learning” in
media, but AI refers to many different sub-fields such as Automatic Game Solving, Natural
Language Processing, Computer Vision, Logic Programming, Expert Systems, Data Mining,
Intelligent Agent systems, robotics, Machine Learning, Deep Learning, etc.

These sub-fields are not mutually exclusive. For example, Machine Learning is
used for Data Mining, Natural Language Processing, Computer Vision, Intelligent Agent
systems, etc. Relationships between AI, ML, DL and Computer Vision are represented in
Figure 1.
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In this review, we focus on Computer Vision for grape-yield prediction.

Figure 1. Venn diagram of Artificial Intelligence, Machine Learning, Deep Learning, and Com-
puter Vision.

2.2. Computer Vision and Machine Learning

Computer Vision refers to AI algorithms designed to extract knowledge from images
or videos. Image-processing algorithms perform operations directly on the pixels with
rules selected by human developers. However, natural images contain scenes that are too
complex to be effectively processed in this manner. Another complexity is the large size
of modern high-resolution images. There are too many possible variations to account for
with this kind of image. The first solution is to apply constraints to the image acquisition
environment with artificial backgrounds, centered objects, artificial lighting, etc.

Another solution is to use Machine Learning (ML). ML refers to algorithms that can
solve tasks without being explicitly programmed by a human developer. Image processing
algorithms and ML models are combined to solve complex applications.

Computer vision algorithms follow a generic framework with multiple steps:

1. Preprocessing to make the following tasks easier. This includes image normalization,
background removal, denoising, and feature extraction.

2. Performing the main task of the application. This produces a raw output (like a
classification score).

3. Post-processing of the output to correct the raw output and make it interpretable.

The second step performs one of these tasks: image classification, object detection, or
segmentation. Classification associates a class or category to an image. Object detection
combines classification with location estimation; the detected objects are surrounded by
bounding boxes. Segmentation goes one step further by performing classification of each
pixel in the image.

Many ML algorithms are available. The simplest classification model is logistic re-
gression. It is limited to data that can be linearly separated. Common ML models include
Decision Trees, Support Vector Machine (SVM), K-Nearest-Neighbors (k-NN), and Multi-
Layer Perceptron (MLP, also known as a feed-forward network), etc. ML models cannot
be applied directly to raw images because (1) they do not exploit the topology images
(connectivity of pixels), and (2) images have too many variables (one for each pixel and
each channel). For example, a small red–green–blue (RGB) image of 10 × 10 pixels has
300 variables.

A technique known as feature extraction is applied to images to obtain the most rele-
vant information into a small set of variables. An ML model is then trained and evaluated.
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2.3. Deep Learning

Deep Learning (DL) refers to modern neural networks. Convolutional Neural Net-
works are an adaption of the MLP model with shared neurons represented by convolutional
filters. This reduces the number of parameters and processing of pixel neighborhoods.
Convolutional Neural Networks (CNN) were created by Yann LeCun in the late 1980s [36].
They were primarily designed for image classification, but they can also be adapted to time-
series regression. CNNs are currently the state-of-the-art method for image classification
because they are very effective at learning both the features and the classifier from the data.
CNNs have been adapted to more complex applications such as object detection and image
segmentation. These complex models use a CNN as a pre-trained backbone. This is known
as transfer learning, and it allows the transfer of existing models to other applications. This
is useful to compensate for a lack of training data.

Object detection models perform both classification and localization of objects in
images. The model is trained to predict the coordinates of the boxes around the relevant
objects. This can be done with two-step models such as Faster R-CNN [37] or R-FCN [38].
Other models have simpler architecture to perform detection in one step: Yolo [39], Single
Shot Detector [40], RetinaNet [41], etc.

Similarly, CNNs have been adapted to image segmentation. A first approach uses
a CNN for pixel-wise classification with a sliding window [42]. This approach is still
commonly used with either CNN or ML models. However, pixel-wise classification is
highly inefficient because it only produces one output for the central pixel of the input.
The output could be applied to the whole input patch, but it would lower the accuracy by
producing a coarse segmentation. A solution was proposed by Shelhamer et al. [43] with a
Fully Convolutional Neural Network (FCN). This kind of semantic segmentation model
is known as an encoder–decoder architecture. The encoder is responsible for automatic
feature extraction. The decoder uses its output to produce a dense pixel-wise prediction. A
popular architecture is the Unet model [44], which uses a symmetrical encoder and decoder.

2.4. Evaluation of Machine Learning and Deep Learning Models

ML methods have to be evaluated on multiple datasets to assess the generalization
performance of the model (“Is it able to perform on new data?”). The evaluation of an ML
method can be done by dividing the database into two parts: the training set used to create
the model, and the validation set. This train/validation is random and, a third independent
dataset, a test set, can be used to obtain better evaluation. Different performance metrics
can be calculated on both datasets. The performance should be similar on both training
and validation/test sets. A gap between training and validation/test performance may
imply overfitting of the model (i.e., it cannot generalize correctly on unseen images). The
most commonly used metrics are recall (ratio of detected objects), precision (ratio of objects
detected among the predictions), F1 score or F-measure (harmonic average of the recall and
the precision), and accuracy (ratio of correct predictions).

These metrics are calculated using the confusion matrix shown in Figure 2. Accuracy
(Equation (1)), recall (Equation (2)), precision (Equation (3)), and F1 score (Equation (4)) are
calculated for each class (most studies mention only one class: grapes, berries, or flowers).
Accuracy can be skewed when one of the classes is under-represented in the database; in
that case, the F1 score is preferred.

Figure 2. Confusion matrix.
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The framework presented in this subsection is generic—it can be applied to most
computer vision applications. Grape-yield prediction needs a fourth step for occlusion
modeling. Many fruits, berries, or whole grape clusters are hidden by foliage, by inter-
nal occlusion of grapes, and by one-sided image acquisition. Modeling generally uses
regression techniques to estimate the number of hidden berries or to predict the yield.
Regression metrics are then used to evaluate performance. This includes the Coefficient
of Determination (or R-squared, R²), Mean-Square Error (MSE, Equation (5)), and Root-
Mean-Square Error (RMSE, Equation (6)) or Mean-Absolute Error (MAE, Equation (7)), and
Mean-Absolute-Percentage Error (MAPE, Equation (8)).

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Recall =
TP

TP + TN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2× Precision× Recall

Precision + Recall
(4)

MSE(ŷ, y) =
n

∑
i=1

(ŷi − yi)
2

n
(5)

RMSE(ŷ, y) =
√

MSE(ŷ, y) (6)

MAE(ŷ, y) =
1
n

n

∑
i=1
|ŷi − yi| (7)

MAPE(ŷ, y) =
1
n

n

∑
i=1

|ŷi − yi|
ŷi

(8)

2.5. The Difficulty of Comparing Existing Yield-Modeling Work

The comparison of existing works is problematic for several reasons. First, existing
works are limited to a few varieties at a specific moment and in different parcels across the
globe. Therefore, many sources of variation can affect the results: variety, phenological
stage, and location of grapevines. Second, the number of images and studied grapevines
are sometimes very different from one study to another. The difficulty of acquiring data
can explain this difference. Indeed, images can only be taken during a limited period
of the year and potentially in a limited number of parcels. Labeling these images is yet
another problem because this step is quite time-consuming. The acquisition of data such
as the number of grapes and berries as well as their mass is limited by the available
workforce. Therefore only a few studies cover multiple varieties on a significant number of
grapevines over several years. Further, many works are carried out in totally or partially
controlled environments to perform a specific measurement or to make processing easier.
This includes artificial backgrounds used to detach the grapes from the images. Similarly,
artificial lighting at night (or with a powerful flash) is often used, as the background is not
visible in this condition. Artificial lighting can also be used to generate an easy-to-detect
pattern on the fruits. The environment can also be controlled by defoliating the vine to
simulate different foliage occlusion and vigor levels. The occlusion created by the foliage is
currently the biggest limiting factor for yield modeling. An example of vines before and
after defoliation is shown in Figure 3.
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Figure 3. Pinot Noir vine before and after defoliation, during veraison.

Finally, the last difficulty of this kind of comparison is the usage of different perfor-
mance metrics. Consequently, there are no established standards that directly compare the
performance of various grape detection methods and yield estimation.

