

A new flavanocoumarin glucoside from the roots of Lannea kerstingii

Jean-Michel Koffi Kouamé, Philomène Akoua Yao-Kouassi, Abdulmagid Alabdul Magid, Zachée Louis Evariste Akissi, Laurence Voutquenne-Nazabadioko

► To cite this version:

Jean-Michel Koffi Kouamé, Philomène Akoua Yao-Kouassi, Abdulmagid Alabdul Magid, Zachée Louis Evariste Akissi, Laurence Voutquenne-Nazabadioko. A new flavanocoumarin glucoside from the roots of Lannea kerstingii. International Journal of Biological and Chemical Sciences, 2022, 16 (4), pp.1756-1764. 10.4314/ijbcs.v16i4.31. hal-03839451

HAL Id: hal-03839451 https://hal.univ-reims.fr/hal-03839451v1

Submitted on 4 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Available online at http://www.ifgdg.org

Int. J. Biol. Chem. Sci. 16(4): 1756-1764, August 2022

International Journal of Biological and Chemical Sciences

ISSN 1997-342X (Online), ISSN 1991-8631 (Print)

Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int

A new flavanocoumarin glucoside from the roots of Lannea kerstingii

Jean-Michel Kouamé KOFFI¹, Philomène Akoua YAO-KOUASSI^{1,3*}, Abdulmagid Alabdul MAGID², Evariste Zachée Louis AKISSI^{1,2} and Laurence VOUTQUENNE-NAZABADIOKO²

 ¹ Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et de Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire.
 ² UMR 7312, Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France.
 ³ Université de San Pedro, BP V1800 San Pedro, Côte d'Ivoire.
 * Corresponding author ; E-mail: kouassiap@yahoo.fr; Tel: 002250757105617

Received: 05-06-2022	Accepted: 23-08-2022	Published: 31-08-2022
----------------------	----------------------	-----------------------

ABSTRACT

An undescribed phyllocoumarin-3-O- α -L-rhamnopyranoside **8** together with catechin **1**, catechin-3-O- α -L-rhamnopyranoside **2**, catechin-[7,8-bc]-4 β -(3,4-dihydroxyphenyl)-dihydro-2(3H)-pyranon **3**, 5-O-trans-p-coumaroylquinic acid **4**, trans-p-coumaric acid **5**, catechin-[5,6-e]-4 β -(3,4-dihydroxyphenyl)-dihydro-2(3H)-pyranon **6**, catechin-[5,6-e]-4 α -(3,4-dihydroxyphenyl)-dihydro-2(3H)- pyranon **7**, phyllocoumarin **9** and vaccinin A **10** were isolated from the roots of *Lannea kerstingii*. The structures of the compounds were established using NMR, IR and HR-ESI-MS spectroscopic analysis. © 2022 International Formulae Group. All rights reserved.

Keywords: Lannea kerstingii, Anacardiaceae, phyllocoumarin glucoside.

INTRODUCTION

The genus Lannea belongs to the family Anacardiaceae and consists of 77 genera with 600 speces (Eyana, 2007). Most of them are used to tread several ailments such as ulcers, enteritis, diarrhea, yellow fever, dysentery, wound healing, malaria, toothaches, blood pressure, rheumatism and diabetes (Sathish et al., 2010; Chegaing et al., 2020; Bharti et al., 2021; Islam et al., 2022). Pharmacological studies of some Lannea species have shown their anticancer, antibacterial and antioxidant activities (Sivaraj et al., 2018; Md. Hossain et al., 2018; Sabo et al., 2019; Mbaoji et al., 2020, Ombouma et al., 2022). The edible fruits of most of them are well known for their nutritional value in food or as a food supplement, and have enormous potential contribution in the economy and households (Atato et al., 2011; Sereme et al., 2014; Goudégnon et al., 2016; Diarra et al., 2016; Muhammad et al., 2018; Konaré et al., 2022).

The chemical investigation of Lannea genus has led to identification and isolation of various secondary metabolites, including: carbohydrates, alkylphenols, alkylhexanones, flavonoids, saponins steroid, coumarins, tannins (Muhaisen et al., 2013; Ibibia et al., 2016; Njinga et al., 2016; Md. Hossain et al., 2018; Kallo et al., 2018), sesquiterpenoids

© 2020 International Formulae Group. All rights reserved. DOI: https://dx.doi.org/10.4314/ijbcs.v16i4.31 from essential oils (Bouaré et al., 2012; Ogundajo et al., 2021) and furane derivatives (Tameko et al., 2017).

Lannea kerstingii Engl et K. Krause (Anacardiaceae) is a deciduous tree that usually grows than 12 meters tall, and distributed throughout the Sudanese and Guinean Savannah (Arbonnier, 2009). Lannea kerstingii is used in traditional medicine to treat several pathologies such as anemia and liver diseases (Batawila et al., 2007; Allabi et al., 2011; Kpodar et al., 2016). In West Africa, L. kerstingii is used in traditional medicine to treat Buruli ulcer (Yemoa et al., 2008).

