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Lung cancer remains the first cause of cancer-related death despite many

therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are

now well used in daily practice at late metastatic stages and locally advanced

stages after a chemo-radiation. ICI are also emerging in the peri-operative

context. However, all patients do not benefit from ICI and even suffer from

additional immune side effects. A current challenge remains to identify patients

eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI

response is only supported by Programmed death-ligand 1 (PD-L1) tumor

expression with perfectible results and limitations inherent to tumor-biopsy

specimen analysis. Here, we reviewed alternative markers based on liquid

biopsy and focused on the most promising biomarkers to modify clinical

practice, including non-tumoral blood cell count such as absolute neutrophil

counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived

neutrophil to lymphocyte ratio. We also discussed soluble-derived immune

checkpoint-related products such as sPD-L1, circulating tumor cells

(detection, count, and marker expression), and circulating tumor DNA-related

products. Finally, we explored perspectives for liquid biopsies in the immune

landscape and discussed how they could be implemented into lung cancer

management with a potential biological–driven decision.

KEYWORDS

liquid biopsy, soluble biomarkers, immunotherapy, non-small cell lung cancer (NSCLC),
neutrophil lymphocyte ratio (NLR), circulating tumor (ctDNA), circulating tumor
cell (CTC)
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1 Introduction

Lung cancer represents the first cause of cancer‐related deaths

worldwide with over 1.5 million deaths in 2018 and an incidence

superior to 2 million (11.6%), largely represented by non-small cell

lung cancer (NSCLC) (1). Lung cancer is diagnosed at a locally

advanced or metastatic stage in most cases, leading to no curative

options and poor outcomes (2). In recent decades, many innovative

strategies have been designed, namely tyrosine kinase inhibitors

(TKIs) targeting oncogenic drivers or immunotherapies (3). On the

one hand, personalized medicine based on molecular targetable

alterations has emerged from proof of concept to current clinical

applications with restricted indications to a sub-population (4). On

the other hand, immune checkpoint inhibitors (ICI) are now largely

employed but obtain various response rates with fewer than 40% of

responders among a population selected on programmed death-

ligand 1 (PD-L1) expression (5).

Many biomarkers have been investigated through the last decades

to improve clinical cancer management and patient outcomes. First,

biomarkers designed to predict better, and longer responses have been

proposed, such as PD-L1. PD-L1 expression in tumor biopsy is the

strategy that allows identifying a subpopulation of patients benefiting

from ICI. For example, patients with a high PD-L1 tumor proportion

score (TPS ≥ 50%) benefit from ICI in first-line (vs platinum-based

chemotherapy) (6–8). However, resistance and relapse fatally occur in

most cases. Consequently, global age-standardized 5-year survival

remains within the range of 10-20% and a limited increase of up to

5% has been observed (9), arguing the need to further refine and

improve clinical lung cancer management. Therefore, other approaches

have been explored in plasma or total blood. Soluble biomarkers have

the advantages to allow real-time monitoring, repeatable, and easily

feasible at every step of lung cancer (from the diagnosis throughout the

progression of the disease) including non-evaluable radiographic

diseases, named biological minimal residual diseases (MRD) (10).

Liquid biopsy is now even integrated into clinical practice to research

and/or monitor oncogenic addiction under TKI treatment (11).

Circulating tumor-derived products are various and offer wide

potential applications, especially in the ICI field (12). Inflammation-

related biomarkers are particularly promising since inflammation is

associated with a worse prognosis in solid tumors due to its effect on

the immune modulation, into both tumor cells and its

microenvironment, influencing disease-related outcomes (13). These

biomarkers include immunoregulatory cells, soluble mediators, and a

panel of features including absolute neutrophil, eosinophil, lymphocyte

counts, or ratios (14). To date, no soluble biomarker has yet been

approved and validated for the management of lung cancer patients,

despite important recent technical advances. In this context, there is an

emerging interest to identify one to predict ICI benefit, overcoming

limitations due to tissue-based analysis (15).

Numerous serum-based biomarkers have already been explored

or are currently under investigation. Among the most promising,

the blood cell count of neutrophils, lymphocytes, and platelets have

been associated with ICI efficacy with potential prognostic value

(15). Other promising serum-based biomarkers include soluble PD-

L1 (sPD-L1) (16), circulating tumor cells (CTCs) (17), blood tumor
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mutational burden (bTMB), or circulating tumor DNA (ctDNA)

(18). Figure 1 – Graphical Abstract.

In this review, we discuss the potential relevance of such soluble

biomarkers associated with clinical outcomes in NSCLC treated by

ICI. We also analyzed their limitations precluding their

implementation into clinical management. Finally, we selected

active clinical trials exploring soluble biomarkers in NSCLC

treated by ICI focusing on how their results could be integrated

into clinical practice.
2 Non-tumoral blood cell count

Systemic inflammation is a well-known related condition

impacting tumor responses under ICI treatment in solid cancers

(19). Cytokine profiles are thus modified in case of an inflammatory

tumor with high IL-6 and TNF-a levels, affecting myelopoiesis (20),

and resulting in a shift in blood-cell numerations. Neutrophils and

other immune cells such as lymphocytes, platelets myeloid-derived

suppressor cells, and monocytes also secrete proinflammatory

cytokines (i.e. VEGF, IL-6/8, or TGF-beta) (21). Considering that

these circulating immune cells also represent a broad part of ICI

therapy effectors, immune cell count was evaluated in serum to predict

ICI efficacy. Here under we review the impact of neutrophils,

lymphocytes, and platelets, and their variation (D) in the case of

longitudinal monitoring of clinical outcomes under ICI treatment.
2.1 Absolute neutrophils count

Absolute neutrophil count (ANC), as a predictor for ICI response,

has been investigated in many studies. The largest included 213

patients, retrospectively comparing biological profiles between long-

term responders and non-long-term responders (22). D ANC

decreased at 4 weeks and was associated with longer responses

(p=0.018). In another large retrospective cohort of 191 patients,

lower ANC at baseline was associated with better OS (p=0.048) with

similar observations at first re-evaluation (23). All other studies were

concordant with these results, despite ICI heterogeneity and thresholds.

The principal ANC cut-off was 6.0 103/µL, whereas some authors

proposed higher values until 7.5 103/µL (24). The main limitation for

ANC integration in current practice to predict ICI outcomes remain a

restricted number of studies. Moreover, ICI combined with

chemotherapy could involve G-CSF stimulation, hardening D ANC

interpretation in this context.
2.2 Absolute eosinophils count

Absolute eosinophil count (AEC) was investigated in a few studies.

The largest enrolled 191 patients, mostly treated with Nivolumab

(n=100) and Pembrolizumab (n=58) (23). Interestingly, the authors

reported an induced early increase in AEC, more frequently in

responding patients, independently of PD-L1 and immune-related

adverse events (p<0.001). Other studies tended to be negative
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regarding AEC as a predictor of ICI response. Otherwise, many

parameters could influence AEC such as corticosteroids in

premedication (for chemotherapy combination or palliative

radiotherapy support). The interest of AEC thus appears limited for

further studies to predict ICI response.
2.3 Absolute lymphocyte count

Absolute lymphocyte count (ALC) was extensively assessed,

broadly co-evaluating lymphocyte ratio as described in the

following sections. Murakami et al. conducted the largest study,

with 213 patients, all treated with Nivolumab (22). ALC was not

associated with ICI outcomes. Two other studies equally

dimensioned with 203 and 191 patients respectively, were

consistent despite various anti-PD-1 and anti-PD-L1 drugs: ALC

did not differ according to ICI response (23, 25).
2.4 Circulating immune-suppressive cells

Flow cytometry (FC) allows a deep analysis of peripheral blood

cell subpopulations such as myeloid-derived suppressor cells

(MDSCs) and their sub-populations including monocytic

myeloid-derived suppressor cells (M-MDSCs) and granulocytic
Frontiers in Immunology 03
MDSC (G-MDSCs) (26). Both tissular MDSCs and circulating

subset play an important immunosuppressive role and negative

effect on ICI in animal tumor models (27). Due to their

immunosuppressive effects, MDSCs exhibit protumoral effects

and associate with poorer prognosis. Thus, Bronte et al. reported

in a meta-analysis pooling 14 studies (905 NSCLC patients) that

high level of circulating M-MDSCs was associated with short PFS

(HR=2.67, p<0.0001) and OS (HR=2.10, p<0.0001) (28). The proof

of concept was established in a melanoma context treated by ICI (i.e

ipilimumab) with a benefit from ICI in patients with low

frequencies of M-MDSCs (29). In NSCLC, various reports are

available in the ICI context. Feng et al. observed a rapid increase

in NK cell fraction in 27 NSCLC patients responding to nivolumab,

along with a reduction of G-MDSCs (30). Similar results were

reported in a cohort of 132 NSCLC patients treated by anti-PD-1

therapy: lower levels of circulating M‐MDSCs, polymorphonuclear

(PMN)‐MDSCs, and CD39+CD8+ T cells at baseline were

associated with longer PFS and OS (31). In the same report, PD-

L1 TPS was not correlated with the proportions of suppressive

immune cells, including PMN-MDSCs and M-MDSCs, or with the

clinical outcome. This was concordant with another report based on

22 NSCLC patients: patients with M-MDSC values upper than the

median experienced shorter PFS (HR=2.51, p=0.046) and OS

(HR=2.68, p=0.042) (32). FC could both assess pro and anti-

tumor cell subsets such as regulatory T cells and MDSCs.
FIGURE 1

Soluble biomarkers in the immune landscape of NSCLC. Graphical abstract illustrating various types of soluble biomarkers with potential clinical
relevance in the immunotherapy field in a non-small cell lung cancer context. Created with BioRender.com.
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Kimet al. thus proposed that the ratio between peripheral regulatory

T cells to lox-1+ PMN MDSCs could predict the early response to

ICI in NSCLC patients (33). Similarly, Youn et al. reported in 62

NSCLC patients that the NK cell-to-Lox-1+ PMN-MDSC ratio was

significantly higher in patients benefiting from ICI (p<0.0001) (34).

FC thus allows to standardize evaluation of immune cell subsets and

potentially predicts clinical outcome for NSCLC patients treated by

ICI. FC has become invaluable for biomarker research, providing

detailed information on single cells in a heterogeneous population.