3. Flower Counting

The first application presented in this summary is the detection and counting of
flowers (an example is shown in Figure 4). Counting is generally performed at the BBCH
55 stage, when the flowers are not separated and form small buds. The objective is to count
the number of inflorescences (the future grape bunches) and the number of flowers (the
future berries). Counting the flowers enables early prediction of the potential yield. It
remains, however, an inaccurate prediction, because some flowers will fall (run out) during
fruit setting. Thus, the problem of detecting flowers is closely related to the one of berry
detection. Nonetheless, this task is more complex since flowers are small, approximately
3 mm in diameter, and have a green color similar to the foliage color. Several methods
have been suggested, and most of them require partial control of the environment (artificial
background or lighting) to simplify the task. The different approaches presented in this
section are summarized in Table 1.

Figure 4. Example of flower-bud detection (Chardonnay, BBCH 57).

3.1. Classical Methods—Counting Using Key-Point Detection

A first approach consists of detecting flower-bud candidates and then filtering the
detected elements to preserve only the true flower buds [45–47]. One commonly used
detection criterion is the reflection pattern of light on the surface of the flower buds (this is
also used to detect berries). When the flower buds reflect the light, they correspond to the
local maxima of the image. They are detectable using algorithms such as the “h-maxima
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transform”, which detects every local maximum greater than a threshold h. There are,
however, several obstacles to this detection, as the background of the image and the choice
of the detection threshold may lead to several false positives. A simple way of removing the
false positives caused by the background consists in using an artificial background with a
single color (black in the case of flower detection). The use of a black background drastically
simplifies the preliminary processing of the image, and even a simple segmentation method
such as Otsu’s method [48] allows the removal of the background from the image. Further,
false positives caused by the choice of the detection criterion can be removed using filtering
methods. For instance, some authors [46,47] use the size, shape, and distance of the flower
candidates as filtering criteria for images obtained against an artificial black background.
The method proposed by [45] improves the method of [47] by using specific morphological
operators to remove the natural background (an artificial background is therefore no longer
necessary) and detect potential flower buds. The method proposed by [49] used a similar
approach in the binary image only, where a morphological operator and a watershed
algorithm were used to delineate the flower buds. Although it achieves a good counting
correlation of R2 = 0.99, it does not compute the location of the flowers in the image.

Several weaknesses in the previous studies have been identified by [50]. The methods
proposed by [45–47,49] all depend on manually chosen parameters (the size of the mor-
phological operators, for example). Therefore, these methods are sensitive to the color and
the apparent size of the flowers. In addition, the reflection pattern of the light used as a
detection criterion is not robust and can strongly vary depending on the grape variety. As
a consequence, one method has been proposed to correct these weaknesses [50]. The stems
and inflorescences are detected with a segmentation algorithm that uses active contour
propagation. The potential flowers are selected with the generic SURF key-points detection
method. They are filtered with a non-supervised method, K-means, because the authors
suppose that a supervised method would not be robust enough to variations caused by
natural lighting [51]. Analysis of the impact of the phenological stage shows that detection
performance is constant after the agglomeration of the flower buds (stage BBCH 55). More
recent studies have applied particle analysis for flower detection [52]. This method has the
same weaknesses as the previously mentioned studies because the apparent size of the
flowers must be defined in pixels. In addition, the work of [50,52] does not address the
issue of segmenting the background, and therefore requires an artificial black one.

3.2. Deep Learning and Performance

To this day, multiple DL methods have been suggested for counting flowers. The
published work by [53] uses a Fully Convolutional Network (FCN) segmentation model.
One of the advantages of the FCN is its simplicity; the training process lets the model
automatically learn the best features for the desired task. A large quantity of labeled images
is necessary to train these models. Labeling is a time-consuming manual task. Tools have
been developed to partially automate labeling. In the case of semantic segmentation, a
first mask can be created by generating super-pixels or by watershed segmentation. These
tools help save time, but the task is nonetheless painstaking because DL requires at least
tens or hundreds, sometimes thousands, of high-quality images. An FCN model was
used by [53] to detect inflorescences in images taken in natural conditions. This method
allows the suppression of the image background. After this, the Hough transform is used
to detect the flowers. The authors of [54] proposed a similar method with a SegNet [55]
model for inflorescences segmentation in images of six varieties taken at night with artificial
lighting. They studied three flower-counting methods on the segmented images: flower
segmentation with the SegNet model, Watershed segmentation, and linear regression with
the number of segmented pixels as a predictor. A similar FCN model proposed by Grimm et
al. [56] has also been applied for the detection of flowers in natural conditions. The model
detects flowers directly (represented by dots in the labeled masks) without a second step for
counting. The object detection model Mask-RCNN has also been applied to flower counting
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[57]. It was evaluated on images of individual inflorescences with artificial backgrounds
(dataset published by [50]).

The Mask R-CNN model proposed by [57] achieved better performance than the
method of [50] on the same dataset, with up to a 98% F1 score on Chardonnay and an
average of 6.92% MAPE counting error on all varieties. Performance was similar on four
varieties on three different dates. More experiments are needed to assess the model’s
counting ability in images with multiple inflorescences and natural backgrounds. The
performance of the methods in [50,56] are similar, with an 84.3% success rate and an
86.7% F1 score. The method of [56] has the advantage of working directly in natural
conditions, but the evaluation performed by [50] seems more robust (cross-validation over
12 databases). The method of [56] also requires a high-performance GPU for training and
for efficient prediction, and between 4 and 8 s of execution time is required per image (this
information is not specified by [50]).

Similar performance was achieved with the methods from [45], with 85% recall and
83.38% precision; [46], with 86% recall and 84% precision; and [52], with between 12.3% and
18.4% counting error. A lower score was achieved with the method of [47], with only 74.3%
recall and 92.9% precision. The lower performance of [47] is caused by the complexity
of the natural images (the background is artificial, but the lighting is natural) and the
lack of robustness of the detection method (other studies use a more robust but more
complex method). These two methods also have the downside of using manually selected
parameters, rendering them sensitive to scale variations (the pixel size of the flowers must
be known).

The DL method proposed by [53] seems limited by the performance of the Hough
transform. Counting only obtains a 75.2% F1 score with the result of the segmentation,
which only rises to 80% on the ground-truth masks. Combination of the segmentation
model and a robust algorithm, such as the one proposed by [50] for instance, would perhaps
improve the performance and be usable in real conditions. The methods proposed by [54]
achieved up to 0.73 and 0.71 F1 scores with SegNet counting and Watershed counting. This
is slightly worse than the method of Rudolph et al. [53], despite control of the background
(image taken at night with artificial lighting). This could be explained by the occlusion
caused by different varieties. Some varieties have bigger flower buttons that lead to higher
occlusion. Another difference compared to other work is the use of automated image
acquisition from a vehicle. This was designed to take images of whole vines; therefore,
some inflorescences can be out of focus (blurry), and flowers can have a smaller apparent
size than with manually taken images.

Table 1. Comparison of different approaches for counting flower buds.

Approach Material Techniques Results Comments

Local maxima and
circle detection
[45–47,49,52]

132 images, 11
varieties, BBCH
53–57 stages, artificial
background [46]

H-maxima transform.
[46]

85% F1 [46]. Requires calibration
and uniform back-
ground [46].

Generic key point
detection [50]

533 images, 4
varieties, BBCH 18–61
stages, artificial
background

Detection and
filtering

84.3%
accuracy.

Requires uniform
background.

Deep Learning
[53,54,56,57]

30 images, 2 varieties,
BBCH 73 stage,
natural
conditions [56]

FCN [56] 86.7% F1 [56]. Requires a powerful
GPU [56].

4. Grape Detection

The second application presented in this study is the detection of grape clusters. The
detection algorithm’s input is an image with grapes, and the output is an image containing
the location of the grapes as well as their number (see Figure 5). The different approaches
used for grape detection are summarized in Table 2.
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Figure 5. Example of grape-cluster detection (Chardonnay, before veraison).

This is an important step because it enables several practical applications such as
yield estimation, automatic harvesting using a robot [58–60], automatic spraying of growth
hormones [61], and characterization of phenotyping [62]. This task is potentially difficult
for multiple reasons: (i) there are several factors of variability (lighting, distance, and
complex background) in natural images, (ii) occlusion created by the foliage, and (iii) color
confusion between the grapes and foliage.