The use of herbal medicines in primary healthcare by African poeples, especially in Côte d'Ivoire, is tremendously increased. However, few data are available on the chemical composition of many of them. This work aims to the phytochemical investigation of *Lannea kerstingii* in order to contribute to its promotion and for its safety and efficacity uses in traditional medicine. Thus, in this study, we report isolation of new phyllocoumarin glucoside and nine known compounds from the roots of *Lannea kerstingii*.

MATERIALS AND METHODS Plant material

The roots of *Lannea kerstingii* were collected in November 2018 at Flakièdougou (Bondoukou) in the Easten region of Côte d'Ivoire. The plant was identified at the floristic center of University Félix HOUPHOUËT- BOIGNY (Abidjan, Côte d'Ivoire), where a voucher specimen (UCJ 000967) was deposited.

General experimental procedure

NMR experiments were carried out in MeOH- d_4 on Bruker Avance DRX III 500 instruments. HR-ESI-MS experiments were performed using a Micromass Q-TOF micro instrument. Analytical TLC was performed on pre-coated silica-gel 60 F₂₅₄ Merck and spots were observed under UV light at 254 and 365 nm or visualized by spraying the dried plates with 50% H₂SO₄, followed by heating. CC was carried out on Kieselgel 60 (63-200 mesh). Extracts were fractionned first on vaccumm

liquid chromatography (VLC). HPLC was performed on a Dionex apparatus equipped with an ASI-100 autosampler, an Ultimate 3000 pump, a diode array detector UVD 340S and Chromeleon software. Interchim column (C₁₈-HQ, 5 μ m, 250 x 10 mm) was used for semi-preparative HPLC or preparative HPLC (PLC) with binary gradient eluent (H₂O (filtred at 0.22 with TFA); CH₃CN) and a flow rate of 4 mL/min in semi-preparative HPLC and 20 mL/min in PLC; the chromatogram was monitored at 205, 210, 254 and 365 nm.

Extraction and isolation

Coarsely powdered root (1.5 Kg) of *L. kerstingii* was exhaustively extracted with 15 L of the mixture CH₃OH/H₂O (80/20). The hydromethanolic extract was dissolved in H₂O (500 mL) and the mixture serially extracted with cyclohexan and ethyl acetate (2×500 mL). The ethyl acetate fraction was dried under low temperature and pressure to obtain 16.0 g. This extract was separated on VLC C-18 (10 cm x 5 cm) eluting with EtOAc/MeOH/H₂O gradient to yield 5 fractions (AE-1 to AE-5).

Fraction AE-1 (3.59 g) was subjected to flash chromatography on normal silica with DCM/MeOH/H₂O (90/10/0; 70/30/5; 60/40/7) to give 12 fractions (F1 to F12). Fraction F4 (77.8 mg) was purified by preparative PLC with H₂O/ CH₃CN (15 to 25% of CH₃CN) as the mobile phase to afford compound **1** (3.20 mg).

Fractions 5 and 6 combinated (180.7 mg) was chromatographed on normal silica with Toluene/AcOEt/MeOH/H₂O (50/50/0/0; 50/30/20/0; 0/77/13/10) to give 8 sub-fractions. Sub-fractions 5 (23.34 mg) was purified on preparative PLC eluted with H₂O/CH₃CN (15 to 25% of CH₃CN) to afford compounds **2** (Rt 19.49 min, 10.0 mg) and **3** (Rt 19.51 min, 2.8 mg).

Fractions 11 (68.8 mg) was purified on semiprep HPLC eluted with H_2O/CH_3CN gradient to give compounds 4 (Rt 19.19 min, 2.30 mg).

Fraction AE-3 (7.30 g) was subjected to flash chromatography on normal silica with DCM/MeOH/H₂O (90/10/0; 70/30/0; 70/30/5) to give 6 fractions.

Fraction 1 (544 mg) was purified using preparative PLC with H_2O/CH_3CN (15 to 30% of CH₃CN) as the mobile phase to afford compounds **5** (Rt = 19.50 min, 1.2 mg), **6** (Rt 19.59 min, 5.0 mg) and **7**, (Rt = 19.63 min, 5.0 mg). Fraction 3 (708.9 mg) was purified using preparative PLC with H_2O/CH_3CN (15 to 30% of CH₃CN) as the mobile phase to afford compounds **8** (Rt = 19.78 min, 1.4 mg)

Fraction AE-4 (100 mg) was purified on semi-preparative HPLC eluted with H₂O/CH₃CN (15 to 25% of CH₃CN) to yield compounds **9** (Rt 19.48 min, 1.2 mg) and **10** (Rt 19.52 min, 7.5 mg).