However, only few clinical trials investigated FC interest in ICI

context. Its validation and relevance at larger scale need to be

further investigated.
3 Non-tumoral blood cell ratios

As previously reviewed, the absolute count for circulating non-

tumoral cells is not sufficient to predict clinical outcomes under the

ICI regimen. Also, the markers of the systemic inflammatory

response (such as plasma C-reactive protein (CRP) or

hypoalbuminemia) have been shown to play a major role in

cancer progression and aggressiveness (35). Many systemic

inflammatory markers have thus been reported as prognostics

markers in NSCLC, mainly based on the cell count ratio between

two or more non-tumoral cell subsets. Among them, platelet-to-

lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR),

and lymphocyte-to-monocyte ratio (LMR) have been previously

proposed as prognostic markers (36–38). Moreover, the ratio

between various subsets of cells could reflect the systemic

inflammation with a lower intra- and inter-individual variation,

especially during course of the treatment. As an additional

hypothesis, the ratio between pro and anti-tumoral factors could

also introduce precision and robustness to predict tumor immune

sensibility. We review here the impact of neutrophils, lymphocytes,

and platelets respective ratios, and their variation (D) for NSCLC
patients treated by ICI.
3.1 Platelet to lymphocyte ratio

Platelet to lymphocyte ratio (PLR) is a common ratio

combining two parameters related to chronic inflammation. We

reviewed 16 studies exploring PLR as a potential predictor of ICI

response and survival. Ksienski’s report was the largest study

published, retrospectively investigating PLR to predict ICI

outcomes in 220 patients with NSCLC treated by Pembrolizumab

in the frontline for 95% of them (39). In this study, patients with

high PLR at baseline had worse OS (median: 4.0 vs 15.4 months,

HR: 2.03, p=0.006), suggesting that PLR could predict ICI response

and benefit. Interestingly, this study included only patients with

high PD-L1 expression (TPS >50%) and thus highlighted that PLR

may be independent of PD-L1 expression to predict ICI benefit. A

recent meta-analysis published by Liu et al. integrated 15 studies

focused on PLR in the ICI field of NSCLC (40). In this meta-

analysis, the authors established that high PLR was associated with

worse OS (HR: 1.49, p<0.001, I2 =57.6%, p=0.003), driven by worse
Frontiers in Immunology 04
PFS (HR=1.62, p<0 .001). To note, the I2 index reflects the degree

of heterogeneity in a meta-analysis among included studies with

higher heterogeneity for higher I2 indexes. Very interestingly, there

was no association between PLR and OS in the group ≥ 200 when

stratified by cut-off point (HR: 1.35, p=0.172). This discrepancy

illustrates the heterogeneity in studies assessing PLR as a predictor

of ICI response: the range for PLR cut-off varies from 144 to 441

and introduces a broad bias.
3.2 Systemic immune inflammation index

Another composite score based on three types of blood cell was

also developed: the systemic immune inflammation index (SII) (SII

= Platelet × Neutrophils/Lymphocytes counts). This index was first

developed in the context of hepatocellular carcinoma (41). Larger

studies then proposed that higher SII could predict worse clinical

outcomes in various solid cancers, including NSCLC in terms of

PFS, OS, and disease-free survival (DFS) (42, 43).

Only three studies investigated SII interest in NSCLC patients

treated by ICI. One retrospective study of 44 patients treated by

nivolumab monotherapy in the second line reported a significant

association: low SII at baseline (<603.5) predicted longer PFS

(HR=0.34, p=0.006) and OS (HR=0.16, p=0.005) and remained

significant in a multivariate analysis (44). These results remain

controversial, without association between SII at baseline (cut-off

value of 730 and 792.07, respectively) and tumor response in two

other studies (45, 46). Interestingly, these two studies both reported

a significant prediction for dynamic change of SII throughout the

ICI course of 6 weeks. Indeed, Fang et al. reported a shorter PFS for

patients with an increased in SII from baseline (HR=1.731,

p=0.027). Similarly, Jin Suh et al. observed a worse PFS for

patients with a post-treatment SII ≥ 730 at 6 weeks (median: 2.8

vs 8.1 months, p=0.033). In earlier stages (stages I-IIIB), the same

observations were done for NSCLC patients treated by

chemoimmunotherapy: SII at baseline did not predict

pathological response. However, on-treatment SII and a decrease

of SII from baseline exhibited more frequently a major pathological

response (p<0.01) (47).

SII predictive capacity was not specific to the ICI context, since

similar results have been reported in EGFR mutant patients treated

by TKIs (48–50). Considering inconsistent and non-specific results,

SII is currently set aside to predict clinical issues for patients treated

by ICI.
3.3 Lymphocyte to monocytes ratio

A few studies investigated lymphocyte-to-monocyte ratio

(LMR) to predict ICI response. The largest one was a

retrospective cohort of 262 patients mainly treated with

Nivolumab (n=131) or Pembrolizumab (n=95). The patients with

LMR < 2.12 at baseline were exposed to shorter OS (HR: 1.62,

p=0.02) in multivariate analysis (51). In other available studies, low

LMR was also associated with worse outcomes for patients with

NSCLC under ICI regimens. These parameters remain rarely
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explored. A meta-analysis integrated 4 studies investigating this

parameter: patients with low LMR had worse OS without

heterogeneity (HR=0.45, p<0 .001) (40). Finally, only one study

compared PD-L1 and LMR abilities to predict ICI benefits with

similar results. In Katayama et al. ‘s report, PD-L1 TPS was not

significantly predictive for OS or PFS, while LMR > 1.5 was

associated with better PFS and OS (HR: 0.418, p=0.004 and HR:

0.30, p<0.0001, respectively) (52). Of note and as a main limitation,

LMR relevant cut-off was not consensual ranging from 1.5 to 2.12.

This critical point needs to be elucidated in larger studies.
3.4 Prognostic nutritional index

Nutrition and immune features share a close relationship and

can both modify tumor aggressivity and prognosis in cancer

patients (53). The nutritional status, the muscle mass, and the

inflammatory status could reflect cancer-related cachexia and

impact the immune system, leading to potential ineffective ICI

(54). The prognostic nutritional index (PNI) is calculated as follows:

[(10 × serum albumin (g/dL)) + (0.005 × total lymphocyte count)].

It is an efficient indicator for assessing the nutritional and

immunological conditions of cancer patients. The parameters are

routinely assessed in laboratory tests during clinical cancer

management and are easily repeated. Numerous studies reported

an association between baseline PNI and survival in various cancers,

including NSCLC (55, 56). For example, PNI predicted both early-

progression (OR=3.709, p=0.011) and shorter OS (HR= 7.596,

p<0.001) for patients with lower PNI (significant cut-off value

determined by ROC curve) (57). A meta-analysis dedicated to

PNI included 12 studies, enrolling 13590 NSCLC patients treated

by ICI (58). The Cut-off value for PNI ranged from 31.1 to 48. The

findings demonstrated that patients treated by ICI with low PNI at

baseline had both shorter OS (HR=2.24, 95% CI=1.57–3.20) and

PFS (HR=1.61, 95% CI=1.37–1.88). Mahiat C. et al. explored

systemic inflammation/nutritional status (including PNI) as

predictive factors in 3 metastatic NSCLC cohorts treated in the

first line by ICI monotherapy (n=75), ICI combined with

chemotherapy (n=56), or chemotherapy alone (n=221). Their

results supported that systemic inflammation/nutritional status

could be associated with the outcomes independently of the

treatment, and were therefore prognostic but not predictive (59).

The ICI efficacy predicted by PNI also seemed independent of PD-

L1 expression, since no association between PD-L1 TPS and PFS/

OS was reported while a lower PNI was significantly associated with

shorter PFS (HR: 1.704, p<0.05) (60). Consistent comparisons were

reported in external NSCLC cohorts (57, 61). The non-specific

prognosis was also supported by Sheng et al.: low PNI at baseline

was predictive of worse survival in the EGFR mutated context

(untreated by ICI) (62). Low levels of baseline PNI could thus be a

significant predictor of worse clinical outcomes for patients treated

with ICIs. However, its specificity with ICI and relevant cut-off

remains unclear and needs to be assessed in further prospective and

larger cohorts.
Frontiers in Immunology 05
3.5 Neutrophil to lymphocyte ratio and
derived neutrophil to lymphocyte ratio

Neutrophil to lymphocyte ratio (NLR) and derived neutrophil

to lymphocyte ratio (dNLR) were the broadest investigated features

based on blood cell count. NLR assessed by absolute neutrophil

count divided by absolute lymphocyte count is the most explored

parameter as a potential predictor of clinical outcomes for NSCLC

patients treated by ICI. NLR is a marker for the general immune

response to various stress conditions (63, 64).

These studies are reviewed in Table 1. The most relevant and

robust trial was LIPS-3, aiming to stratify the prognosis of patients

treated by ICI. It retrospectively included 784 patients (201 in a

training group and 583 in a validation group), all of them treated

with Pembrolizumab in the frontline, thus with a TPS of PD-L1 ≥

50% (85). Based on a threshold of 4, low NLR was associated with

better OS in both cohorts, reaching 76.6% at 1 year. Interestingly,

the authors proposed combining NLR with other factors such as PS-

ECOG and corticosteroid pre-treatment to improve their

prognostic score. As reviewed, a very large part of studies

exploring NLR are consistent: low NLR at baseline was associated

with better responses and clinical outcomes under an ICI regimen.

However, patients and ICI are very heterogeneous, considering the

line of pre-treatment, PS-ECOG, sub-type histology (squamous vs

non-squamous), PD-L1 expression, or combination with

chemotherapy. A recent meta-analysis aggregated 31 studies (40):

high NLR was associated with shorter OS (HR 2.13, p<0.001) with

significant heterogeneity (I2=83.8%, p<0 .001). Very similar results

were observed for D NLR: increased NLR through ICI

administration was associated with worse survival (HR=1.77, p<

0.001, I2=79.5%, p<0.001). The sub-group analysis performed on

the cut-off showed a significant association for the NLR threshold of

5 (HR=1.94, p<0.001), which remains the most employed cut-off,

with a range from 2.8 to 5. Some studies compared and adjusted

NLR levels with PD-L1 expression in multivariate analysis

predicting PFS or OS for patients treated by ICI. Most of them

were consistent, observing an independence between NLR and PD-

L1 expression (51, 83, 95).

Derived neutrophil to lymphocyte ratio (dNLR), assessed by

ANC/(WBC – ANC) was also proposed as a promising predictor of

ICI responses in NSCLC. We thus reviewed 8 studies exploring

dNLR, the largest one enrolling 466 patients (composed of a test set

(n=161) and a validation set (n=305)) (101). The patients with high

dNLR had independently worse OS (HR: 1.98, p=0.002) while PD-

L1 was not significantly predictive of the clinical issue under the ICI

regimen. All other studies were consistent and integrated into a

meta-analysis published by Yang et al.: the pooled results supported

that high dNLR predicted worse PFS (HR: 1.38, p<0.001) and

shorter OS (HR: 1.65, p< 0.001) (104). Cut-off values were also

different, ranging from 2.2 to 3.0. This meta-analysis showed that

dNLR relevance remained significant, indifferently from the dNLR

threshold. Moreover, dNLR was commonly associated with a

parameter of a global score named LIPI, a predictor of ICI

responses, and combined with LDH level. Just as exposed for
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TABLE 1 Non-tumoral blood cell count biomarkers.