4.1. Segmentation Using Thresholds

A simple approach consists of thresholding segmentation. One or more thresholds
are chosen to be applied to the pixels to keep only the areas that correspond to fruit.
Thresholding segmentation is a simple approach that was first used by [63] to evaluate the
potential of image processing for yield estimation. Thresholding segmentation algorithms
usually have short execution times and are easy to develop. However, these algorithms
have several drawbacks that limit their use in the field without partial control of the
environment. The main issue is that strict thresholds are not robust to the color variations
caused by natural lighting and the background. The images taken by [63] contain only
easy-to-detect red grapes in a fixed frame. They have been applied in field on red and
white varieties but only during the night and with artificial lighting [58]. They have also
been studied in laboratories [64] and controlled environments with artificial backgrounds
[65]. A better thresholding approach consists of using the Mahalanobis distance to compare
the pixels in the image to reference pixels representing various classes. The predicted
class of a pixel is then chosen by selecting the one with the smallest Mahalanobis distance.
This technique has been used to detect grapes and to estimate leaf area [66], porosity, and
exposure of the canopy and the grapes [67]. In both cases, a controlled environment with
an artificial background or a lighting system at night is necessary. Therefore this method
requires controlled conditions to prevent variations in lighting and background. Moreover,
the thresholds must be determined in each situation. This technique is appropriate for
studies in laboratories or in the field with a vehicle designed for phenotyping [16]. It can
also be employed in natural conditions in more straightforward situations, such as the
detection of red grapes from UAV images after defoliation [9,68]. However, the grapes
must have attained the maturity to discriminate their color from the ground or the leaves.
To conclude, with this approach, it is possible to automate segmentation using a non-
supervised classification algorithm such as Fuzzy C-Means or K-Means [69,70]. The false
positives are then filtered with a Support Vector Machine (SVM) classifier. This method
remains sensitive to lighting changes and has only been evaluated on red varieties.

4.2. Edge-Based Segmentation

A second approach uses more complex segmentation techniques. Active edge segmen-
tation has been proposed to detect white grapes for automated harvesting [71]. It is limited
in its use to nighttime with a lighting source, which erases the background elements (sky,
ground, and further rows). The authors of [61] suggested a hybrid method combining a
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binary threshold and edge detection. More specifically, it uses the density of the edges in the
image as a criterion to detect grapes. However, this method requires manually identifying
several parameters (size of the convolutional filters, thresholds, etc.) to function correctly.
The thresholding segmentation technique can be combined with other pieces of informa-
tion, such as depth, to achieve better results. Depth manages to more easily discriminate
the foreground from the background. The work of [72], therefore, combines depth maps,
built using stereoscopic images, analysis of the edges, and color-based segmentation. This
technique has been evaluated in natural conditions but only on red varieties, a condition
that makes grape detection easier.

4.3. Pixel Classification

A third approach uses ML to make the detection of grapes more robust to lighting
variations. It segments the image by using small pixel neighborhoods, or blocks, as inputs
for a classification model. Examples of pixel neighborhoods are illustrated in Figure 6.

Figure 6. Examples of pixel neighborhoods extracted from a vine image (Pinot Noir, during veraison).

The model produces a binary output (grape or non-grape) that is applied to the central
pixel or the entire input block. Classical ML techniques cannot be directly applied to raw
images, as features must be extracted first for each block. A simple feature is the mean
values of the R, G, and B channels to produce a vector with only three components. In
practice, numerous methods are available and have been applied to this problem. This
approach was proposed in 2006 by [73] for automated grape harvesting. Zernike moments,
a set of invariant descriptors, have been used as features to train an SVM classifier. The
mean value of the RGB channels has been used in several studies [74–76]. A genetic
algorithm was suggested to select the best color channels among several possible color
spaces (RGB, HSV, or CIELab) [77]. Another easy characteristic to calculate is the color
histogram, although this technique is limited to controlled conditions [78]. More complex
methods, such as a local structure tensor associated with a Bayesian classifier, allow for
the segmentation of grapes and foliage in field conditions (natural background with flash
for uniform lighting) [79,80]. More recently, CNNs have been used to combine the feature
extraction and classification steps [81–83].

The choice of extractors is important because the quality of the features impacts the
final results. In contrast, the choice of the classification method is less influential, as good
results can be achieved with an SVM or Multi-Layer Perceptron (MLP).

In addition, pixel classification suffers from several limitations, including sensitivity
to color (variety) and potentially long execution time. Execution time can be reduced, but it
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requires extra effort in optimization. Finally, the evaluation of this approach is often limited,
and it is therefore not representative of actual performance. Evaluation is performed in two
ways: by calculating either the performance for the classification of the blocks or the grape
detection. Nevertheless, some studies only contain block classification performance [77,84].
In practice, performance above 95% can be obtained using block classification, but this is
rarely observed when applied to entire images. A difference of approximately 3% is, for
example, achieved by the method of Luo et al. [75] with a 96.56% success rate on the blocks,
but with a 93.74% detection rate for individual grapes.

Optimization to reduce the execution time are also possible. The work of [85] proposes
a two-step segmentation: (1) use of a logistic regression model to classify the pixels into
seven classes, and (2) filtering of the false positives for the “grape” class using a bag-of-
words model with SURF descriptors and an SVM classifier. Using a simple classifier directly
on the pixels dramatically reduces the execution time and limits the usage of the SVM
model to a reduced area of the image. This method has only been tested in a controlled
environment: red variety and artificial lighting during the night. Further, the method
proposed by [85] has several limitations: it only exploits the neighborhoods of the pixels in
a small area (no more than a few tens of pixels) and is strongly dependent on the method
used to extract features. For instance, some features solely work on red varieties (which are
easier to discriminate from the foliage).

Finally, this approach can be used for 3D reconstruction of vines using stereoscopic
images or structure-from-motion methods. As the objective is to classify 3D points instead of
2D pixels, feature extraction is more complex because it must take into account the depth
of the objects. The 3D reconstruction could allow more precise characterization of grapes
by estimating their size, volume, compactness, etc. The work of [86] uses a structure-from-
motion method that generates a 3D reconstruction using a sequence of images and an SVM
classifier. The authors of [62] use a stereoscopic camera and an Import Vector Machine
classifier—an improved SVM—to detect grapes at night with artificial lighting. Even with
the controlled environment, the proposed method only reaches an 82% detection rate at
best. This performance can be explained by the chosen feature extractors and the classifier.
Furthermore, it requires 10 GB of storage space and up to eight hours of calculations
for 25 m of vine row, rendering it impractical without optimization and/or distributed
computing.

A 3D reconstruction can also be achieved using video taken by a single-lens camera
such that the reconstruction is based on movement to estimate the 3D position of objects
(similar to structure-from-motion). The Simultaneous Localization And Mapping or SLAM
method has been studied to estimate the volume of grapes and infer the size of the berries
in a partially controlled environment (natural background and lighting with defoliated
vines) with a 93% success rate [87]. The results of this method are better than the results
of Rose et al. [62], but the wind can negatively impact it: objects must remain still in the
analyzed sequence.

ML can also be used in another fashion. A similar approach to the one presented in
the previous section tries to identify potential berries with a classification model that can be
generalized to detect grapes. One advantage is that it reduces the number of calculations
by suppressing many unnecessary pixels. This model has been used in the field on white
grapes [88] and requires a relatively complex algorithm combining key-point detection,
classification, and clustering. It has also been applied to red grapes [89]. Nevertheless,
this method suffers from the same limitations inherent to methods that employ a feature
extractor and ML. It is also more complex because the potential area detector method
must be good enough to retain as many true positives as possible before filtering. Overall,
we consider these methods complex because they mix different algorithms that require
fine-tuning to operate.
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4.4. Deep Learning

DL has recently been applied to the problem of detecting and counting grapes. A
naive approach uses the same pixel-wise classification discussed previously, but with a
neural network that combines both feature extraction and classification [81,83,90].

The use of CNNs greatly simplifies the detection step because the model learns the
best features from the data. However, this method is always limited by the small size of
the blocks and the long calculations required to segment one image. Several CNNs have
been studied to predict the masses of grapes automatically [91]. The prediction error is
relatively low, 11%, in controlled conditions with an artificial background, but the proposed
method has many drawbacks. The distance between the grapes and the camera varies,
impacting the results. This limit could be overcome using a depth sensor, but this approach
should also be evaluated on several rows and with different varieties to better appreciate
its potential.