RESULTS AND DISCUSSION Characterization of isolated molecules

The structures of the compounds were established using a combination of HR-ESI-MS and NMR spectroscopy, and comparing the spectral data with literature. In exception of compound 8, all the other compounds including catechin 1, catechin-3-O-a-Lrhamnopyranoside 2 (Kim et al., 2012), 5-Otrans-p-coumaroylquinic acid 4, trans-pcoumaric acid 5 (Chen et al., 2008), catechin- $[7,8-bc]-4\beta$ -(3,4-dihydroxyphenyl)-dihydro-2(3H)-pyranon **3**, catechin-[5,6-e]-4 β -(3,4dihydroxyphenyl)-dihydro-2(3H)-pyranon 6, catechin-[5,6-e]- 4α -(3,4-dihydroxyphenyl)dihydro-2(3H)-pyranon 7 (Hsue-Fen et al., 1993), phyllocoumarin 9 (Foo et al., 1989); and vaccinin A 10 (Matsuo et al., 2010) had been reported in the literature as referenced. The compounds isolated are mostly catechin as the basic skeleton. Catechins are known for their many biological properties on human health such as anti-oxidant, anti-microbial, anti-viral, anti-inflammatory, anti-allergenic, and anticancer activities (Bae et al., 2020).

Compound 8

Compound **8** was obtained as an amorphous powder. $[\alpha]_D^{20}$ was – 37.80 (c 0.737, MeOH).

The molecular formula was established as $C_{24}H_{24}O_{11}$ based on HR-ESI-MS and NMR data. The HR-ESI-MS in negative-ion mode showed a peak at m/z 487.1240 [M-H], (calcd.

487.1248), for $C_{24}H_{24}O_{11}$ [M-H], corresponding to the molecular formula $C_{24}H_{24}O_{11}$. The IR (v^{KBr} , cm⁻¹: 1693), UV $(\lambda_{max}^{MeOH}$ nm (log ϵ): 208, 289 and 332) and NMR spectra of compound 8 indicated the presence of a coumarin nucleus (Foo et al.,1989). The structure of compound 8 was deduced from that of the known flavanocoumarin (compound 9) (Foo et al.,1989). The ¹H-NMR spectrum (Table 1) showed the presence of catechin and coumarin moieties. The 1, 2, 4- trisubstituted benzene ring of three aromatic signals typical of ABX spin system, obviously included the double doublet at $\delta_{\rm H}$ 6.75 (*J* = 8.2 and 1.9 Hz, H-6'), coupling in *ortho* with a doublet at $\delta_{\rm H} 6.80 (J =$ 8.0 Hz, H-5') and in meta with another doublet at $\delta_{\rm H}$ 6.85 (J = 1.9 Hz, H-2'). The pyran ring (C) was caracterised by the presence of multiplet at 4.12 ppm (H-3), which coupled with a doublet at 4.99 ppm (J = 7.0 Hz; H-2) and two double doublets at 2.92 (J = 16.5 and 5.3 Hz ; H-4b) and 2.85 ppm (J = 16.5 and 7.5 Hz; H-4a). The presence of only one single signal at 6.39 ppm (H-6) showed that the ring A was pentasubtituated. A pair of double doublets at $\delta_{\rm H} 8.09 \ (J = 9.6 \text{ Hz}; \text{H-9})$ and $\delta_{\rm H}$ 6.11 (J = 9.5 Hz; H-10) was attributed to pyrone ring protons of coumarin moiety. The ¹H-NMR spectrum also exhibited a doublet at $\delta_{\rm H}$ 4.47 (J = 1.2 Hz ; H-1"), attributed to an anomeric proton of α -L-rhamnopyranose (Table 1) by COSY and NOESY spectrum analysis. The link between the sugar and the pyran ring was showed from HMBC correlation through the cross-peak between H-1" (4.47 ppm) and C-3 (75.7 ppm) (Figure 1). Furthermore, the downfield shift of C-3 at $\delta_{\rm C}$ 75.7 ppm of compound 8 compared to that of compound **9** (C-3 at 67. 5 ppm) (Table 1) confirmed the attachment of sugar at C-3 in compound 8. Accordingly, compound 8 was assigned phyllocoumarin-3-O-a-Las rhamnopyranoside. To the best of our knowledge and according to the available literature data, compound 8 (Figure 1) is a new compound isolated for the first time from Lannea kerstingii.

¹³C-NMR (125 MHz, CD₃OD) δ_c: 80.1 (C-2); 68.6 (C-3); 30.0 (C-4); 158.6 (C-5); 94.6 (C-6); 158.4 (C-7); 92.8 (C-8); 157.9 (C-9); 101.2 (C-10); 133.4 (C-1'); 116.2 (C-2'); 147.5 (C-3'); 147.3 (C-4'); 117.5 (C-5'); 121.2 (C-6').