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If significant)

Comment

(Karantanos
et al., 2019
(65))

22 ALC
ANC

Nivo Baseline and
on-treatment

ALC at baseline and 6 w positively
correlated with OS (p<0.01)
ANC/ALC at baseline was
negatively associated with OS
(p<0.05)

Retro ALC ≥ 0.9, 1.3 and
1.7 103/µL

Previous radiation
was associated with
higher ANC and
lower ALC

(Diem et al.,
2017 (66))

52 ALC
ANC
NLR
PLR

Nivo Baseline Pts with high NLR were associated
with worse OS (HR: 3.3, p<0.013)
and lower ORR
Pts with high PLR were associated
with worse OS (HR: 4.1, p<0.001)
and lower ORR

NLR ≥ 5
PLR ≥ 262

No significant
association between
PFS with both NLR
and PLR

(Khunger
et al., 2018
(67))

109 ALC
ANC
AMC
NLR
D NLR

Nivo Baseline and
on-treatment

Post-treatment NLR ≥ 5 after 2
cycles of Nivo was associated with
poor OS (median: 29.1 mths vs
24.2 mths, p<0.001)
DNLR > 0 after 2 cycles of Nivo
was associated with non-
responders (p=0.027)

Retro NLR ≥ 5
Quartiles for ALC
and ANC
DNLR ≥ 0

Pts in the highest
quartile of post-
treatment ALC had
superior OS
compared to the
remaining population
(log-rank p=0.0113)
Pts in the highest
quartile of post-
treatment ANC had
inferior OS compared
to all others (log-rank
p=0.0027)

(Facchinetti
et al., 2018
(68))

54 ANC
WBC
NLR

Nivo Baseline Pts with higher WBC (p=0.004),
ANC (p=0.004) and NLR
(p=0.001) had poorer OS

Prosp WBC ≥ 8.8 103/µL
ANC ≥ 6 103/µL
NLR ≥ 4

(Patil et al.,
2017 (69))

115 ANC
AMC
NLR
D NLR

Nivo Baseline and
on-treatment

ANC, AMC, and NLR were
associated with worse OS (HR:
1.17, p=0.00001; HR 4.53, p=0.04
and HR: 1.09, p=0.0002)

Prosp ANC ≥ 6
AMC ≥ 0.5
NLR ≥ 2.8
DNLR ≥ 0

DNLR > 0 was
associated with non-
responders (p=0.03)

(Park et al.,
2018 (70))

159 ANC
ALC
NLR
AEC
PLR
D NLR

Nivo Baseline and
on-treatment

Pts with high NLR had worse PFS
(HR: 1.68, p=0.015)
DNLR did not significantly
correlate with PFS
Median PFS for the iSEND good,
intermediate, and poor were 17.4,
5.3, and 2.8 mths, respectively
(p<0.0001)

Retro Composite iSEND
score
including
NLR ≥ 5 and
DNLR ≥ 0

(Daher et al.,
2021 (71))

108 ANC
WBC
NLR
dNLR
PLR

Nivo Baseline Pts with high dNLR correlated
significantly with worse OS (HR:
1.12, p<0.05)

Retro dNLR ≥ 3 Only DNLR remained
significant in
multivariate analysis

(Pu et al.,
2021 (24))

184 ALC
ANC
AMC
NLR
PLR

Pembro,
n=98
Nivo,
n=86

Baseline Pts with high NLR or PLR had
independent poor OS (HR: 1.964,
p<0.05; HR: 4.255, p<0.001,
respectively)

Retro ANC ≥ 7.5 103/µL
NLR ≥ 5
PLR ≥ 200
ALC ≥ 1.0 103/µL

(Murakami
et al., 2022
(22))

213 ANC
ALC
NLR
dNLR
D NLR

Nivo Baseline and
on-treatment

Pts with D NLR ≤ 1 were
associated with longer OS (HR:
3.97, p<0.05) in multivariate
analysis

Retro D NLR ≥ 1

(Sibille et al.,
2021 (23))

191 ALC
ANC
NLR

Nivo,
n=100
Pembro,
n=58

Baseline A lower baseline ANC correlated
with longer OS (p = 0.049)
At 1st evaluation, high ANC and

Retro Not provided
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TABLE 1 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If significant)

Comment

PLR
AEC

Durva,
n=22
Atezo,
n=11

NLR correlated with worse OS
(p<0.05)

(Soyano
et al., 2017
(72))

52 ANC
ALC
NLR
AEC

Nivo,
n=48
Pembro,
n=4

Baseline Pts with high ANC had a worse
OS (HR: 2.46, p=0.025) and PFS
(HR: 2.41, P=0.009)
Pts with both high ANC/ALC had
worse OS (HR: 2.41, p=0.027) and
PFS (HR: 2.08, p=0.027)

Retro ANC ≥ 6.06 103/
µL

(Bagley
et al., 2017
(73))

175 NLR
PLR

Nivo Baseline Pts with high NLR were
independently associated with
worse OS (median: 5.5 mths vs 8.4
mths; HR: 2.07; p=0.002) and PFS
(median: 1.9 mths vs 2.8 mths;
HR: 1.43, p=0.04)

Retro NLR ≥ 5

(Suh et al.,
2018 (46))

54 NLR
D NLR

Nivo Baseline and
on-treatment

Pts with high post-treatment NLR
had significantly shorter PFS
(median: 1.3 mths vs 6.1 mths,
p<0.001)

Retro NLR ≥ 5
PLR ≥ 169
DNLR ≥ 0

Baseline NLR, PLR,
and SII were not
predictive of response

(Rogado
et al., 2017
(74))

40 NLR
NCP

Nivo Baseline NLR < 5 and NCP < 80% were
associated with improved PFS
(HR:6.7, p<0.001 and HR: 0.09,
p<0.001) and OS (HR: 4.4, p<0.001
and HR: 0.2, p=0.02)

Retro NLR ≥ 5
NCP ≥ 80%

Comparable results in
the CT group

(Liu et al.,
2019 (44))

44 NLR
PLR
SII

Nivo Baseline Low SII, NLR, and PLR were
associated with better PFS (HR:
0.34, p=0.006; HR: 0.46, p=0.048
and HR: 0.39, p=0.025,
respectively) and OS (HR: 0.16,
p=0.005; HR: 0.20, p=0.002 and
HR: 0.20, p=0.008)

Retro SII ≥ 603.5
NLR ≥ 3.07
PLR ≥ 144

(Shiroyama
et al., 2018
(75))

201 NLR Nivo Baseline Pts with high NLR had worse PFS
(median: 1.5 mths vs 3.5 mths,
p=0.019)

Retro NLR ≥ 4

(Fukui et al.,
2019 (76))

52 NLR Nivo Baseline Pts with high baseline NLR had
poorer OS (HR: 4.52, p=0.013)

Prosp NLR ≥ 5

(Passiglia
et al., 2019
(77))

45 NLR
D NLR

Nivo Baseline and
on-treatment

Pts with increased NLR ≥ 20% at
6 w had significantly worse
survival outcomes (median OS: 8.7
mths vs 14.6 mths, p=0.035;
median PFS: 5.2 mths vs 10.3
mths, p=0.039)

Retro DNLR ≥ 20%

(Russo et al.,
2018 (78))

62 dNLR
PLR

Nivo Baseline PFS and OS did not differ
according to dNLR for pts treated
by Nivo

Retro ANC ≥ 7.5 103/µL
dNLR ≥ 3
PLR ≥ 160
PLT ≥ 450

Control CT group

(Takeda
et al., 2018
(79))

30 NLR
D NLR
PLR

Nivo Baseline and
on-treatment

Pts with high NLR at 4 w were
associated with shorter PFS (HR
5.995, p<0.05)

Retro NLR ≥ 5
DNLR ≥ 0
PLR ≥ 150

(Amaral
et al., 2019
(80))

32 NLR
PLR

Nivo,
n=20
Pembro,
n=12

Baseline High NLR or PLR above the mean
were independent predictive
factors for worse PFS (11 mths vs
6 mths, HR 3.33, p=0.056 and 12
mths vs 6 mths, HR: 3.9, p=0.025,
respectively)

Retro Not provided
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TABLE 1 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If significant)

Comment

(Dusselier
et al., 2019
(81))

59 D NLR Nivo Baseline and
on-treatment

D NLR < 1 prolonged OS (HR:
0.001, p=0.001) and remained
significant in multivariate analysis
(HR:0.12, p=0.001)

Retro D NLR ≥ 1
NLR ≥ 5
PLR ≥ 262

Baseline NLR and
PLR were not
predictive of response

(Ren et al.,
2019 (82))

147 NLR Nivo, n
= 60
Pembro,
n= 87

Baseline Pts with low NLR had better OS
(p=0.009) and PFS (p=0.017).

Retro NLR ≥ 2.5

(Pavan et al.,
2019 (83))

184 NLR
PLR

Nivo, n=
145
Pembro,
n= 34
Atezo,
n=7

Baseline Pts with low NLR had better PFS
(median: 7.4 mths vs 3.1 mths,
p=0.003) and OS (HR: 0.468,
p=0.001)

Retro NLR ≥ 3
PLR ≥ 180

(Banna et al.,
2020 (84))

132 NLR Pembro Baseline Pts with low NLR had better PFS
(12.0 mths vs 5.7 mths, p=0.01)
and OS (HR: 0.45, p=0.005)

Retro NLR ≥ 5

(Banna et al.,
2021 (85))

784 NLR Pembro Baseline Pts with low NLR had better PFS
(HR: 2.29, p<0.001)

Retro NLR ≥ 4

(Banna et al.,
2022 (86))

128 NLR Pembro Baseline Pts with low NLR had better PFS
(median: 51 mths vs 1.8 mths,
HR:1.9, p=0.005)

Retro NLR ≥ 4 Only PS2+ pts

(Ksienski
et al., 2021
(39))

220 NLR
PLR

Pembro Baseline Pts with high NLR (HR: 2.31,
p<0.0001) or PLR (HR: 2.03,
p=0.006) had
worse OS

Retro NLR ≥ 6.4
PLR ≥ 441.8

(Peng et al.,
2020 (87))

102 NLR Nivo,
n=11
Pembro,
n=26
Toripa,
n=30
Sinti,
n=35

Baseline Pts with high NLR had worse
outcomes according to PFS
(p=0.049) and OS (p=0.007)

Retro NLR ≥ 5

(Ayers et al.,
2021 (88))

173 NLR
D NLR

Nivo or
Pembro

Baseline and
on-treatment

Pts with high NLR had worse OS
(HR: 1.66, p=0.019)
Pts with DNLR > 1 also had worse
OS (HR: 3.33, p<0.0001)

Retro NLR ≥ 5
DNLR ≥ 1

(Takeyasu
et al., 2021
(89))

145 NLR Pembro Baseline Not significate Retro NLR ≥ 5 Only TPS > 50%

(Russo et al.,
2020 (90))