Several popular object detection models, Faster R-CNN [37], R-CNN [92], R-FCN
[38], and SSD [40] have been tested on the task of grape detection and counting using
videos [93]. SSD was applied to grape detection at two stages (0.5 cm berries and 1.2 cm
berries) in natural conditions and with real-time hardware acceleration (TPU) [94]. A
Mask R-CNN model [95], which detects objects and segments them, has also been applied
to the detection of grapes [96]. The counting of grapes from videos is corrected with a
structure-from-motion method that estimates the 3D position along the camera path. The
3D position is used as an identifier to avoid counting one grape twice. Mask R-CNN and
multiple Yolo models [39] were compared on the dataset published by Santos et al. [96,97].
Yolo models were also compared on red grape detection from smartphone images [98]. A
Faster R-CNN model was applied similarly, with a tracking algorithm to process videos
of Riesling and Pinot Noir vines taken at night with artificial lighting [99]. Mask R-CNN
has been studied in multiple recent works [100–102]. The authors of [100] compared the
performance of Mask R-CNN to other models such as U-Net and Yolov3 [103] (they also
used the WGISD benchmark published by Santos et al. [96]). They found better precision
with U-Net and better recall with Yolov3. The authors of [101] applied Mask-RCNN to the
GrapeCS-ML dataset published by Seng et al. [32]. It contains images of different varieties
taken in natural conditions at different stages. One limitation of this dataset is that most
images only contain one grape cluster, so the resulting model cannot process images with
many clusters.

Mask R-CNN was also applied to stereo-images to detect and reconstruct 3D models of
grapes for automated harvesting [102]. A Yolov4 [104] model was applied to low-resolution
images of white grapes to measure the correlation between grape counting and fruit weight
[105]. Low correlation was found between the number of detected clusters and the actual
number of clusters (R2= 0.24). The correlation between the number of detected clusters and
fruit weight was better (R2= 0.59), indicating a potential application for yield estimation
in future work. Further, the SDCNet model, initially developed for crowd counting, was
applied to bunch counting in omnidirectional images of Delaware grapes, reaching a
counting error superior to 10% NRMSE.

Chen et al. proposed a modified PSPNet [106] model for grape segmentation [107].
It was applied on white and red grapes after veraison. They reached good segmentation
performance, with an average of 87.42% IoU. Similar results were obtained on both red
and white grapes. However, the main limitation of semantic segmentation models is their
inability to separate overlapped clusters. This result in inaccurate grape counting. Similarly,
the authors of Peng et al. [108] applied a DeepLabV3+ model to multiple red, green, purple,
and black varieties, with or without spherical berries. They reached an IoU of 88.44% with
an inference of 60 ms/image, which allows automatic harvesting. The authors are well
aware of the difficulty of separating overlapping grapes and proposed the use of a depth
sensor (Intel Realsense D435 stereo camera) to solve this problem [109]. Their results, 85.6%
recall and 87.1% precision, show the viability of their solution. However, this method
should be compared to object detection models.
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Finally, a generative model was proposed to adapt images to different lighting con-
ditions [110]. A CycleGAN [111] model was used to translate images taken in daylight to
images taken at night with artificial lighting. This step can be useful to increase the size of
existing datasets and make the models robust to varying environmental conditions.

4.5. Performance Comparison

Regarding performance, thresholding segmentation is difficult to apply in real situ-
ations unless heavy constraints are used, such as artificial lighting at night [58]. In these
conditions, 91% of white grapes and 97% of red grapes are detected. However, this method
remains limited by the thresholds that have to be selected for each situation. The method
of [66] shows high counting performance with a 98% success rate. However, this perfor-
mance should be considered cautiously because the evaluation was only performed on
ten vines that were progressively defoliated to acquire more images. The performance
achieved by Diago et al. [67] are close to those of Reis et al. [58] with a 92% F1 score. Both
these methods require artificial lighting at night or artificial backgrounds. The detection
rate of the method developed by Berenstein et al. [61] nears that of the previous methods
at 90% but with a high false positive rate of 70%. Similar performance has been seen in
the methods of Xiong et al.[71], with a 91.67% success rate, and Correa et al. [69], with
a 95% success rate. A mean classification precision of 89% was achieved on the pixel
level with multi-spectral imaging in natural conditions and multi-step segmentation with
K-means clustering. However, the results are limited by the small number of images used
for validation (only six) and the limited practicality of the acquisition device (slow and
expensive). Overall, this approach is generally limited to controlled-environment studies
rather than real situations such as the study of the correlation between pixels belonging to
grapes/masses [63], comparison of 2D and 3D detection methods [64], or estimation of the
number of hidden grapes [65].

The second approach can be used in partially controlled environments. The method
proposed by Chamelat et al. [73] nearly achieves a 100% success rate but was only evaluated
on 18 low-resolution images. A detection rate of approximately 94% of red grapes in natural
conditions wass presented by Luo et al. [75]. A similar detection rate of 93% was reached by
a simple pixel classification method [74]; unfortunately, the performance on white grapes
was not as good. Recall of 85% and precision of 93% were attained by Abdelghafour et
al. [80] on a red variety before ripening and with a flash. This is an improvement on their
previous work [79]. Performance can vary greatly depending on the selected techniques
and the conditions in which the images were taken. A detection rate of 90% was obtained on
images taken during the night with artificial lighting and containing very visible red grapes.
A high success rate of 99% was attained by the method proposed by Behroozi-Khazaei and
Maleki [77], but this only refers to the classification performance on a set extracted from the
learning set of the classifier. The method has not been tested on full images, and the number
of blocks used for creation and evaluation was limited and was achieved with a flash, a
technique suitable for practical use. The method proposed by [88,89] are potentially less
efficient because it depends on the precision of the preliminary segmentation (or detection
of key points) method that is used. The detection rate reached by [89] remains, nonetheless,
high, at 90%, in natural conditions; however, it was only tested on red varieties.

The method proposed by [88] achieved only an 80.34% recall rate (with a good preci-
sion of 88%) but has the advantage of having been evaluated on several databases with
red and white grapes and in natural and controlled conditions (lighting at night). This
performance, lower in comparison with other studies, can be explained by the more ex-
haustive validation method and by the complexity of the proposed method. An F1 score
of around 80% was reached by the method of [85]. Finally, the 3D reconstruction method
of [86] generates good results in natural conditions with an Area Under the Curve (AUC)
ROC of 0.98 before veraison and of 0.96 after. However, the execution time of the method is
not specified.
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For DL, Mask R-CNN attained a 90% F1 score in natural conditions and without
artificial lighting [96]. A similar score of 91% was obtained on the GrapceCS-ML dataset
[101]. The Yolov4 model reached 96.96% mAP on the dataset published by Santos et al.
[96,97]. They contributed to this dataset by labeling the individual berries. Yin et al. [102]
reported an F1 score of 94.7% in ideal conditions (defoliated with front lighting). The
worst performance was obtained with back-lighting, with an 86.7% F1 score. The best
performance was achieved by [93] with 99% average precision in real conditions. Few
details about the data used in this work are available, so better performance could be
expected on defoliated vines near the harvesting date.

The Yolo model proposed by Li et al. [98] reached similar results, with a 95.62% F1
score on both green and red varieties. Images were taken with natural lighting but with
well-visible grapes from partially defoliated vines. This is representative of the expected
condition for automatic harvesting. For this purpose, their model reached an inference time
of only 12 ms per image on an Nvidia GTX 1050Ti GPU. Similarly, a counting error of 13.3%
was reported in the work of Sozzi et al. [112] with a Yolov5x model. The performance
obtained by Aguiar et al. [94] seems to be closer to the natural condition of many vineyards:
their SSD-MobileNet model reached 49.85 and 53.34% mAP on grapes before veraison,
without defoliation, and at two different phenological stages.

Jaramillo et al. [99] reported a maximum counting error of 12.5% with a similar method
in images taken at night with artificial lighting. The good performance was achieved early
in the growth stage when the foliage had developed enough to cause massive occlusion of
the fruit area. It was also shown that the maximal error of manual counting, 23.5%, was
much higher than that of the proposed method. Occlusion caused by foliage is a source of
error for object-detection models. They are not able to detect small clusters that are partially
hidden by leaves. Both object-detection models and segmentation models can achieve good
performance on defoliated vines [100], with up to 92.7% F1 score on the grape pixel area.
Another source of error is the difficulty of counting overlapping clusters; a method was
proposed to solve this problem for the case of two overlapping clusters, but there is no
method yet able to count an arbitrary number of overlapping grapes [60].