Catechin-3-O-a-L-

rhamnopyranoside (2): ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$: 4.60 (d; J = 7.68; H-2); 3.99 (m; H-3); 2.89 (dd; J =16.66, 5.61 H-4b); 2.55 (dd; J =16.02, 8.4; H-4a); 5.92 (s; H-6); 5.85 (s; H-8); 6.83 (d; J =1.9 H-2'); 6.78 (d; J = 8.13; H-5'); 6.71 (dd; J = 8.1, 1.88; H-6'); 4.28 (d; J =1.06; H-1"); 3.46 (dd; J = 9.9, 1.48; H-2"); 3.56 (dd; J = 9.9, 3.40 H-3"); 3.30 (t; 9.50; H-4"); 3.96 (m; H-5"); 1.25 (d; J = 6.38; H-6"). ¹³C-NMR (125 MHz, CD₃OD) δ_c : 81.1(C-2); 75.9 (C-3); 28.0 (C-4); 156.8 (C-5); 96.0 (C-6); 157.5 (C-7), 95.1 (C-8); 157.5 (C-9); 100.6 (C-10); 133.4 (C-1'); 116.2 (C-2'); 146.3 (C-3'); 146.2 (C-4'); 116.1 (C-5'); 120.0 (C-6'); 102.1 (C-1"); 71.9 (C-2"); 72.2 (C-3"); 73.9 (C-4"); 70.3 (C-5"); 17.0 (C-6").

Catechin-[7,8-bc]-4β-(3,4dihydroxyphenyl)-dihydro-2(3H)-pyranon (3): ¹H-NMR (500 MHz, CD₃OD); $\delta_{\rm H}$: 4.68 (d; J = 8,28 Hz, H-2); 3.96 (m; H-3); 2,60 (dd;J = 16.40, 7.20; H-4a; 2.80 (dd; J = 16.73,6.56; H-4b); 6.20 (s; H-6); 6.64 (d; J = 2.43; H-2'); 6.58 (d; J = 8.36; H-5'); 6.38 (dd; 8.36, 2.16; H-6'); 6.52 (d; J = 2.43; H-2"); 6.66 (d; J = 7.82; H-5"); 6.44 (dd; J = 8.09, 2.43; H-6"); 4.40 (dd; J = 7.25, 1.48; H-7"); 2.80 (dd; J = 16.73, 5.58; H-8"a); 3.09 (dd; J = 15.74, 8.20; H-8"b). ¹³C-NMR (125 MHz, CD₃OD) δ_c : 82.85 (C-2); 68.24 (C-3); 28.15 (C-4); 156.8 (C-5); 96.2 (C-6); 152.7 (C-7); 105.6 (C-8); 152.9 (C-9); 105.9 (C-10); 131.6 (C-1'); 114.8 (C-2'); 146.3 (C-3'); 146.0 (C-4'); 116.0 (C-5'); 119.5 (C-6'); 135.4 (C-1"); 115.1 (C-2");

146.0 (C-3"); 145.5 (C-4"); 115.5 (C-5"); 119.5 (C-6"); 38.6 (C-7"); 35.4 (C-8"); 170.6 (C-9"). **5-O-trans-p-coumaroylquinic** acid

(4): ¹H-NMR (500 MHz, CD₃OD), $\delta_{\rm H}$: 7.46

 $\begin{array}{l} (d; J=7.78 \ \text{Hz}; \text{H-2}, \text{H-6}); \ 6.81 \ (d; J=8.18; \ \text{H-3}, \ \text{H-5}); \ 7.63 \ (d; J=16.52; \ \text{H-7}); \ 6.33 \\ (d; J=16.36; \ \text{H-8}) \ 2.19 \ (m, \ \text{H-2'}); \ 4.16 \ (m, \ \text{H-3'}); \ 3.74 \ (dd; J=8.73, \ 3.66; \ \text{H-4'}); \ 5.33 \ (m, \ \text{H-5'}); \ 2.04 \ (m, \ \text{H-6'}); \ ^{13}\text{C-NMR} \ (125 \ \text{MHz}, \ \text{CD}_3\text{OD}) \ \delta_c: \ 127.2 \ (\text{C-1}); \ 131.2 \ (\text{C-2}, \ \text{C-6}); \ 116.8(\ \text{C-3}, \ \text{C-5}); \ 161.2 \ (\text{C-4}); \ 146.6 \ (\text{C-7}); \ 115.4 \ (\text{C-8}); \ 168.6 \ (\text{C-9}); \ 115.7 \ (\text{C-1'}); \ 38.3 \ (\text{C-2'}, \ \text{C-6'}); \ 71.4 \ (\text{C-3'}); \ 73.8 \ (\text{C-4'}); \ 72.0 \ (\text{C-5'}); \ 177.4 \ (\text{C-7'}). \end{array}$

Trans-p-coumaric acid (5) ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$: 7.45 (d; J = 8.52; H-2, H-6); 6.80 (d; J = 8.92; H-3, H-5); 7.58 (d; J = 15.91; H-7); 6.73 (d; J = 15.52; H-8).