187 NLR
PLR

Nivo Baseline Pts with low NLR had a better PFS
(HR: 0.64, p<0.05) and OS (HR:
0.48; p=0.001)
Pts with low PLR had better PFS
(HR: 0.67; p<0.05) and OS (HR:
0.66; p=0.05)

Retro NLR ≥ 5
PLR ≥ 200

(Takada
et al., 2020
(51))

226 dNLR
LMR

Nivo,
n=131
Pembro,
n = 95

Baseline Pts with high dNLR had worse
PFS (HR: 1.56, p<0.05) and OS
(HR: 1.68, p<0.05)
Pts with low LMR at baseline had
worse OS (HR: 1.62, p=0.02)

Retro dNLR ≥ 2.79
LMR ≥ 2.12

NLR was only
significant in
univariate analysis

(Alessi et al.,
2021 (91))

221 dNLR Pembro Baseline Pts with low dNLR had better PFS
(HR: 0.47, p<0.001) and OS (HR:
0.32, p<0.001)

Retro dNLR ≥ 2.6
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TABLE 1 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If significant)

Comment

(Yuan et al.,
2021 (25))

203 ALC
dNLR
D NLR

Nivo,
n=43
Pembro,
n=50
Camre,
n=31
Toripa,
n=26
Sinti,
n=31
Tisleli,
n=22

Baseline and
on-treatment

Pts with high dNLR were
associated with poorer OS (HR:
1.434, p=0.035) in multivariate
analysis

Retro dNLR ≥ 2.35 Control CT group

(Chen et al.,
2021 (92))

101 NLR
D NLR

Nivo,
n=49
Pembro,
n=47
Camre,
n=1
Toripa,
n=3
Sinti,
n=1

Baseline and
on-treatment

Patients with either high NLR or
positive D NLR showed worse OS
(HR: 3.12, p<0.001) and PFS (HR:
3.45, p<0.001)

Retro NLR ≥ 4.5
DNLR ≥ 0

Only PS2+ pts

(Lim et al.,
2021 (93))

89 NLR
dNLR
D NLR
D dNLR

Nivo,
n=33
Pembro,
n=56

Baseline and
on-treatment

Pts with increased NLR had worse
PFS (median: 2.6 mths vs 9.5 mths,
p<0.001)
Pts with increased dNLR showed
worse PFS (median: 4.2 mths vs
9.2 mths, p=0.001)

Retro DNLR ≥ 1
D dNLR ≥ 1

(Jiang et al.,
2020 (94))

76 PLR
D NLR

Nivo,
n=59
Durva,
n=17

Baseline and
on-treatment

Pts with high PLR had a poorer
PFS (HR: 3.15, p=0.006) and OS
(HR: 3.26, p=0.014)

Retro PLR > 168.13

(Petrova
et al., 2020
(95))

119 PLR
NLR
D NLR

Pembro Baseline and
on-treatment

Pts with high NLR at baseline
showed significantly shorter PFS
(median: 6.86 mths, p<0.001)

Retro PLR > 200
DNLR ≥ 25%

(Xiong et al.,
2021 (96))

41 PLR
NLR
D NLR

Nivo,
n=19
Pembro,
n=19
Atezo,
n=2
Toripa,
n=1

Baseline and
on-treatment

Both PLR and NLR at baseline
were not a predictor for PFS
Pts with high NLR at 6w had
shorter PFS (HR: 0.29, p=0.04)

Retro NLR ≥ 5
PLR > 169

(Katayama
et al., 2020
(52))

81 PLR
NLR
LMR

Atezo Baseline Pts with high NLR, low LMR, and/
or high PLR at baseline had
shorter PFS and OS (HR: 3.78; 0.3
and 2.82, respectively, p<0.001)

Retro NLR ≥ 5
PLR > 262
LMR ≥ 1.5

(Matsubara
et al., 2020
(97))

24 PLR
NLR

Atezo Baseline Pts with high NLR had worse OS
(HR: 3.53, p=0.038) in multivariate
analysis
PLR was not significant for OS
prediction

Retro NLR ≥ 5
PLR > 150

(Rossi et al.,
2020 (98))

65 NLR
LMR
D NLR

Nivo Baseline and
on-treatment

In multivariate analysis, only an
increased NLR was associated with
shorter OS (p<0.0001)

Retro NLR ≥ 4.9
DNLR > 0
LMR ≥ 1.38

(Simonaggio
et al., 2020
(99))

161 D NLR Not
provided

Baseline and
on-treatment

Pts with increase NLR at 6w had
worse PFS (HR: 2.2, p<0.0001) and
OS (HR: 2.1, p=0.005)

Retro DNLR > 0 Including 86 RCC
and 75 NSCLC
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NLR, the level of evidence is high for LIPI and dNLR but is not

integrated into current clinical guidelines for ICI guidance in

NSCLC management.

Although many other studies corroborated these observations,

this easy and low-cost parameter remains unused in current clinical

practice and does not even appear in clinical guidelines.
3.6 Comparisons of NLR and PLR
respective interests

Petrova et al. explored both NLR and PLR in a cohort,

comparing chemotherapy and ICI groups. Both NLR and PLR at

baseline were significative predictors of OS in the chemotherapy

groups (HR: 8.09, p<0.001 and HR: 2.91, p=0.025, respectively) and

ICI groups (HR: 7.94, p<0.001 and HR: 5.08, p<0.001, respectively)

in multivariate analysis. This suggests that nor NLR nor PLR are

specific for survival in NSCLC treated by ICI (95). Regarding PFS,

only NLR remained significant (HR = 4.47, p < 0.001), supporting

more interest in NLR parameters in the ICI context.
3.7 Limitations and perspectives

Very few studies investigated these blood parameters for

patients treated by ICI combined with chemotherapy, whereas
Frontiers in Immunology
 10
chemo-immunotherapy became a large standard for many patients,

especially when PD-L1 TPS ≤ 49% in the frontline. Moreover, the

inclusion of ICI alone, mainly in a pre-treated context, is not easily

transposed in a frontline context which represents a current

challenge to predicting patient outcomes. The next step for these

potential markers of ICI response remains certainly the

establishment of a relevant cut-off to then validate the biological–

driven decision in a prospective study.
4 Soluble-derived immune
checkpoints related products

Although PD-1/PD-L1 were described as membrane-associated

molecules, various soluble derived products of ICI were described in

the serum of cancer patients. Soluble PD-1/PD-L1 (sPD-1/sPD-L1)

and exosomal PD-L1 (exoPD-L1) are both parts of the dynamic

PD-1 pathway and immune response (105, 106). Their respective

biological effects remain largely unknown. sPD-1 has been proposed

to act as a decoy, blocking PD-1 immunosuppressive axis, and

binding to PD-L1 and PD-L2 (107–109). sPD-L1 detection and/or

high levels could thus be associated with ICI ineffectiveness.

Although sPD-L1 effects are not elucidated, its clinical relevance

in NSCLC was explored, especially in patients treated by ICI as a

predictive biomarker for response and/or tumor progression.
TABLE 1 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If significant)

Comment

(Song et al.,
2020 (100))

63 NLR
PLR

Pembro,
n=42
Nivo,
n=4
Sinti,
n=17

Baseline Pts with high NLR had worse OS
(HR: 3.14, p=0.004) in multivariate
analysis
PLR was not significant for OS
prediction

Prosp NLR ≥ 4
PLR > 220

(Mezquita
et al., 2018
(101))

466 dNLR Not
provided

Baseline Pts with high dNLR had
independently worse OS (HR: 1.98,
p=0.002)

Retro dNLR ≥ 3

(Seban et al.,
2020 (102))

63 dNLR Pembro Baseline Pts with high dNLR had
independently worse PFS (HR:
2.00, p=0.04) and OS (HR: 3.4,
p=0.01)

Retro dNLR ≥ 3

(Prelaj et al.,
2020 (103))

154 NLR
dNLR
LMR
DNLR

Nivo or
Pembro

Baseline and
on-treatment

Pts with high NLR (HR: 2.59,
p<0.001) or dNLR at baseline (HR:
2.20, p<0.001) had worse OS
Pts with low LMR had longer OS
(HR: 0.45, p<0.001)

Retro NLR ≥ 4
DNLR ≥ 30%
dNLR ≥ 2.2
LMR ≥ 1.8
ICI, Immune checkpoints inhibitors; ALC, Absolut leucocytes count; ANC, Absolut neutrophils count; Nivo, nivolumab; w, weeks; OS, Overall survival; Retro, retrospective; NLR, neutrophil to
lymphocyte ratio; Pts, patients; mths, months; PFS, Progression Free-survival; AMC, Absolute monocyte count; PLR, Platelet to lymphocyte ratio; Prosp, prospective; HR, Hazard ratio; ORR,
Objective response rate; SII, Systemic Immune-inflammation index; NCP, Neutrophil count percentages; AEC, Absolut eosinophils count; Pembro, Pembrolizumab; WBC, White blood count;
PLT, Absolute platelet count; CT, Chemotherapy; PS, Performance status; Toripa, Toripalimab; Sinti, Sintilimab; TPS, Tumor proportion score; LMR, Lymphocyte-monocyte ratio; Durva,
Durvalumab; Atezo, Atezolizumab; Camre, Camrelizumab; Tisle, Tislelizumab; RCC, Renal cell carcinoma; NSCLC, Non-small cell carcinoma; n, effective.
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4.1 Soluble programmed death ligand 1

sPD-L1 was the most investigated parameter with 9 reviewed

studies focusing on ICI outcomes in NSCLC patients including a

cohort of 119 NSCLC patients, with a control group of 29 healthy

volunteers (110). Additional circulating parameters were explored

such as PD-L1 levels on circulating immune cells, platelets, and

platelet microparticles. Interestingly, circulating PD-L1+ leukocytes

count was independent of tumor PD-L1 expression. Although some

features such as PD-L1+ neutrophil count, or PD-L1+ PLTs count

were associated with shorter PFS and OS, no differences were

observed for patients with high vs low sPD-L1 (cut-off=12.94 pg/

ml). Another study equally dimensioned with 233 NSCLC patients

treated with Nivolumab or Pembrolizumab (details not provided),

reported positive results (111): the patients with high sPD-L1

exhibited both shorter PFS (median: 57 days vs 177 days;

p=0.011) and OS (median: 182 days vs not reached, p<0.001)

than those in the low sPD-L1 group. In comparison with PD-L1

tissue expression, there was a significant but low correlation

between tissue PD‐L1 TPS and circulating sPD‐L1 concentration

(r=0.214, p=0.001). sPD-L1 remained an independent predictor of

ICI outcome in a multivariate analysis for both PFS (HR: 1.910;

p=0.061) and OS (HR: 2.073; p=0.034). In addition, sPD-L1

remained significant in a multivariate analysis for OS prediction

after adjustment on PD-L1 tissue expression, illustrating its

independence and valuable interest as a predictive marker of ICI

benefit. In this report, the discrepancy could be explained by a high

threshold of 90 pg/mL. Most other studies examined smaller cohort

of patients resulting in lower statistical power and/or considered

different cut-offs for sPD-L1 with a large range from 3.357 ng/mL

(detection threshold/positivity) to 166 pg/mL (112). D sPD-L1 was

also investigated with lower interest, as reviewed in Table 2. Finally,

a meta-analysis updated in 2022 of 710 patients treated by surgery

or ICI reported that high levels of sPD-L1 were correlated with

worse OS (HR: 2.34; p<0.001) and PFS (HR: 2.35; p<0.001). The

results were consistent when focusing on subgroups of patients

treated by ICI for OS (HR: 2.40;p<0.001) (124, 125).
4.2 Soluble programmed death ligand 2
and other related parameters

sPD-L2 may ac t a s a decoy b lock ing the PD-1

immunosuppressive axis and leading to potential ICI inefficacy.