A 99% success rate was also shown by [81], but it was only on blocks extracted from
images for pixel-wise classification. Similar methods proposed by [82,83] achieve a 91.52%
success rate for the counting of grapes and an 80.58% success rate in segmentation. These
three methods do not harness the full potential of DL because they only use classification
models. This can be explained by a lack of computing power and RAM. Indeed, a block-wise
classification method requires less computing power and RAM than a specialized method
for semantic segmentation. Nonetheless, these methods can obtain good performance and
are capable of distinguishing between green grapes and leaves in some conditions (natural
lighting, natural background, and well-calibrated distances and angles). We have shown in
previous work [113] that better performance can be achieved with a fully convolutional
network such as U-Net by allowing segmentation over uncalibrated images of white grapes.
Our comparative study showed that pixel-wise classification is limited by its small input
size and by the unbalanced nature of the vine images (the fruit area represents only a small
part of the image).

Please note that computing power and the quantity of labeled data are the main
limitations of the use of DL. Most databases are not sufficiently large, requiring artificial
data augmentation through the use of random transformations on the original images to
create new samples. Moreover, convolutional neural networks applied to images require
a powerful GPU accelerator so that the training process can be done in a reasonable
amount of time. A powerful CPU and GPU are needed to train a DL model with image
augmentation. Some 3D reconstruction methods also need high-performance computing
or specific optimizations [62].

It should also be noted that data augmentation can results in biased performance
measurement if it is not done properly. Data augmentation can be done in two manners:
(1) online by generating augmented mini-batches during training, or (2) offline by over-
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sampling the training set. Offline augmentation was performed by many works presented
in this review [94,98,107]. It can lead to data leakage if the train/validation/test split is
performed after offline augmentation. This is the case in the work of Zhang et al. [114]
(10-fold oversampling before splitting).

The detection of grapes could be a preliminary step for more specific tasks. For
automatic harvesting, detecting the location of the cutting point is also necessary. This
additional step generates difficulties because the grapes must be individually separated,
whereas some grapes overlap in the image. A method has been suggested to solve this
problem with two grapes [60]. The segmentation of grapes and leaves has been applied to
optimize the use of pesticides and growth hormones [61]. This study shows that targeted
spraying could reduce the quantity of pesticides by 30%. Grape detection and 3D vine
reconstruction are currently being used for phenotyping by estimating multiple traits of
the vines, such as the diameter, volume, or size of the berries or grapes, at a large scale.
In practice, stereoscopic 3D reconstruction is not practical at an industrial level because
it requires massive computational resources [16,62]. The detection of grapes is also the
first step toward yield estimation. The number of grapes must be turned into a yield
estimation. Preliminary studies have evaluated visual estimation methods of the mass of
the grapes in the laboratory with a 5% error rate [78], in the field with a correlation of R2=
0.87 [64], and using DL with an 11% error rate [91]. This visual estimation method is not
satisfactory because it strongly depends on the distance between the camera and the fruit.
The following section presents existing berry counting methods.

Table 2. Comparison of different approaches for grape detection.

Approach Material Techniques Results Comments

Thresholding
[9,16,58,63–67,70,78].

190 images, artificial
lighting at night [58].

Color-based
thresholding [58].

97% and 91%
accuracy rates
on white and
red varieties
[58].

Not suitable for
daylight processing
in natural condi-
tion [58].

Edge-based
segmentation
[61,69,71,72].

951 images, white
variety [71].

Active contour
segmentation [71]

91.67%
accuracy [71].
[71].

Not suitable for day-
light processing in
natural condition [71]

Pixel classification
[68,73–77,79–
83,85,89,115].

200 images, red
variety, natural
conditions [75].

Color features and
AdaBoost [75].

93.74%
accuracy [75]

Inefficient, perfor-
mance limited by the
small input [75].

Region-of-interest
detection and
filtering [88,89].

163 images, natural
conditions, red and
white varieties, after
ripening [88].

Key-point detection,
classification, and
clustering (SVM and
Density-Based Spatial
Clustering of
Applications with
Noise)) [88].

84% F1 [88]. Careful calibration
needed (detection al-
gorithms, parameters,
etc.) [88].

3D reconstruction
and classification
[62,86,87].

25 Riesling vines
(white),
stereo-camera, at
night with lighting
[62].

3D reconstruction
and classification of
3D points [62].

80% F1 [62]. First step toward
large-scale phe-
notyping, further
optimizations are
needed (execution
time, memory re-
quirement) [62].

Deep Learning
[81,83,84,91,93,94,96–
102,105,107–
110,112,116].

300 images, five red
and white varieties,
natural lighting [96].

Mask R-CNN [96]. 91% F1 [96]. Requires powerful
GPUs and many
labeled images [96].

5. Berry Counting

The counting of grape berries is one method currently used to perform yield estimation.
Grapes are harvested from random samples to estimate the number of grapes per vine,



Agronomy 2022, 12, 2463 16 of 31

the number of berries per grape, and the weight of the berries. These yield components
make up, respectively, 60%, 30%, and 10% of the yield variance [117]. They are used in a
yield equation that is applied to the entirety of the parcel to estimate or predict kg/ha (or
kg/vine, hL/ha, etc.). This method is destructive, as the grapes must be harvested, limiting
the sample size. This limit makes the predictions vary greatly depending on the year and
parcel. Several studies proposed methods for automatic counting of grapes by computer
vision. The main approaches for automatic berry counting from images are presented in the
summary of this section in Table 3. Berry counting is illustrated in Figure 7. A rapid count
can be obtained in the laboratory with a scanner [118] or with a camera and an artificial
background [119], although this still requires destructive sampling. The first method that
could be applied in the field was proposed in 2010 and was based on the detection of
ellipses [120]. The proposed sensor was limited to a single grape cluster per image with
an artificial background. The counting results were disappointing, showing a 30% success
rate, mainly because the berry edge extractor generated too many false negatives.

Figure 7. Example of berry counting (Chardonnay, before veraison).

5.1. Counting by Key-Points Detection

Numerous counting methods have been suggested. They consist of firstly detecting
the berries and then deducing the number of grape bunches (which corresponds to 90%
of the variance in the yield). The problem can be formulated as a circle detection or local
maxima detection task. Specular reflection, caused by the light on the surface of the berries,
produces a pattern that follows a Gaussian distribution. The berries appear as bright little
spheres, which makes them more easily distinguishable from the background of the image.
One of the first methods exploiting specular reflection used a Gaussian kernel to process
images taken with a smartphone with flash [121]. It was limited to close-up images of one
or several grapes to limit confusion caused by the background. Similarly, a morphological
operator was designed to detect this pattern. It can only be applied to images taken at night
with artificial lighting to produce the reflection pattern and to erase the background [122].

Several algorithms have been used to detect berries: the h-maxima transform [123,124],
the fast radial symmetry transform [125,126], and the Hough transform [127–133]. The fast
radial symmetry transform detects berry candidates rapidly, whereas the Hough transform
potentially has high memory usage and computing power needs; it is also sensitive to
noise. An alternative to the h-maxima transform, named invariant maxima detector, was
proposed by Nuske et al. [125] to detect berry candidates with artificial lighting. These
studies show that detectors based on local maximums are too sensitive to variations in
natural lighting, making the use of a flash or lamp a necessity. The artificial lighting creates
a uniform specular reflection on the surface of the berries, making the detection easier.

This technique also requires an additional filtering step similar to the one explained
in the previous section. This classical approach is therefore complex because it requires
several algorithms that need to be fine-tuned to (1) detect the berry candidates, (2) extract
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the features of each candidate, and (3) filter the false positives with a classifier. Therefore, it
requires three separate algorithms selected among numerous existing methods.

The choice of candidate detection method is crucial because this step strongly impacts
the final detection number. Thus, the algorithm with the highest detection rate must be
chosen without worrying about false positives.

Feature selection is the most important step to distinguish the berries from the back-
ground and the foliage. The features should not be based solely on colors to avoid confusion
between berries and leaves. Indeed, features representing the edge of the shape are most
often used, as this allows the detection of berries without using an artificial background.