Catechin-[5,6-e]-4β-(3,4-

dihydroxyphenyl)-dihydro-2(3H)-pyranon (6) : ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$: 4.71 (d; J = 6.97; H-2); 4.09 (m; H-3); 2.63 (dd; J =16.45, 7.71; H-4a); 2.95 (dd; J = 16.42, 5.20; H-4b); 6.22 (s; H-8); 6.84 (d; J = 1.97; H-2'); 6.78 (d; J = 3.78; H-5'); 6.73 (dd; J = 5.26; 1.97; H-6'); 6.54 (d; J = 2.12; H-2"); 6.67 (d; J = 8.31; H-5"); 6.45 (dd; J = 8.15, 2.09; H-6"); 4.43 (s; H-7"); 3.02 (m; H-8"). ¹³C-NMR (125 MHz, CD₃OD) δ_c : 82.8 (C-2); 68.0 (C-3); 27.6 (C-4); 151.8 (C-5); 107.2 (C-6); 154.7 (C-7); 99.7 (C-8); 157.7 (C-9); 101.4 (C-10); 131.8 (C-1'); 115.0 (C-2'); 146.3 (C-3'); 146.3 (C-4'); 116.1(C-5'); 119.7(C-6'); 134.8 (C-1"); 115.1(C-2"); 145.1(C-3"); 145.1(C-4"); 116.4(C-5"); 119.2 (C-6"); 27.7(C-7"); 38.4(C-8"); 170.3(C-9").

Catechin-[5,6-e]-4a-(3,4-

dihydroxyphenyl)-dihydro-2(3H)- pyranon (7) : ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$: 4.71 (d; J = 5.49; H-2); 4.07 (m; H-3); 2.70 (dd; J =16.43, 7.67; H-4a); 2.88 (dd; J = 16.41, 5.62; H-4b); 6.23 (s; H-8); 6.83 (d; J = 1.95; H-2'); 6.76 (d; J = 3.47; H-5'); 6.71 (dd; J = 5.27, 1.95; H-6'); 6.56 (d; J = 2.12; H-2"); 6.66 (d; J = 8.15; H-5"); 6.45 (dd; J = 8.15, 2.09; H-6"); 4.42 (s; H-7"); 3.02 (m; H-8"). ¹³C-NMR (125 MHz, CD₃OD) δ_c : 82.7 (C-2); 68.0 (C-3); 27.7 (C-4); 151.8 (C-5); 107.2 (C-6); 154.7 (C-7); 99.7 (C-8); 157.7 (C-9); 101.5 (C-10); 131.8 (C-1'); 115.0 (C-2'); 146.3 (C-3'); 146.3 (C-4'); 116.2 (C-5'); 119.7 (C-6'); 134.9 (C-1"); 115.1 (C-2"); 145.1 (C-3"); 145.1 (C-4"); 116.5 (C-5"); 119.2 (C-6"); 27.6 (C-7"); 38.3 (C-8"); 170.3 (C-9").

 $\begin{array}{l} \label{eq:Vaccinin A (10) : 1H-NMR (500 MHz, $CD_{3}OD) δ_{H} : 4.84 (d; $J=6.7; $H-2)$; 4.18 (m; $H-3)$; 2.80 (dd; $J=16.37, 7.59; $H-4a)$; 3.03 (dd; $J=16.17, 4.99; $H-4b)$; 6.61 (s; $H-8)$; 6.85 (d; $J=1.46; $H-2')$; 7.79 (d; $J=7.94; $H-5')$; 6.75 (dd; $J=7.94, 1.85; $H-6')$; 6.69 (s; $H-3'')$; 7.19 (s; $H-6'')$; 6.00 (s; $H-8''). 13C-NMR (125 MHz, $CD_{3}OD) δ_{c} : 84.4 (C-2)$; 68.2 (C-3)$; 28.0 (C-10) C_{c} = 1.46 (C-2)$; 68.2 (C-3)$; 28.0 (C-10) C_{c}; C-10 (C-10) C_{c}; C-$

4); 154.0 (C-5); 102.5 (C-6); 151.6 (C-7); 99.7 (C-8); 160.7 (C-9); 105.6 (C-10); 132.0 (C-1'); 115.8 (C-2'); 147.3 (C-3'); 147.4 (C-4'); 117.1 (C-5'); 120.6 (C-6'); 149.9 (C-1''); 154.9 (C-2''); 105.2 (C-3''); 145.8 (C-4''); 145.4 (C-5''); 110.0 (C-6''); 108.7 (C-7''); 93.2 (C-8''); 166.1 (C-9'').