Only one study explored the potential interest of sPD-L2 as a

predictor of ICI response among 43 NSCLC patients treated with

Nivolumab without any association with clinical outcomes (118,

125) (118, 125) (126). One study assessed serum mRNA PD-L1,

reporting that patients with a fold change of PD-L1 mRNA ≥ 2.04

had better PFS, OS, and best objective response (123) (Table 2).

Three studies also explored exoPD-L1, the largest cohort enrolling

42 NSCLC patients with contradictory results. Many other soluble

markers might be of interest in this context such as sPD-L2, sLAG3,

sTIM-3, or sIDO despite restricted reports (127).
Frontiers in Immunology 11
4.3 Limitations and perspectives

Thus, all available studies currently suffer from limited effective

with lower statistical power and/or retrospective designs. Although

sPD-L1 was the most explored parameter with consistent meta-

analysis, a relevant cut-off is not defined (high variation across

publications). Considering sPD-L1 as a biomarker remains

challenging according to its multi-biological and structural

protein forms. Other parameters such as exosomal and mRNA-

derived products introduced high challenges with technical

difficulties, and high variabilities in methodologies, resulting in

complex clinical applications.
5 Circulating tumor cells

Circulating tumor cells (CTCs) emerged as promising blood

based-biomarkers in a large panel of solid cancers (128). CTCs are

tumor cells that escaped from the primary tumor site and have

extravasated into the blood circulation. CTCs detection is

challenging because of their rarety. Nonetheless, recent

technologies succeeded in extracting CTCs through enrichment

and detection methods based on molecular markers and more

especially on epithelial cell adhesion molecules but also on

physical parameters (128). CTCs are thus also examined in lung

cancer, especially in NSCLC, from early to advanced stages as a

predictor of clinical outcomes (17). CTCs harbor a great interest in

the cancer context with many potential clinical applications such as

early diagnosis markers, prognostic evaluation, therapeutic

response monitoring, drug sensitivity testing, and/or precision

medication guidance (128, 129). Focusing on the NSCLC context,

several studies already reported a global poor prognosis in patients

with CTCs detection and/or high CTC enumeration (130),

including early and resected NSCLC (131). Here, published

studies are reviewed about CTC-related features associated with

outcomes under ICI regimens for NSCLC patients.
5.1 CTC count

CTC detection and absolute count were the most investigated

parameter in the CTC field (132) with at least 8 studies focused on

CTC enumeration with ICI treatment. The largest cohort included

104 patients, mainly treated with Nivolumab (133). Based on the

CellSearch method, CTC detection was an independent predictive

factor for worse PFS and OS at baseline (OR: 0.28, p=0.02), and on-

treatment (OR: 0.07, p<0.01). However, this difference did not

remain significant after adjustment with other co-factors

including PD-L1 TPS (OR:0.22, p=0.08). Another published

cohort by Guibert et al. (134) enrolled 96 patients with NSCLC

all treated with Nivolumab. The patients with a high baseline CTC

number ≥ 30/10mL were associated with worse OS (HR: 1.06;

p=0.03) and PFS (HR: 1.05; p=0.02). All others were broadly

consistent with these results, whereas we did not identify any
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TABLE 2 Soluble-derived immune checkpoints-related products.

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If signifi-
cant)

Comment

(Mazzaschi
et al., 2020
(113))

109 sPD-L1 Nivo,
n=66,
Pembro,
n=21,
Atezo,
n=22

Baseline Pts with low sPD-L1 had a better PFS
(median: 11.9 vs 3.8 mths (HR: 2.55; p <
0.001) and OS (median: 15.0 vs 5.8 (HR:
2.53; p = 0.001)

Prosp 113 pg/ml

(Zamora
Atenza
et al., 2022
(110))

118 sPD-L1 Not
provided

Baseline No differences were observed for pts
with high vs low sPD-L1

Prosp 12.94 pg/ml

(Oh et al.,
2021 (114))

128 sPD−L1 Nivo,
n=41
Pembro,
n=32
Durva,
n=15,
Ipi, n=5,
Atezo,
n=4

Baseline and
on-treatment

High sPD−L1 was associated with worse
PFS (median: 2.9 mths vs 6.3 mths; p =
0.023), and OS (median: 7.4 mths vs
13.3 mths; p = 0.005)
In multivariate analyses, high sPD−L1
was an independent prognostic factor
for both decreased PFS (HR: 1.928, p =
0.038) and OS (HR: 1.788, p = 0.004).

Prosp 11 pg/mL 128 pts including 50
NSCLC

(Murakami
et al., 2020
(111))

233 sPD−L1 Nivo or
pembro

Baseline For high sPD-L1 pts, both PFS (median:
57 d vs 177 d; p = 0.011) and OS
(median: 182 d vs not reached, p <
0.001) were worse than those in the low
sPDL1 group
sPD-L1 was independently associated
with a shorter PFS (HR: 1.910; P =
0.061) and OS (HR: 2.073; P = 0.034) in
multivariate analysis.

Retro 90 pg/mL

(Okuma
et al., 2018
(115))

39 sPD-L1 Nivo Baseline DCR was better for pts with low plasma
sPD-L1 levels (59% vs 25%)
Pts with high sPD-L1 levels had a
significantly shorter TTF (5.36 mths vs
1.48 mths; p = 0.032) and OS (7.20
mths vs not reached; p = 0.040)

Prosp 3.357 ng/mL

(Ando
et al., 2019
(116))

21 sPD-L1 Nivo,
n=5,
Pembro,
n=7

Baseline and
on-treatment

Reduction sPD-L1 was significantly
correlated with tumor regression in pts
administered 4 cycles of treatment (p <
0.05).
Baseline sPD-L1 in pts who received
ICIs were not correlated with the OS

Prosp Not provided Same cohort as
Ohkuma et al.
Focusing on sPD-1
and sPD-L1
alternatively

(Castello
et al., 2020
(117))

20 sPD−L1 Nivo,
n=12
Pembro,
n=7
Nivo
+Ipi,
n=1

Baseline and
on-treatment

No difference in survival outcomes was
observed between low sPD-L1 and high
sPD-L1 pts
An increase in sPD-L1 concentrations
during ICI treatment may reflect the
expansion of tumor volume and the
tumor lysis.

Prosp 27.22 pg/mL

(Costantini
et al., 2018
(118))

43 sPD-L1
sPD-L2

Nivo Baseline and
on-treatment

Baseline sPD-L1 was not associated with
ORR
High sPD-L1 at 2 mths and increase of
sPD-L1 were associated with worse PFS
(median: 11.8 mths vs 2.2 mths; p =
0.041) with a similar trend for OS (p =
0.087)
Pts with an increase sPD−L1 had worse
PFS (median: 1.8 mths vs 6.5 mths; p =
0.008) and OS (median: 5.4 mths vs not
reached; p = 0.028)
An increase of sPD-L1 remained an

Prosp 33.97 pg/mL
D sPD−L1

sPD-L2 did not affect
clinical outcomes

(Continued)
F
rontiers in Imm
unolo
gy
 12
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1171649
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ancel et al. 10.3389/fimmu.2023.1171649
meta-analysis focusing on CTC utility with ICI treatment. As

reviewed in Table 3, the CTC cut-off also varies both on absolute

number (0–30) and blood volume collected (3-10 mL), therefore

introducing biases.
5.2 PD-L1 expression by CTC

Additional techniques and analyses have been proposed to

improve CTC relevance in the ICI context besides CTC detection

and enumeration. Among them, PD-L1 expression by CTC was

most explored (7 studies) with the hypothesis that PD-L1

expression by CTCs might be a valuable surrogate for PD-L1

tissue expression, in a dynamic and non-invasive approach,

representing the whole landscape of the tumor heterogeneity. The

largest study observed a higher baseline PD-L1+ CTC number

(≥1%) in the “non-responders” group (PFS < 6 months, p=0.04)
Frontiers in Immunology 13
whereas PD-L1 TPS did not manage to predict ICI benefit in terms

of PFS (134). No correlation was observed between tissues and CTC

PD-L1 expression (r=0.04, p=0.77), and CTCs were more frequently

found to be PD-L1 positive than tissues (83% vs 41%). Finally, PD-

L1+ CTCs were seen in all patients at progression. Mondelo-Macıá

et al. reported no association for PD-L1+ CTCs, regardless of the

technology employed (CellSearch and Parsortix systems) (137). A

recent meta-analysis of 30 studies including various cancers

reported global prognostic factors associated with PD-L1 CTC

expression (144). Furthermore, Ouyang et al. reported that the

baseline presence of PD-L1+ CTC was associated with better PFS

(HR: 0.55, p=0.084, I2 = 61.1%, p=0.025) and with a trend for OS

(HR: 0.61, p=0.067, I2 = 43%, p=0.135) when treated by ICI. In

contrast, non-immune-based treatment (chemotherapy and/or

TKI) was associated with worse PFS (HR: 1.85, p=0.005,

I2 = 60.6%, p<0.001) and OS (HR: 2.44, p<0.001, I2 = 42.2%,

p<0.043). These results suggested that PD-L1 CTC expression could
TABLE 2 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Design Respective
cut-off
(If signifi-
cant)

Comment

independent negative factor for PFS
(HR: 4.85; p = 0.048) but not for OS

(Tiako
Meyo et al.,
2020 (119))

51 sPD−L1
sPD-1

Nivo Baseline and
on-treatment

sCombo positivity was associated with
shorter PFS (median: 78 d vs 658 d; HR:
4.12; p = 0.0002) and OS (HR: 3.99; p =
0.003)

Retro Composite
criteria
sCombo
(limit of
détection:
0.156 ng/mL)

Baseline sPD-1 and
sPD-L1 were positive
for 15 (29.4%) and 27
(52.9%) pts,
respectively

(Lambert
et al., 2022
(120))

40 sPD-1 Budiga Baseline Pts with high sPD-1 had better PFS
(HR: 0.209; p = 0.002)

Prosp Not provided 40 NSCLC among 81
pts (41 HNSCC)

(Ohkuma
et al., 2021
(121))

21 sPD-1 Nivo,
n=5,
Pembro,
= 7

Baseline and
on-treatment

No significant associations between
sPD-1 and PFS/OS at baseline or after 2
and 4 cycles of ICI
An increased rate of change in plasma
sPD-1 concentrations after 2 and 4
cycles of ICI significantly correlated with
tumor progression (p = 0.024).