Finally, the choice of the classifier is less important, because similar performance can
be achieved with classical models such as an SVM or an MLP if the extracted features
have enough discriminatory power. Several classifiers have been studied: SVMs [88,115],
K-nearest-neighbors [134], MLP [123,124,135], random KD-Forest [125], and convolutional
neural networks [84,133]. A high success rate, close to 100%, can be obtained with a CNN.
A CNN can be trained easily because it only uses small pixel windows, about 10× 10 pixels,
as input. We may also cite the work of [136], which proposed a reversed approach. In that
work, the grapes were first detected using the Mahalanobis distance, and the segmentation
was later refined with special filters. Finally, a Boolean model detects the berries. The
Boolean model is more robust to obstructions because it is capable of detecting partially
hidden berries. However, this method requires a controlled environment (artificial lighting
at night).

The circle detection method can also be used for the 3D reconstruction of the grapes.
The goal is to detect spheres amongst a cloud of 3D points. The Hough transform can
be applied in three dimensions for this purpose [137]. This approach was evaluated
on 100 vines in very controlled conditions (laboratory with four lamps and an artificial
background). Despite these conditions, the proposed method only reconstructed 20% of
the berries autonomously. Manual calibration was necessary for correct 3D reconstruction.
It was also applied in the field [62,138]. The method of [138] compares estimates of the
volume, weight, and number of berries with an automated reconstruction found using
a semi-automatic method (human intervention is required). The automatic estimation
method is competitive with the semi-automatic one, but precise calibration is necessary in
both cases. Moreover, this method is potentially expensive because it uses five cameras.
This approach detects berries in the field as long as the lighting is controlled with an
artificial source, although the use of an artificial background is not essential in this case.

5.2. Deep Learning

DL can simplify berry counting by processing raw images. CNNs can be used as
a feature extractor and as a classifier at the same time to filter berry candidates. This
technique has been implemented on a Raspberry Pi [133] for real-time detection. CNNs
have also been shown to be more accurate than SVM [84]. Furthermore, CNNs have been
adapted to object counting with density map prediction. The areas with strong density
correspond to the berry locations [139]. This method manages to count berries with an error
rate of approximately 10%. CNNs have also been adapted to image segmentation. These
CNNs have shown very promising results. An FCN model was proposed to count berries
with two classes of labeling: the inside of the berries and the edges [140]. The model is
faster and better than Mask R-CNN [95] and UNet [44]. This difference is explained by the
structure of the models, as Mask R-CNN uses a complex structure to detect and segment
objects, and by the small size of the database. Deng et al. [97] used the Hough transform
for circle counting after grape detection with the Yolov4 model (it is similar to the method
proposed by Rudolph et al. for flower counting [53]). One limitation of this algorithm
is its sensibility to berries’ apparent size (the radius must be known). A Hybrid Task
Cascade model, an improvement of the original Mask R-CNN model, was applied to berry
detection for assisted grape thinning with smart glasses [141]. Simulated grape thinning
was proposed as data augmentation to reduce the number of misclassifications. Therefore,
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this method was designed for processing in natural conditions but with a single grape
bunch taking most of the image area. Worse performance may be expected on whole vine
images. Miao et al. proposed edge detection to solve the problem of counting overlapping
berries [142]. The proposed methodology is complex, with a Holistically-Nested Edge
Detection model for berry edge segmentation, a Yolo model for berry detection, and a
RANSAC algorithm for sphere fitting. It was evaluated on images of individual grape
clusters in different conditions (laboratory or field conditions). A simpler object detection
model based on RetinaNet [41], modified with a counting section, was evaluated on three
plants for counting bananas-per-bunch, spikelets-per-wheats-spike, and berries-per-grape-
cluster in natural conditions [143].

Palacios et al. recently proposed a three-step segmentation process with SegNet
models for grape, berry, and canopy feature extraction from images taken at night with
lighting. The goal is to use segmentation to measure traits with predictive power for actual
berry counting (visible + hidden) with regression models.

5.3. Performance Comparison

Encouraging results were achieved by [56]. A single segmentation model was eval-
uated on several tasks, including berry, flower, and branch counting. It obtained good
results with natural lighting, with or without an artificial background. Moreover, better
performance was achievable by optimizing the structure of the model depending on the
considered task and by using more images (only 60 images of red grapes were used). This
model also uses a simple binary segmentation (each berry is represented by a point in the
labeled mask). DL, Mask R-CNN more precisely, was combined with a SLAM 3D recon-
struction technique to count berries in real-time [144]. A blower was used while taking
the images to remove the leaves. The performance was impressive, with 96.62% precision
and 98.81% recall on a row of 187 m. Similar results were obtained by Buayai et al., with
96.55% correct detection and only 2.79% misclassification error on images of individual
grape bunches. Similar performance was also achieved with a multi-step berry counting
model, with a recall of 96.24% and precision of 94.65% [142]. One limitation of this method
is the need for high-quality edge labeling, which is time-consuming. It is also limited to
images of individual grape clusters. The 3D reconstruction approach of [62] also showed
good precision, about 98%, but with a recall rate below 80%, and it was only evaluated
on 20 grapes. The most promising results for detection are presented by [144]. However,
the proposed method remains complex because it combines several different models, and
the varieties used for the evaluation were not specified (the illustrations suggest the use of
red grapes). The object detection model RetinaNet is an example of a simpler architecture
[143]. Its performance on berry detection is too low, with only 61.5% and 49.1% recall
and precision, respectively. Counting was still accurate, with 9.2% error and a fraction of
explained variance of 0.83. It is worth noting that counting errors are balanced by using
multiple images. Further, better performance can be expected because the model was not
optimized for berry detection (this work aimed to study the potential of the proposed
model for generic plant parts counting).

A more classical approach is suggested by [124], who achieved 87.6% recall and 95.8%
precision but in controlled conditions (artificial lighting at night) to limit background con-
fusion and lighting variation. Similar results were obtained by [140] in natural conditions.
The performance depended on the position of the vines. A gap of 5% is observed between
the Vertical Shoot Positioning (VSP) and the Semi-Minimal Pruned Hedges (SMHP) po-
sition (94% versus 89% recall). The segmentation model studied by [56] reaches 89.7%
recall and 86.6% precision in natural conditions and without task-specific hyper-parameter
optimization (the same model was used on different tasks). These results were consolidated
by the work of [139], who showed between 1% and 10% error in berry counting in natural
conditions. Generally speaking, DL seems to be more robust to the variations found in
natural conditions. This can be explained by DL’s ability to process entire images without
prior detection of berry candidates.
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The more classical methods are limited by the detection rate of the candidate selection
method, and their performance can significantly vary depending on the phenological
stage, the vigor of the vines, and the grape variety. For instance, the fast radial symmetry
transform studied by [125] had a recall rate varying between 69% and 89%. Similarly, the
Hough Transform for berry counting proposed by Deng et al. had performance varying
from 1.7% MAE counting error to 24.85% depending on the variety [97]. This is due to the
need for a known radius size before counting, as it can lead to worse performance when
the pixel berry size is too small. The method in [136] only achieved 78% success on average
over four red grape varieties and in controlled conditions (artificial background or artificial
lighting at night). Performance ranged from 47% to 88% depending on the variety. Finally,
the method suggested by [88] reached a precision of 99% and a recall of up to 92.4% on white
grapes in natural conditions. This performance was achieved on the published databases
of [115], which contain 40 × 40-pixel blocks centered on individual berries or the image’s
background. Berry counting was not tested on other images, in contrast with the grape
detection of the previous section. The performance of [88] is therefore not representative of
the expected performance on complete images taken in natural conditions.

Until now, we have only mentioned counting visible berries. However, yield esti-
mation must take into account hidden berries. The work of [65] showed that the leaves
hide a majority of grapes (up to 72% for the Syrah variety). Therefore, a modeling step
is required to consider these hidden grapes. Palacios et al. [145] studied this modeling
step in detail and reported (1) 86% recall and 62.2% precision for visible berry detection
and (2) 26% Normalized RMSE, R² = 0.82, for actual berry counting with a Support Vector
Regression model with features based on fruit area and occlusion. This work was extended
to yield prediction [146]. Different methods for image-based yield estimation are detailed
and compared in the next section.

Table 3. Comparison of different approaches for counting berries.

Approaches Material Techniques Results Comments

Scanner [118–120]. 250 berries of Pinot
Noir, BBCH 75, flat
scanner [118].

Watershed
segmentation and
particle
counting [118].

100%
accuracy [118]

Destructive and time-
consuming [118].