	8		9		
Position	$\delta_{\rm H} { m m} (J { m in} { m Hz})$	δc	$\delta_{\rm H} { m m} (J { m in} { m Hz})$	δc	
2	4.99 d (7.0)	82.5	4.99 d (7.0)	82.5	
3	4.12 m	75.7	4.15 m	67.5	
4 a	2.85 dd (16.5 ; 7.5)	27.8	2.85 dd (16.5 ; 7.5)	25.4	
4 b	2.92 dd (16.5 ; 5.3)	27.8	2.92 dd (16.5 ; 5.3)	25.4	
5	-	161.6	-	161.6	
6	6.39 s	94.1	6.39 s	94.1	
7	-	157.2	-	157.2	
8	-	105.8	-	105.8	
9	8.09 d (9.6)	139.5	8.09 d (9.6)	139.5	
10	6.11d (9.5)	108.8	6.11d (9.5)	108.8	
11	-	164.7	-	164.7	
12	-	-	-	-	
13	-	153.1	-	151.1	
14	-	102.9	-	102.9	
1'	-	129.5	-	129.5	
2'	6.85 d (1.9)	113.2	6.85 d (1.9)	113.2	
3'	-	145.2	-	145.2	
4'	-	145.0	-	145.0	
5'	6.80 d (8.0)	114.8	6.80 d (8.0)	114.8	
6'	6.75 dd (8.2 ; 1.9)	118.0	6.75 dd (8.2 ; 1.9)	118.0	
a-L-rhamnopyranose					
1''	4.47 d (1.2)	103.8	-	-	
2''	3.59 m	73.1	-	-	

Table 1: 1 H (500 MHz) and 13 C (125 MHz) NMR data of 8 and 9 in CD₃OD.

1760

3"	3.57 dd (9.4 ; 3.3)	74.7	-	-
4''	3.35 t (9.3)	72.4	-	-
5''	3.64 dd (9.5 ; 6.2)	69.0	-	-
6''	1.12 d (6.38)	16.5	-	-

Figure 1: Isolated compounds from the roots of *L. kerstingii*.

Conclusion

This study is part of the promotion of medicinal plants of Côte d'Ivoire. Few details studies were traced on the chemical composition of *L. kerstingii*. A study of the roots of this plant has been investigated. Ten compounds including a new phyllocoumarin-3-*O*- α -*L*-rhamnopyranoside were isolated. Eight of the isolated compounds were derivated from catechin. For our knowledge, these molecules are isolated for the first time from the roots of *L kerstingii* and their presence could explain the different biological activities of this plant.

COMPETING INTERESTS

The authors declare that there is no competing interest related to this manuscript.

AUTHORS' CONTRIBUTIONS

PAY-K directed the project and wrote the article. AAM, LV-N, J-MKK and EZLA conducted all experiments and analyzed the RMN data. J-MKK collected the plant material, isolated compounds. All authors discussed the results and commented on the manuscript.

ACKNOWLEDGEMENTS

The authors are grateful to the technicians and engineers of "Chimie des Substances Naturelles" group at ICMR-UMR7312 CNRS for their precious help, and University of Reims Champagne-Ardenne (France) for material support and Ministry of Higher Education and Scientific Research of Côte d'Ivoire for scholarship award.

REFERENCES

- Allabi AC, Busia K, Ekanmian V, Bakiono F. 2011. The use of medicinal plants in selfcare in the Agonlin region of Benin. J. Ethnopharmacol., 133(1): 234-43. DOI: https://doi.org/10.1016/j.jep.2010.09.028
- Arbonnier M. 2009. Arbres, Arbustes et Lianes des Zones Sèches d'Afrique de l'Ouest (3rd edn). Quea MNHN: Paris.
- Atato A, Wala K, Batawila K, Lamien N, Akpagana K. 2011. Edible Wild Fruit Highly Consumed during Food Shortage Period in Togo: State of Knowledge and Conservation Status. *Journal of Life Sciences*, 5: 1046-1057.
- Bae J, Kim N, Shin Y, Kim S-Y, Kim YJ. 2020. Activity of catechins and their applications. *Biomedical Dermatology*, 4(8): 1-10. DOI: https://doi.org/10.1186/s41702-020-0057-8.
- Batawila K, Aménoudji D, Kokou K, de Foucault B, Delelis A, Bouchet P, Akpagana K. 2007. Quelques données ethnobotaniques sur la flore togolaise. *Acta Botanica Gallica*, **154**(3): 407-422. DOI:

https://doi.org/10.1080/12538078.2007.1 0516073.

Bharti M, Kanchan K, Saifu R. 2021. Review of Medicinal Uses, Phytochemistry, Pharmacological Properties, Extraction Methods and Toxicology of Lannea microcarpa (African Grapes). Curr. Tradit. Med., 7(1): 1-14. DOI: https://doi.org/10.2174/221508380 5666190626095609.