Prosp Not provided Small effective
including only 12
NSCLC

(Zhang
et al., 2020,
p. 28 (122))

24 exoPD−L1 Not
provided

Baseline Pts with low exosomal PD-L1 had a
better PFS (median: 2.0 mths vs 8.0
mths; p = 0.010)

Prosp 149 pg/mL

(Shimada
et al., 2021
(112))

17 exoPD−L1 Nivo, n=
6,
Pembro,
n = 11

Baseline The DCR of 100% for pts with high
exosomal PD−L1 (n = 11/17)
Pts with high exosomal PD−L1 tended
to have a worse RFS in all stages (p =
0.163)

Prosp 166 pg/mL 17 reccurence treated
by ICI among 120 pts
with stage I–III
NSCLC

(Yang et al.,
2021 (123))

51 PD-L1
mRNA
exoPD-L1
sPD−L1
D sPD−L1

Not
provided

Baseline and
on-treatment

Pts with a fold change of PD-L1 mRNA
≥ 2.04 had better PFS, OS, and bORR
A fold change of exoPD-L1 ≥ 1.86 was
also associated with better PFS and OS
Dynamic change of sPD-L1 was not
associated with PFS and OS.

Prosp D PD-L1
mRNA (fold
change ≥ 2.04)
D exoPD-L1
(fold change ≥
1.86)

51 pts including 41
NSCLC
ICI, Immune checkpoints inhibitors; sPD-L1, soluble Programmed Death Ligand 1; Nivo, nivolumab; Pembro, Pembrolizumab; Atezo, Atezolizumab; Pts, patients; PFS, Progression Free-
survival; mths, months; HR, Hazard ratio; OS, Overall survival; Prosp, prospective; exo PD-L1, exosomal Programmed Death Ligand 1; sPD-1, soluble Programmed Death 1; Budiga,
Budigalimab; NSCLC, Non-small cell carcinoma; HNSCC, Head and Neck squamous cell carcinoma; DCR, Disease control rate; RFS, Recurrence-free survival; TTF, Time to treatment failure;
Durva, Durvalumab; Ipi, Ipilimumab; d, days; Retro, retrospective; sCombo, composite criteria (sCombo) corresponding to sPD-1 and/or sPD-L1 positivity for each patient; mRNA, messenger
RNA; sPD-L2, soluble Programmed Death Ligand 2; n, effective.
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TABLE 3 Circulating tumor cells as biomarkers.

Study n Biomarker ICI
used

Time of
assessment

Conclusion Device Respective
cut-off
(If signifi-
cant)

Comment

(Alama
et al., 2019
(135))

89 CTC count Nivo Baseline and
on-treatment

Pts with CTC < 2/3 mL had better
OS (median: 8.8 vs 6.2 mths, p =
0.05)

ScreenCell CTC count
≥ 2/3 mL

Progressing pts with
concomitant lower
CTCs and cfDNA
performed clinically well
(p = 0.007)

(Park et al.,
2021 (136))

83 CTC count Pembro,
n=18
Atezo,
n=65

Baseline and
on-treatment

Pts with decreased CTC count
from C1 to C2 had better PFS
(median: 6.7 vs 2.3 mths; p =
0.078) and OS (median: NR vs 6.8
mths, p = 0.021)

CD-
PRIME

CTC count
≥ 4.6/7.5 mL

CTC count at baseline
did not predict ICI
response

(Tamminga
et al., 2019
(133))

104 CTC count Nivo,
n=89
Pembro,
n=8
Atezo,
n=5
Nivo
+Ipi,
n=2

Baseline and
on-treatment

CTC detection was an independent
predictive factor for worse PFS and
OS at baseline (OR: 0.28, p = 0.02),
and on-treatment (OR: 0.07, p <
0.01),

CellSearch CTC count
> 0/7.5 mL

(Mondelo-
Macıá et al.,
2021 (137))

50 CTC count
and PD-L1
expression

Pembro Baseline and
on-treatment

Pts with detectable CTC by
CellSearch had shorter PFS
(median: 3 vs 12.6 mths, p < 0.05)
and OS (median: 4.9 vs 21.1 mths,
p < 0.05)

CellSearch
and
Parsortix
systems

CTC count
> 0/3 mL
PD-L1+ by
CTCs

13 pts treated by
combination CT-ICI

(Dall’Olio
et al., 2021
(138))

39 CTC count
and PD-L1
expression
by CTCs

Nivo,
Pembro,
or Atezo

Baseline Median OS in pts with PD-L1-

CTC was 2.2 mths vs 3.7 mths
(HR: 0.33, p = 0.019) in pts with
PD-L1+ CTC vs 16.0 mths, (HR:
0.17 p < 0.001) in pts with no CTC

CellSearch Divided into 3
groups:
no CTC (n =
15),
PD-L1+ CTC
(n = 13),
and PD-L1-

CTC (n = 11)

No correlation was
found between PD-L1
expression by CTCs and
tumor tissue
CTC number was
correlated with baseline
tumor size

(Guibert
et al., 2018
(134))

96 CTC count
and PD-L1
expression

Nivo Baseline and
on-treatment

Baseline high CTC number was
associated with worse OS (HR:
1.06; p = .03) and PFS (HR: 1.05; p
= .02)
Higher baseline PD-L1+ CTC
number (≥1%) was observed in the
“non-responders” group (PFS < 6
mths) (p = .04)

ISET CTC count
≥ 30/10mL
PD-L1+ by
CTCs (≥1%)

CTCs were more
frequently found to be
PD-L1 positive than
tissue (83% vs 41%)
No correlation between
tissue and CTC PD-L1
expression (r = 0.04, p =
0.77).
PD-L1+ CTCs were seen
in all pts at progression.

(Dhar et al.,
2018 (139))

22 CTC count
and PD-L1
expression
by CTCs

Pembro,
n=10
Nivo,
n=2
Nivo
+Ipi,
n=8
Ave, n=2

Baseline Not significant Vortex CTC count
≥ 1.32/mL
≥ 2 PD-L1+

CTCs (overall
count)

Analyses were restricted
to pts with blood
collection immediately
before starting ICI (n =
17)

(Ikeda et al.,
2021 (140))

45 PD-L1
expression
by CTCs

Nivo Baseline and
on-treatment

PFS was significantly longer in pts
with ≥ 7.7% PD-L1+ CTCs rate (n
= 8) than in those with < 7.7%
rates (n = 8; p < 0.01) at 8w

MCA
system

≥ 7.7% PD-
L1+ CTCs rate

The cut-off value of the
PD-L1 positivity rates in
the CTCs was calculated
at 4,8 or 12w based on
the ROC method

(Nicolazzo
et al., 2016
(141))

24 PD-L1
expression
by CTCs

Nivo Baseline and
on-treatment

Pts with PD-L1- CTCs all obtained
a clinical benefit, while pts with

CellSearch PD-L1+ by
CTCs

Although CTCs were
found in all pts 6 mths
after treatment, pts

(Continued)
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endorse a certain specificity to predict outcomes with ICI treatment.

However, PD-L1 CTC expression was not a significant predictor of

PFS in the NSCLC context (HR: 1.3, p=0.341, I2 = 58.0%, p=0.011)

with similar data for OS prediction.
5.3 Limitations and perspectives

CTCs seem highly promising for clinical cancer management,

based on their non-invasive, easily repeatable, and dynamic real-

time monitoring analysis (145). Additional CTC markers have been

explored in NSCLC patients treated by ICI. In a cohort of 15

patients, high Carcinoembryonic antigen (CEA) and Human

telomerase reverse transcriptase (hTERT) expression on CTC

were associated with poor clinical response (p=0.017 and

p=0.072, respectively) (142). In an equally dimensioned group

treated by ICI, Indoleamine 2,3-dioxygenase (IDO)+ CTC

detection was associated with shorter PFS (median: 2.5 vs 5.8

months, p=0.039) and OS (HR: 5.46, p=0.021). However, these

results remain exploratory.

CTC use and transposability in daily practice remain very

challenging. CTC detection remains very challenging with so-far

only two FDA-approved methods (CellSearch and Parsortix) for

specific cancer contexts and other numerous non-standardized

techniques including ISET® (Isolation by Size of Epithelial

Tumor cells) or numerous microfluidic systems. CellSearch is an

FDA-approved system that demonstrated its clinical relevance in

other solid cancer including breast (146), colorectal (147), and

prostate cancers (148). The CellSearch method enriches cells using a
Frontiers in Immunology 15
magnetic ferrofluid containing antibodies against epithelial cell

adhesion molecules (i.e EpCAM), before staining for cytokeratins

(including cytokeratins 8, 18, and 19). This technology is not

included in clinical practice, most probably because of its high

cost. Moreover, there is no consensus for a relevant CTC threshold,

also depending on the volume of blood collected. This critical point

requires further investigation before additional consideration by the

clinician. Innovative approaches are emerging such as Circulating

tumor-derived endothelial cells (CTECs) that could predict

acquired resistance to ICI (149). Other rare types of CTCs are

suggested with non-elucidated and incertain clinical relevance

(150). Aside from CTC-expressed immune-related biomarkers,

other markers are also highly promising in reflecting tumor

immune resistance (primary or acquired) such as those acquired

through Epithelial-Mesenchymal Transition (EMT) for

instance (151).
6 Circulating tumor DNA

Plasma circulating tumor DNA (ctDNA) is a cell-free DNA

product released by the tumor in the bloodstream. ctDNA interest is

growing fast for solid tumor management. The detection and

monitoring of ctDNA provide new opportunities for personalized

cancer management. ctDNA is already used in clinical practice for

detecting some targetable oncogenic driver such as EGFR of BRAF

mutation but might have additional interest in the NSCLC context

(152). Diverse technologies to analyze plasma ctDNA emerged and

progressively integrated clinical practice. However, there is high
TABLE 3 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Device Respective
cut-off
(If signifi-
cant)

Comment

PD-L1+ CTCs all experienced
progressive disease

could be dichotomized
into 2 groups based on
PD-L1 expression by
CTCs

(Bao et al.,
2018 (142))

15 PD-L1, CEA,
and hTERT
expressions
by CTCs

Nivo Baseline High expression of CEA (p =
0.017) and hTERT (p = 0.072) by
CTCs were associated with poor
clinical response

Polymeric
microfluid
CTC chip

Not provided Only 2/17 cases had
CTCs expressing PD-L1

(Papadaki
et al., 2020
(143))