Berry detection and
filtering
[84,88,115,121–
129,133,133,134].

150 images of five red
and white varieties,
at night with lighting,
BBCH 71–85 [124].

Local maxima
detection and
classification [124].

91.5% F1 [124] Unpractical night-
time acquisition, cal-
ibration required for
each algorithm [124].

Grape detection and
berry counting [136].

64 images, night with
lighting.

Mahalanobis
segmentation and
counting with
boolean model.

78% accuracy Unpractical night-
time acquisition,
tested at harvest time.

Deep Learning
[56,84,97,133,139–
143,145,147].

38 images of 5
varieties at 3 stages,
Phenoliner vehicle
for acquisition [140].

FCN based
model [140].

Up to 92%
F1 [140]

Tested with artificial
background and light-
ing, powerful GPU
needed [140].

3D reconstruction
[62,138,144].

750 images of red
grapes from
20 rows [144].

SLAM, Mask R-CNN,
SVD, and SVM [144].

97.7% F1 [144] Potential real-time
execution, complex
processing pipeline,
powerful GPU
needed, sensitive to
wind [144].

6. Yield Estimation
6.1. The Potential of Computer Vision for Yield Estimation

Detecting grapes is the first step for automated yield prediction. The objective is to
convert the detected yield component into an estimation of kg/vine, kg/ha, or hL/ha.
Image processing methods have the advantage of rapidly processing large quantities of
data without destructive sampling in the field. Relevant research is shown in Table 4.
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These methods’ potential was first studied in the laboratory [64,78,128,137]. The correlation
between the detection results, number of berries, or counting/ratio of fruit pixels and fruit
weight was established in ideal conditions. A strong correlation, varying between R2 =
0.69 and R2 = 0.95 depending on the variety (R2 = 0.69 for Grenache and R2= 0.95 for Bobal,
both red varieties) was found by [128] and confirms the value of counting berries for yield
prediction. Several other studies have shown a strong correlation between the number (or
ratio) of pixels that belong to fruits and the weight: R2= 0.85 [63], R2= 0.93 [78], R2= 0.73
[66], and R2= 0.95 [64]. A similar study was undertaken using the number of flowers and
found a strong correlation, R2= 0.79, between the number of estimated berries and the mass
of the grapes during harvest [46].

These methods were evaluated in controlled conditions, laboratories, or in the field
with an artificial background, which is not representative of natural environments. For
example, an application in the field can partially be controlled by using a lamp or a flash
for uniform lighting. Night can also erase the image’s background because only the vine in
the foreground is lit. However, this requires at least some additional equipment and can
exclusively function at night, which is not necessarily desirable (unless using an automated
robot). Moreover, using an artificial background is a barrier to practical and large-scale
data acquisition.

6.2. The Issue of Counting the Grapes

A problem arises from deploying berry detection algorithms in the field. They must
be applied to image sequences to cover entire rows of vines. Doing this introduces the
risk of counting the same grapes twice. Therefore, more or less complex solutions have
been applied to avoid redundancy during counting. A simple approach reconstructs the
full image of the row using a video and then keeps the highest counts in the overlapping
areas [125]. The SIFT method can reconstruct the image in this way by matching key points
in images of a sequence [69]. It is also possible to follow the detected grapes from one
image to the next based on the distance between grapes in consecutive images [93]. A 3D
reconstruction can also help avert this issue by using 3D coordinates of the fruits as unique
identifiers. A photogrammetrical approach using structure-from-motion was implemented
for this purpose [96]. A SLAM real-time 3D reconstruction was also implemented by [144]
to avoid long processing times. Another mechanical solution consists of taking an image
based on the distance covered by a vehicle (one every two meters, for instance) [124].

The main problem in yield prediction and estimation is the modeling step that converts
the counted numbers into a final yield value. Several regression-based methods have been
proposed to automatically determine the weight of the grapes detected in an image. For
example, the number of pixels of each grape can be used to generate a linear model that
predicts the mass. DL has been used to perform regression from raw images [91]. Good
correlation between fruit pixel area and weight has been observed in laboratory conditions
[148] (R2= 0.8 on a white variety at harvesting time; a similar result was obtained by
Hacking et al. [149]). However, performance on 25 vines in field conditions was still low,
with 27.8% MAPE yield estimation error. In practice, these methods mainly evaluate the
prediction potential of processing images [63,64] but are not always applicable at large
scales in natural conditions. An error rate of 16% is achievable but in a simplified context:
red variety after maturation and with vines partially trimmed to make the grapes visible
[9].

Counting pixels or using RGB images without depth makes these methods very
sensitive to distance variations. They cannot differentiate between a far grape bunch or a
small one. This drawback can be overcome by using a depth sensor [90] for better evaluation
of the size of the grapes. Another limitation of these methods is yield estimation based
on the number of counted grapes: it is done only on the visible part of the grapes. In this
case, a model that predicts the weight directly without counting cannot solve this problem
and is harder to understand. The methods proposed by [90] and [91] seem promising with
11.8% and 15.2% yield prediction error rates, respectively. However, they were evaluated
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on a limited number of vines. A prediction error rate of 16% was also achieved in [76], but
it is only operational at night with artificial lighting and on red variety grapes.

The classic modeling approach estimated the total number of berries (or flowers) with
a regression model, generally linear. The total estimation number is then converted into
mass using the historical average weight of the berries or by extracting samples from the
field. The method used by [124] with a linear model predicts the total weight based on
the visible fruits. An average error rate of 12.83% was achieved on five varieties over
30 segments of three vines. Several calibration steps were proposed by [125] to correct
the counting errors. Two alternative methods were tested to estimate the total number
of berries based on the visible part of the grape: (1) using the convex hull of the visible
grape and setting the average size of the berries and the thickness of the grape, or (2) by
estimating the number of berries contained in a 3D ellipsoid model calculated using the
visible part. The first method obtained better prediction of fruit weight, 13.7% versus 15.4%
for the linear regression and 17% for the ellipsoid model, in the laboratory. Neither method
worked correctly in natural conditions because they require the grapes to be separated from
one another. The method suggested by [125] uses a history of the error of the previous years
and an estimation of the visibility of the fruits to correct the final count. In addition, this
method is optimized by selecting the parameters that minimize the global and spatial error.
The estimation error rates for whole parcels were 6.48%, 9.07%, and 11.65% on the Flame
Seedless red variety depending on the year and the calibration implemented to correct the
counting error. A small error of −2.47% was also attained on the white Chardonnay variety.
The error rate of the first variety is to be put into perspective because the images were taken
only seven days before the harvest (75 days for the Chardonnay and 100 days for [124]).
Ideally, winemakers would want the lowest error rate several weeks before the harvest. To
correct the counting, Millan et al. [136] suggested using a boolean model robust against
partial occlusions (some berries are only partially visible and are not always detected).
The error rate per vine is then lesser than a naive method based on fruit pixel area. It is
nonetheless higher, 200 g/vine error, compared to the method of [124] (160 g/vine error).

6.3. Recent Progress and Problems to Solve

A recent method uses new techniques to count berries and estimate the total number
of berries in a grape bunch [130]. It is a 3D reconstruction method that only needs a
single 2D image. The 3D model is built by positioning the berries to fill the estimated
profile, estimated from the edges, of a single grape bunch. Grape compactness is used as a
parameter to simulate different varieties and growth stages. Therefore, this method directly
estimates the number of berries in a grape bunch. It has only been applied in partially
controlled conditions with images of individual grapes with an artificial background. Yield
estimation was done by combining this method with another one proposed by the same
authors [51] based on counting the shoots. The error rates of predicted yield on three
parcels were 3%, 6%, and 16%, which is comparable to or better than other methods.

Most of the works aforementioned rely on images taken at a given time. Nevertheless,
the phenological stage can impact the results. For instance, berries can be harder to count
when small. Their color is also similar to that of the foliage before ripening. Good results
were observed in practice by Nuske et al. in 2014 up to 75 days before the harvest [125].
Counting can be more difficult once the grapes close (the berries touch each other). Liu et
al. showed similar yield estimation performance before and after ripening [130].