- Bouaré S, Traoré N, Sidibé L, Fofana B, Chalard P, Figueredo G, Chalchat JC. 2012. Composition chimique de l'huile essentielle des fleurs de *Lannea velutina* (Anacardiaceae) du Mali. *Int. J. Biol. Chem. Sci.*, 6(5): 2274-2279. DOI: http://dx.doi.org/10.4314/ijbcs.v6i5.33.
- Chegaing SPF, Mefokou DY, Tangue BT, Sokoudjou JB, Menoudji ST, Kamsu GT, Gatsing D. 2020. Contribution to the ethnobotanical inventory of medicinal plants used for the treatment of typhoid fever in Adamaoua region, Cameroon. *Int. J. Biol. Chem. Sci.*, **14**(9): 3078-3096. DOI:

https://dx.doi.org/10.4314/ijbcs.v14i9.9.

- Chen YH, Chang FR, Lu MC, Hsieh PW, Wu MJ, Du YC, Wu YC. 2008. New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from *Pteris ensiformis* Burm. *Molecules*, **13**(2): 255-266. DOI: 10.3390/molecules13020255.
- Diarra N, Togola A, Denou A, Willcox M, Daou C, Diallo D. 2016. Etude ethnobotanique des plantes alimentaires utilisées en période de soudure dans les régions Sud du Mali. *Int. J. Biol. Chem. Sci.*, **10**(1): 184-197. DOI: http://dx.doi.org/10.4314/ijbcs.v10i1.14.
- Eyana KA. 2007. Les Anacardiaceae du Togo: Etudes botaniques, écologiques et propriétés antifongiques, Pharmacy doctoral thesis, Université de Reims Champagne-Ardenne; p. 198.
- Foo LY. 1989. Flavanocoumarins and Flavanophenylpropanoids from *Phyllocladus trichomanoides*. *Phytochemistry*, **28**(9): 2477-2481. DOI : 10.1016/S0031-9422(00)98009-9.
- Goudégnon EOA, Gouwakinnou NG, Houessou LG, Oumorou M. 2016. Fruit and pulp production of the African grape *Lannea microcarpa* Engl. and K. Krause from dry and humid Sudanian zone in Northern Bénin, West Africa. Int. J. Biol. Chem. Sci., **10**(3): 1114-1121. DOI: https://doi.org/10.4314/ijbcs.v10i3.17.
- Hsue-Fen C, Tanaka T, Nonaka GI, Fujioka T, Mihashi K. 1993. Phenylpropanoid-Substituted Catechins from *Castanopsis*

hystrix and structure revision of cinchonains. *Phytochemistry*, **33**(1): 183-187. DOI: https://doi.org/10.1016/0031-9422(93)85419-R.

- Ibibia ET, Olabisi KN, Oluwagbemiga OS. 2016. Gas chromatography-mass spectrometric analysis of methanolic leaf extracts of *Lannea kerstingii* and *Nauclea diderrichii*, two medicinal plants used for the treatment of gastrointestinal tract infections. *Asian J. Pharm. Clin. Res.*, 9(4): 179-182.
- Islam F, Mitra S, Nafady MH, Rahman MT, Tirth V, Akter A, Emran TB, Mohamed AAR, Algahtani A, El-Kholy S S. 2022. Neuropharmacological and Antidiabetic Potential of *Lannea coromandelica* (Houtt.) Merr. Leaves Extract: An Experimental Analysis. *Hindawi Evidence-Based Complementary and Alternative Medicine*, 10 p. DOI: https://doi.org/10.1155/2022/6144733.
- Kallo MS, Adamou R, Sawadogo J, Mahamane AA, Maarouhi IM, Ikhiri K. 2018. Enquête ethnobotanique et criblage phytochimique de quelques plantes tinctoriales du Niger en vue d'une valorisation en énergie solaire. *Int. J. Biol. Chem. Sci.*, **12**(2): 867-883. DOI : https://dx.doi.org/10.4314/ijbcs.v12i2.2.
- Kim JE, Kim SS, Hyun CG, Lee NH. 2012. Antioxidative chemical constituents from the stems of *Clereya japonica* Thunberg. *Int. J. Pharmacol.*, 8(5): 410-415. DOI: https://doi.org/10.3923/ijp.2012.410.415.
- Konaré MA, Diarra N, Cissé C, Sanogo R. 2022. Enquête ethnobotanique sur les fruits de cueillette vendus dans quatre marchés des zones soudaniennes et sahéliennes du Mali. *Int. J. Biol. Chem. Sci.*, 16(1): 227-241. DOI: https://dx.doi.org/10.4314/ijbcs.v16i1.1.
- Kpodar MS, Karou SD, Katawa G, Anani K, Gbekley HE, Adjrah Y, Tchacondo T, Batawila T, Simpore J. 2016. An ethnobotanical study of plants used to treat liver diseases in the Maritime region of Togo. J. Ethnopharmacol., 181: 263-273. DOI:

https://doi.org/10.1016/j.jep.2015.12.051

Matsuo Y, Fujita Y, Ohnishi S, Tanaka T, Hirabaru H, Kai T, Sakaida H, Nishizono S, Kouno I. 2010. Chemical constituents of the leaves of rabbiteye blueberry (*Vaccinium ashei*) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. *Food Chemistry*, **121**(4): 1073– 1079. DOI:

https://doi.org/10.1016/j.foodchem.2010. 01.052.