15 CTC count
and IDO
expression
by CTCs

Anti-
PD-1

Baseline Detection CTCs by either ISET
(median: 2.5 vs 5.8 mths; p =
0.037), Parsortix (median: 2.5 vs
6.2 mths; p = 0.036), or any
method (median: 2.5 vs 10.6 mths;
p = 0.007) was correlated with
worse PFS
IDO+ CTCs were associated with
shorter PFS (median: 2.5 vs 5.8
mths, p = 0.039) and OS (HR:
5.46, p = 0.021)

Parsotix
ISET
Ficoll

CTC count
> 0/5 mL
≥ 1 IDO+ CTC
(overall count)

Ficoll, ISET, and
Parsortix presented the
highest yields and
compatibility with
phenotypic analysis
At the pts level, they
provided discordant
CTC positivity (13%,
33%, and 60% of pts,
respectively)
PD-L1 was expressed in
33% of CTCs
ICI, Immune checkpoints inhibitors; CTC(s), Circulating tumor cells; Nivo, nivolumab; OS, Overall survival; mths, months; cfDNA, Cell-free DNA; Pts, patients; PD-L1, Programmed death
ligand 1; Pembro, Pembrolizumab; PFS, Progression Free-survival; CT, Chemotherapy; ISET, Isolation by SizE of Tumor cells; Atezo, Atezolizumab; Ipi, Ipilimumab; Ave, Avelumab; CEA,
Carcinoembryonic antigen; hTERT, human Telomerase reverse transcriptase; IDO, indoleamine-2,3-dioxygenase 1; PD-1, Programmed death 1; HR, Hazard ratio; w, weeks; MCA, automated
microcavity array; ROC, Receiver Operating Characteristic; n, effective.
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variability and a lack of standardized techniques to detect ctDNA

such as allele-specific PCR, digital PCR, multiplex PCR-based NGS,

and whole-exome sequencing (WES) (153). Nonetheless, ctDNA-

based clinical decision-making holds significant potential despite

challenges and complexities, especially in the field of

immunotherapy and lung cancer. We reviewed here published

studies on ctDNA-related features associated with outcomes

under ICI regimens for NSCLC patients (154).
6.1 Cell-free DNA and derived biomarkers

Cell-free DNA can be estimated by various methods, most

commonly using the maximum somatic allele frequency (MSAF),

which is defined as the maximum allele frequency (AF) of all the

tumor somatic mutations observed per sample by next-generation

sequencing (NGS), and reflecting the ctDNA proportion in the

blood. ctDNA and especially its variation and clearance have also

been proposed as a potential surrogate of early tumor response and

might predict responses to ICI (12). We identified 18 studies based

on cell-free DNA detection and quantification of patients’ outcomes

with NSCLC and under ICI (Table 4). The largest tested ctDNA

levels as a potential relevant surrogate of early tumor response to

ICI (168). ctDNA was detected using non-targetable mutation from

the initial tumor biopsy by droplet digital PCR. A ctDNA decrease

of over 30% at 4-6 weeks was correlated with an improved PFS and

OS in 100 AC treated by ICI. In this cohort, patients with a tissue-

positive PD‐L1 expression (TPS ≥ 1%) had a better PFS (HR: 0.46,

p<0.001) and OS (HR: 0.57, p<0.05) than PD‐L1 negative patients.

However, ctDNA demonstrated its independency from PD-L1

expression, significantly predicting OS both in PD-L1 positive

and negative patients (HR: 0.37 and 0.47, p<0.05; respectively).

Another equally dimensioned cohort of 97 patients treated by ICI

also correlated with patient outcomes: an increase of ctDNA allele

fraction at 1 month was associated with a 2-month PFS versus 14

months for patients with a decrease of AF. On another hand, PD-L1

TPS was not statistically predictive of ICI benefit, using either a cut-

off of 1% or 50%, and was less predictive of response than ctDNA

profiling (165). The largest report based on ctDNA was a pooled

analysis of the randomized POPLAR and OAK studies by Chen

et al. (161). This study assessed the clinical relevance of maximum

somatic allele frequency (MSAF) which is an indicator of the

proportion of tumor-derived plasma DNA. Atezolizumab was

identified as beneficial when patients harbored lower MSAF levels

(i.e., MSAF < 10.3%; HR: 0.59, p<0.001). In contrast, no difference

was observed for patients with high MSAF levels between docetaxel

and ICI groups (HR: 0.91, p=0.5). In this analysis, subgroup

comparisons were performed especially regarding clinical

confounding factors to determine the independency of ctDNA.

Thus, the prediction of ICI interest by ctDNA remains significant

both in Atezolizumab and Docetaxel arms after adjustment for

baseline covariate (including age, sex, race, performance status,

histology, number of metastatic sites, smoking history or number of

prior therapies) with a more prominent effect in the Atezolizumab

arm (HR=1.89, p<0.001 for Atezolizumab vs. HR=1.30, p=0.029 for

docetaxel group). Finally, a meta-analysis was performed on 10
Frontiers in Immunology 16
studies, including 1017 patients with NSCLC and treated by ICI

(169). The baseline ctDNA detection was not associated with

clinical outcomes, for OS, PFS, and ORR (respective HR: 1.18;

0.98, and 0.89). The longitudinal assessment and especially its early

decrease was able to significantly predict ICI benefit regarding both

OS, PFS, and ORR (respective HR: 0.19, 0.30, and 0.07).
6.2 Blood Tumor mutational burden

Tumor mutation burden (TMB) is a marker of genomic

instability. It reflects the production of immunological and

inflammatory neoantigens, closely related to immunogenicity

(170). The biological approaches support that high TMB reflects a

tumor with a higher level of mutation and neoantigens productions,

reflecting a so-called “hot-tumor”, which could potentially be

predictive of ICI sensibility (171). Previous clinical trials reported

positive results from tissue-based TMB analysis in NSCLC (172,

173). Blood TMB (bTMB) is a derived marker of ctDNA that might

have the capacity to integrate and reflect tumor heterogeneity, and

that we reviewed in a dedicated section (Table 5) according to a

specific method of assessment and analysis.

The largest cohort included 809 patients with a NSCLC treated

with Durvalumab +/- Tremelimumab (vs SOC) in the MYSTIC

study (181). With a threshold of 20 mutations/Mb at baseline, the

patients with high bTMB had better OS (HR: 0.49) when treated

with Durvalumab and Tremelimumab. A level of bTMB > 16

mutations/Mb was associated with better OS in 153 patients

treated with Atezolizumab from the BF1RST trial (at baseline,

HR: 0.54, p<0.5) (180). Gandara et al, compared PD-L1

expression and bTMB levels to assess the potential overlap

between these two parameters (174). Among 1070 patients

(pooled from OAK and POPLAR trials), patients with high

bTMB (>16 mutations/Mb) were not overrepresented among

patients with the highest levels of PD-L1 (defined by a TPS ≥50%

or ≥10% of tumor-infiltrating immune cells expressing PD-L1) with

only 30 patients positive for both assays (19.2% of patients for

bTMB and 29.1% for PD-L1 expression). These data demonstrated

the independence between bTMB and PD-L1 expressions assessed

by IHC. The supplemental analysis from the same publication also

compared the clinical characteristics of the bTMB subgroups of

patients from the OAK trial. bTMB > 16 mutations/Mb was

associated with smoking history as already published, as a

consequence of tobacco mutagen exposure (184). Additionally,

high bTMB was also associated with high tumor stages

(p<0.0001) or the number of metastases sites(p=0.0055),

potentially impacting survival and prognosis. However, the

baseline clinical features were well balanced between arms

(Atezolizumab vs. Docetaxel) suggesting that bTMB might be an

independent predictive marker of ICI efficacy.

Only one study addressed the potential relevance of

longitudinal bTMB assessment (179): no correlation was found

between clinical outcomes and baseline bTMB in 270 lung

squamous carcinomas treated by Camrelizumab. However, low

on-treatment bTMB significantly correlated with better PFS, OS,

and ORR. This association was specific to the ICI regimen and was
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TABLE 4 Circulating tumor DNA as a biomarker.

Study n Biomarker ICI used Time of
assessment

Conclusion Device Design Respective
cut-off
(If signifi-
cant)

Comment

(Thompson
et al., 2021
(155))

67 ctDNA
VAF

Pembro+/-CT Baseline and
on-treatment

Molecular responders
had significantly longer
PFS (HR: 0.25) and OS
(HR: 0.27)

74-gene
NGS panel

Prosp D ctDNA <
50%

(Chen et al.,
2020 (156))

22 ctDNA
VAF

Camrelizumab
and anti-
angiogenic
(Apatinib)

Baseline High concentration of
cfDNA (HR: 27.7, P =
0.003), MIKI67
mutation (HR: 114.1, p
= 0.009), and gene
variations related to
hyper-progressive
disease (HPD) (HR:
36.8, p = 0.004) were
independent risk
factors for worse PFS

dsDNA HS
assay kit

Prosp ctDNA
detectable

(Hellmann
et al., 2020
(157))

31 ctDNA
VAF

Not provided Baseline and
on-treatment

27 pts had
undetectable ctDNA
and 25 (93%) have
remained PF
all 4 pts with
detectable ctDNA
progressed (p < 0.0001;
PPV= 100%, NPV =
93%)

Deep
Sequencing
(CAPPSeq)

Retro ctDNA
detectable

(Raja et al.,
2018 (158))

100 ctDNA
VAF

Pembro Baseline and
on-treatment

In the validation
NSCLC cohort, the
mean VAF decreased
by 4% (p = 0.0009) in
pts with CR/PR and
1.1% (p = 0.02) in pts
with SD, whereas the
mean VAF increased
by 1.4% (p = 0.03) in
pts with PD

Guardant360 Prosp D VAF ≥ 0% Included only
28 NSCLC

(Passiglia
et al., 2019
(77))

45 ctDNA Nivo Baseline and
on-treatment

Pts with increased
cfDNA >20% at the 6th

w reported significantly
worse outcomes
(median OS: 5.7 vs
14.2 mths, p < 0.001;
median PFS: 3.3 vs
10.2 mths, p < 0.001)

dsDNA HS
assay kit

Retro D ctDNA
>20% at 6 w

(Alama et al.,
2019 (135))

89 ctDNA Nivo Baseline and
on-treatment

Pts with baseline CTC
number and cfDNA
below their median
values (2 from 3 mL
and 836.5 ng from 3
mL of blood and
plasma, respectively)
survived significantly
longer than those with
higher values (p = 0.05
and p = 0.04,
respectively)

qPCR using
hTERT as a
reference

Prosp > 836.5 ng
cfDNA/3 mL
of plasma

(Anagnostou
et al., 2019
(159))

38 ctDNA Nivo, n=28
Pembro, n=8
Others, n=2

Baseline and
on-treatment

Pts without a
molecular response
had shorter PFS and
OS compared with
molecular responders
(median: 5.2 vs. 14.5

58-gene
NGS panel

Prosp D ctDNA <
0%

Pts with
acquired
resistance had
a
recrudescence

(Continued)
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TABLE 4 Continued

Study n Biomarker ICI used Time of
assessment

Conclusion Device Design Respective
cut-off
(If signifi-
cant)

Comment

and 8.4 vs. 18.7 mths;
HR: 5.36, p = 0.007
and HR: 6.91, p = 0.02,
respectively)

in ctDNA
levels

(Li et al.,
2019 (160))

12 ctDNA
MSAF

Pembro Baseline and
on-treatment

MSAF in the SD/PD
group was significantly
higher than in the PR
group (p = 0.00044).