Estimating the total number of berries in grape bunches and the ones hidden by the
foliage are two of the main problems currently limiting yield prediction performance.
Estimating the total number of berries requires a modeling step, such as the one proposed
by [130] or [125], evaluated on different varieties, parcels, and in different seasons. On
the other hand, estimating the number of berries/grapes hidden by the foliage is essential
because the winemaker cannot trim his vines. A possible solution is to use a blower to
remove the foliage temporarily, but this has not been quantitatively evaluated [144]. An
additional modeling step is hence necessary, and it could benefit from additional variables
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such as the porosity of the canopy (R2= 0.82 correlation between the canopy’s porosity
and the percentage of visible grapes) [65]. Recent studies have shown that the fruit area
might be more robust to occlusion than berry counting [150]. This work was extended by
comparing yield estimation from images to the classical manual sampling approach on six
parcels [151]. The authors used an artificial background and manual segmentation of the
images to extract meaningful features (such as visible bunch area, canopy porosity, etc.)
for yield estimation. In this manner, ideal performance of image analysis methods was
evaluated against the current yield estimation process. An average error rate of 8% was
found with image analysis compared to 31% for manual sampling. It is also noted that
the error increases with canopy density. Although fruit area prediction potential is still
highly impacted by foliage, moderate defoliation can help obtain better correlation [152]. In
practice, the conditions in a vineyard are more difficult: smaller green grapes, high canopy
occlusion, a natural background, variable lighting, etc.

Features related to occlusion and fruit area were used as yield predictors in the work
of Palacios et al. [145,146]. An error rate for 6 varieties of 29.77% NRMSE (in kg per vine,
R2= 0.83) was reported with images taken 66 days before harvest. Error rates ranged from
16.47% to 39.17%, depending on the variety. Zabawa et al. [140,147] reported an MAE rate
of 26% for 70 vines of Riesling. They only used berry detection and a simple equation
(estimated number of berries multiplied by the berry weight).

A possible solution to solve the hidden-berries problem was proposed by Kierdorf
et al. [153]. A CycleGan generative model was used to predict the location of hidden berries
from pairs of vine images before and after defoliation. As a result, better counting perfor-
mance was obtained: R2= 0.88 compared to R2= 0.72 on the images without defoliation.
However, this has not yet been applied to more complex vine images with a natural back-
ground. More experiments are needed to determine the practicality of this new method for
yield prediction.

Table 4. Comparison of different approaches for yield estimation.

Approach Material Techniques Results Comments

Regression from
images
[9,90,91,148–150,152].

120 images, 40 vines,
3 angles, Pinot Noir
after ripening,
artificial
background [90].

CNN for regression
[90].

11.8% yield
estimation
error rate [90].

A depth sensor
could improve perfor-
mance, hidden grapes
are not accounted for
[90].

Berry counting and
modeling [76,124,125,
136,146,147,153].

Images of 24
Chardonnay vines,
75 days before
harvest, at night with
lighting [125].

Visible berry
detection, hidden
berry modeling and
calibration [125].

−2.47% yield
prediction
error [125].

Unpractical night-
time acquisition,
estimating the num-
ber of hidden berries
is an unresolved
problem [125].

Automatic
reconstruction of
grape structure and
shoot
counting [51,130].

Images of red and
white grapes before
and after ripening,
artificial
background [51].

3D reconstruction of
grapes and counting
of the shoots [51].

Yield
estimation
error rates of
3%, 6%, and
16% on three
parcels
(versus 3%,
10%, and 24%
with a manual
method) [51].

Hidden grapes are
not accounted for,
unpractical artificial
background for shoot
counting [51].

7. Conclusions

Classical image processing and ML techniques have been applied for many viticulture
applications. Their main limitations are the need for careful selection of the appropriate
algorithms for feature extraction, shape detection, and classification, and the need for partial
control of the environment with an artificial background [130] or artificial lighting [124].
As a result, multiple methods have been released as free mobile applications [154–156].



Agronomy 2022, 12, 2463 23 of 31

A new popular approach uses DL for automatic grape detection. It uses end-to-end
supervised learning to train Convolutional Neural Networks from raw images. DL seems
to be more robust to natural variation, and pre-training allows easy transfer to similar
problems. It is also easy to develop because many tools are freely available. However,
DL suffers from two major drawbacks: it requires (1) a large amount of labeled data
and (2) powerful computing resources. Labeling is a limitation because it is very time-
consuming. Recent works have been exploring the use of generative models for artificial
data augmentation, which could compensate for the lack of labeled data. Indeed, Generative
Adversarial Networks were applied to vine leaf disease classification [157] and grapevine
image domain adaptation from day-time to night-time [110]. In any case, DL requires at
least one powerful GPU for fast training times.

Research in computer vision for viticulture applications could benefit from several
improvements. A first improvement would be the normalization of the metrics used for
grape detection, grape counting, and yield prediction. It would allow for easy comparison
between different methods. A second, more important improvement would be creating a
large dataset of labeled vine images of different varieties taken in different conditions in
multiple seasons and at different growth stages. An important component of this database
would be the availability of ground truth measurements such as the number of berries
per bunches or the weight of the grapes. Table 5 summarizes the existing freely available
databases. Most of them are limited to a few varieties at a single phenological stage, and
they do not include ground truth measurement.

Counting fruits, in general, is a difficult task because the aspects of the plant can
vary enormously depending on the point of view. Multiple viewpoints, on each side of
the plant, can refine mango counting [158] and apple counting [159]. The authors of [160]
hypothesize that the occlusion rate of fruits is constant; a linear model would therefore allow
for correction of the visible apple count. There is also a similar issue with labeling images.
A weakly supervised method, labeling is limited to a binary classification indicating if
fruits are present in the image, which has been applied to almond and apple counting
[161]. The model is nonetheless limited to a regression task (counting only). A possible
improvement to explore is the addition of new predictors in the yield modeling phase. As
of now, models only use predictors based on detected fruits and ignore the foliage, which
can be detected with a segmentation model, for instance [162]. Multiple recent works have
shown the negative impact of foliage occlusion on the quality of visual yield components
[65,150–152].

The extraction of new predictors from images would require more complex labeling,
which would also be more time-consuming. DL models based on auto-supervised learning
and using the attention technique [163] could reduce the number of images that need to be
labeled. Caron et al. showed that this type of model learns to delineate objects in images in
a non-supervised fashion [164]. Adding new predictors, such as the volume of the grapes, is
also a path to explore for methods that use 3D reconstruction. The high cost of the materials
and data processing remains an obstacle for these methods. Finally, adding new indicators
could be done by crossing different sources. For example, satellite images have recently
been used to predict vine yields [165]. New models will also be needed to consider the
different nature of the data (RGB images, satellite images, temporal series, etc.). These new
models should also take into consideration the uncertainties related to many indicators:
dead plants, the impact of diseases, the impact of bad weather, vigor variability, the impact
of rainfall at harvest time, etc. Many efforts are required to construct complete datasets on
a large scale and over many years.
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Table 5. Existing datasets.

Dataset Material Conditions Labels

Berenstein et al. [61] 129 images of white grapes Natural Binary mask

Kicherer et al. [15] 284 images of whole vines before
veraison

Taken at night from a vehicle /

GrapeCS-ML [32] More than 2000 images of
individual grape clusters of
multiple varieties and multiple
growth stages.

Natural /

WGISD [96,97,143] 300 images of red and white
defoliated vines

Natural Bounding boxes, segmentation mask
for clusters and berries.

Downy Mildew
dataset [166]

99 images of Merlo vines infected by
downy mildew.

In-field in day-light with a
flash.

Segmentation mask for downy
mildew symptoms (72 images),
complete segmentation labels
(24 images).

Esca dataset [167] 1770 original RGB + NIR images of
vine leaves, 50% of them contain
esca symptoms.

Natural, data augmentation
was applied to generate a
total of 24 k images.

Classification labels.

Flower dataset [50] 533 images of individual
inflorescences of 4 varieties

Artificial background and
varying lighting.

Actual number of flowers.

Pinto et al. [168] 336 images of vine trunks Natural Bounding boxes

PlantVillage
dataset [169]

Images of individual vine leaves.
Four classes: healthy, esca, leaf
blight, and black rot.

Laboratory condition. Classification labels.

Grape bunch and
vine trunk dataset for
DL object
detection [170]

1929 images of grape bunches at
different stages, images of vine
trunks

Natural conditions. Bounding boxes.

Leaf Diseases
dataset [171]

1092 images of grapes and leaves
infected by black rot, grey mold, or
powdery or downy mildew.

Natural conditions. Bounding boxes and segmentation
masks.
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