Mbaoji FN, Behnisch-Cornwell S, Ezike AC, Nworu CS. Bednarski 2020. PJ. Pharmacological Evaluation of the Anticancer Activity of Extracts and Fractions of Lannea barteri Oliv. (Anacardiaceae) on Adherent Human Cancer Cell Lines. *Molecules*, 25(4): 849. DOI: https://doi.org/10.3390/molecules250408

49.

- Md. Hossain J, Biswas S, Shahriar M, Chowdhury MM, Islam S, Ahsan CR. 2018. Phytochemical screening, antimicrobial activity, antioxidant capacity and in vivo anticancer activity of Lannea Coromandelica Bark Extracts. of Pharmacy IOSR Journal and Biological Sciences, 13(3): 19-25. DOI: https://doi.org/10.9790/3008-1303021925.
- Muhaisen HMH. 2013. Chemical constituents from the bark of *Lannea acida* Rich (Anacardiaceae). *Der Pharma Chem.*, **5**(5): 88-96.
- Muhammad S, Hassan LG, Umar KJ, Sani NA. 2018. African grapes (Lannea microcarpa) fruits: the nutritional compositions. International Journal of Basic, Applied and Innovative Research 7(4): 121-128.
- Njinga NS, Sule MI, Pateh UU, Hassan HS, Abdullahi ST, Ache RN. 2016. Isolation Antimicrobial Activity and of β-Sitosterol-3-Oglucoside from Lannea Kerstingii Engl. & Κ. Krause (Anacardiacea). Nitte University Journal of Health Science, 6(1): 4-8.
- Ogundajo AL, Ewekeye T, Sharaibi OJ, Owolabi MS, Dosoky NS, Setzer WN.

2021. Antimicrobial Activities of Sesquiterpene-Rich Essential Oils of two Medicinal Plants, *Lannea egregia* and *Emilia sonchifolia*, from Nigeria. *Plants*, **10**(3): 488. DOI: https://doi.org/10.3390/plants10030488.

- Ombouma JG, Mebale A-JA, Abessolo DDM, Mve OA. Mboma R. 2022. Phytochemical screening, total polyphenols and flavonoids content and antiradical activity of methanolic extract of Lannea welwitschii (Hiern) Engl. (Anacardiaceae) from Gabon. Int. J. Biol. Sci., **16**(1): 308-314. DOI: Chem. https://dx.doi.org/10.4314/ijbcs.v16i1.2.
- Sabo I, Zakariya AM, Ahmed A, Abdulhamid Z. 2019. Antibacterial studies on stembark of *Lannea barteri* (Oliv.) Engl. (Anacardiacea). *FUW Trends in Science* & *Technology Journal*, 4 (1): 122–125.
- Sathish R, Mohd HA, Natarajan K, Lalitha KG. 2010. Evaluation of wound healing and antimicrobial activity of *Lannea coromandelica* (Houtt) Merrill. *J. Pharm. Res.*, **3**(6): 1225-1228.
- Sereme A, Millogo J, Guinko S, Nacro M. 2014. Micropropagation of a West

African wild grape (*Lannea microcarpa*). *Int. J. Biol. Chem. Sci.*, **8**(3): 862-870. DOI:

http://dx.doi.org/10.4314/ijbcs.v8i3.3.

- Sivaraj C, Pavithra B, Akshaya S, Arumugam P. 2018. GC-MS analysis, antibacterial and anticancer activities of bark extract of *Lannea coromandelica* (Houtt.) Merr. *Int. J. Pharm. Sci. Res.*, 9(7): 3047-3051. DOI: https://doi.org/10.13040/IJPSR.097 5-8232.9(7).3047-51.
- Tameko JEM, Chouna JR, Nkeng-Efouet-Alango P, Tapondjou LA, Sewald N. 2017. Furan derivatives from Lannea kerstingii. Phytochemistry Letters, 20: 282-284. DOI: https://doi.org/10.1016/j.phytol.2017.04. 040.
- Yemoa AL, Gbenou JD, Johnson RC, Djego JG, Zinsou C, Moudachirou M, Quetin-Leclercq, Bigot A, Portaels F. 2008. Identification et étude phytochimique de plantes utilisées dans le traitement traditionnel de l'ulcère de Buruli au Bénin. *Ethnopharmacologia*, **42**: 48-55. DOI :

http://hdl.handle.net/2078.1/107904.