329-gene
NGS panel

Prosp N/A Included 10
Sq-NSCLC
and 4 in L2+

(Chen et al.,
2019 (161))

853 ctDNA
MSAF

Atezo Baseline OS was significantly
improved with ICI
compared with CT in
those with low MSAF
(HR: 0.57, p < 0.001)

F1CDx Retro MSAF<10.3% Meta-analysis
of POPLAR
and OAK
studies

(Goldberg
et al., 2018
(162))

28 ctDNA
AF

Not provided Baseline and
on-treatment

A ctDNA decrease was
associated with
superior PFS (HR:
0.29, p = 0.03) and OS
(HR: 0.17, p = 0.007)

24-gene
NGS panel

Prosp D AF ≥ 50% Low effective

(Iijima et al.,
2017 (163))

14 ctDNA
AF

Nivo Baseline and
on-treatment

Initial and serial
ctDNA analysis
revealed that a
decrease in AF of
ctDNA correlated with
durable benefit

53-gene
NGS panel

Prosp AF ≥ 2% Low effective

(Ricciuti
et al., 2021
(126))

62 ctDNA
AF

Pembro Baseline and
on-treatment

AF decreases between
the baseline and 1st on-
treatment blood
evaluation was
associated with
significantly higher
ORR (60.7% vs 5.8%, p
= 0.0003), and longer
PFS (median: 8.3 vs 3.4
mths, HR: 0.29, p =
0.0007) and OS
(median: 26.2 vs 13.2
mths, HR: 0.34, p =
0.008)

36-gene
NGS panel

Prosp D AF ≥ 0%

(Giroux
Leprieur
et al., 2018
(164))

15 ctDNA
AF

Nivo Baseline and
on-treatment

Good diagnostic
performances for
tumor response and
clinical benefit, both
for:
a/ctDNA concentration
at the 1st tumor
evaluation (tumor
response: PPV = 100%,
NPV = 71%; clinical
benefit: PPV = 83.3%,
NPV = 77.8%)
b/ctDNA change at the
1st tumor evaluation
(tumor response: PPV
= 100%, NPV = 62.5%;
clinical benefit: PPV =
100%, NPV 80%)
Pts with ctDNA
concentration increase
< 9% at 2 mths had a

22-gene
NGS panel

Prosp D ctDNA >
9%

No difference
observed
between
ctDNA at
baseline

(Continued)
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not observed in the chemotherapy control group. Finally, a meta-

analysis pooled 2338 patients from 6 randomized controlled trials

with bTMB assessment (177): patients with high bTMB and treated

by ICI had improved ORR (HR:2.69, p<0.03), PFS (HGR: 0.57,

p<0.01), and OS (HR: 0.62, p<0.01) in comparison with patients

treated with chemotherapy. Inversely, no clinical benefit was

observed with ICI regimens when patients had lower bTMB.

More interestingly, subgroups analyses confirmed across all

potential confounding factors (such as line of treatment, type of

NGS panel with various among of genome covered, level of PD-L1
Frontiers in Immunology 19
expression, and ICI regimen) that bTMB was able to independently

predict clinical issues for NSCLC patients treated by ICI.

The interest in soluble biomarkers is also emerging in the earlier

stages, including neoadjuvant conditions with many ICI trials in the

peri-operative context (185). The NADIM trial enrolled 46 patients

with a locally advanced stage IIIA NSCLC treated with neoadjuvant

chemotherapy and Nivolumab (186). Tissue-based TMB and PD-

L1 were significant predictors of OS. The patients with the lowest

ctDNA at baseline had longer PFS (HR: 0.20, p=0.006), and OS

(HR: 0.27, p=0.002). Moreover, the absence of ctDNA after
TABLE 4 Continued

Study n Biomarker ICI used Time of
assessment

Conclusion Device Design Respective
cut-off
(If signifi-
cant)

Comment

long-term benefit of
ICI

(Nicolas
Guibert
et al., 2019
(165))

97 ctDNA
AF

Nivo, n=90
Pembro, n=7

Baseline and
on-treatment

Early decreases in the
ctDNA AF were
associated with longer
PFS (median: 14 vs 2
mths, p < 0.0001)

36-gene
NGS panel

Retro D AF ≥ 0%

(Sun et al.,
2021 (166))

73 ctDNA
Genomic
alterations in
PTPRs-
related genes

Not provided Baseline Among all PTPRs,
PTPRD mutations in
non-Sq NSCLC were
linked to longer PFS
(median: 324 vs 63 d,
HR: 0.36, p = 0.0152)
and higher ORR (p =
0.0099).

NGS Prosp Mutation
presence in at
least one
PTPRs-related
genes

Pooled cohort
including
OAK and
POPLAR
trials

(Mondelo-
Macıá et al.,
2021 (137))

50 hTERT
ctDNA

Pembro Baseline and
on-treatment

Pts with high baseline
hTERT cfDNA levels
had significantly
shorter PFS and OS
than those with low
baseline levels
Multivariate regression
analyses confirmed the
relevance of the
combination CTCs/
cfDNA levels as an
early independent
predictor for PD

hTERT
qPCR

Prosp hTERT cfDNA
> 2132.39 GE/
mL

(Brueckl
et al., 2021
(167))

45 ctRNA for
CD3, CD8,
PD-1, PD-
L1, CTLA-4

Pembro Baseline and
on-treatment

An increase in CD3
and CD8 mRNA
expression after the 1st

cycle of
pembrolizumab was
associated with
improved PFS and OS

rt-qPCR Retro D CD3 > 0
D CD8 > 0

(van der
Leest et al.,
2021 (168))

100 ctDNA based
on non-
targetable
mutations
present in
the tumor
biopsy

Nivo, n=69
Pembro, n=28
Atezo, n=2
Durva, = 1

Baseline and
on-treatment

A > 30% decrease in
cfDNA at t1 correlated
with a longer PFS and
OS

ddPCR Prosp D ctDNA > 0
ICI, Immune checkpoints inhibitors; hTERT, hTERT: human Telomerase reverse transcriptase; ctDNA, circulating tumor DNA; Pembro, Pembrolizumab; Pts, patients; PFS, Progression Free-
survival; OS, Overall survival; CTC(s), Circulating tumor cells; PD, Progressive disease; q-PCR, quantitative Polymerase chain reaction; Prosp, prospective; GE, Genome equivalent; CDx, Cluster
of differenciation x; PD-L1, Programmed death ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; rt, reverse transcriptase; Retro, retrospective; Nivo, nivolumab; Atezo,
Atezolizumab; Durva, Durvalumab; ddPCR, droplet digital PCR; PTPRs, protein tyrosine phosphatase receptor-type; Sq, Squamous; NSCLC, Non-small cell carcinoma; HR, Hazard ratio; ORR,
Objective response rate; NGS, next-generation sequencing; VAF, Variant allele fraction; CT, Chemotherapy; mths, months; PPV, Positive predictive value; NPV, Negative predictive value; w,
weeks; dsDNA, Double stranded DNA; MSAF, Maximum somatic allele frequency; SD, Stable disease; PR, Partial response; L2, 2nd line; CR, Complete response; n, effective.
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TABLE 5 Blood Tumor mutational burden.

Study n Biomarker ICI
used

Time of
assessment

Conclusion Device
(coverage
of
genomic
regions)

Design Respective
cut-off
(If signifi-
cant)

Comment

(Gandara
et al.,
2018
(174))

1070 bTMB Atezo Baseline Pts with high bTMB had
significantly longer PFS (HR:
0.65, p = .013) from ICI vs CT

F1CDx
(1.125 Mb)

Retro bTMB ≥ 4 and
> 26

Meta-
analysis of
POPLAR
and OAK
studies
The bait set
targeted
1.125Mb of
the coding
region of the
human
genome

(Wang
et al.,
2019
(175))

50 bTMB Not
provided

Baseline bTMB > 6 was associated with
superior PFS (HR: 0.39; p =
0.01) and ORR (39.3% vs 9.1%;
p = 0.02)

NCC-GP150
(0.6 Mb)

Retro bTMB > 6

(Wang
et al.,
2020
(176))

737 LAF-bTMB Atezo Baseline bTMB was not associated with
outcomes
No correlation owing to its
correlation with the amount of
circulating tumor DNA

F1CDx
(1.125 Mb)
NCC-GP150
(0.6 Mb)

Retro bTMB ≥ 16
bTMB > 6

POPLAR, n
=211, and
OAK, n =
462 and
validated in
the 3rd NCC
cohort (n =
64)

(Ba et al.,
2021
(177))

2338 bTMB Atezo,
Durva
+/-
Treme,
Tisle,
Pembro,

Baseline Compared with CT, ICI
improved OS (HR: 0.62; p <
0.01), PFS (HR: 0.57; p < 0.01),
and ORR (OR: 2.69; p < 0.01)
in bTMB-high NSCLC pts but
not in bTMB-low pts

F1CDx
Gardant
OMNI
OncoScreen
Plus

Retro bTMB ≥ 16 Meta-
analysis from
6 RCT

(Li et al.,
2019
(160))

12 bTMB Pembro Baseline and
on-treatment

High baseline bTMB
significantly improved PFS after
ICI (p = 0.048)
bTMB at reevaluation was not
associated with outcomes

329 pan
cancer‐related
gene panel
(0.637 Mb)

Prosp bTMB > 21 Included 10
Sq-NSCLC
and 4 in L2+

(Chen
et al.,
2019
(161))

853 bTMB Atezo Baseline OS was significantly improved
with ICI vs CT in pts with a
high bTMB (HR: 0.57, p <
0.001)

F1CDx
(1.125 Mb)

Retro bTMB ≥ 13 Meta-
analysis of
POPLAR
and OAK
studies

(Chae
et al.,
2019
(178))

136 bTMB Not
provided

Baseline Higher bTMB significantly
correlated with shorter PFS
(median: 45 vs 355 d; HR: 5.6, p
< 0.01) and OS (median: 106 d
vs not reached; HR: 6.0, p <
0.01)

Guardant 360
(0.138 Mb)

Retro Median value
of 14.5, 7.2,
and 21.7

Included
both the first
line and
more

(Jiang
et al.,
2022
(179))

270 bTMB Camre Baseline and
on-treatment

Baseline bTMB was not
associated with ORR, PFS, and
OS in Camre or placebo + CT
groups
Low on-treatment bTMB was
associated with better ORR
(73.8% vs 27.8%, p < 0.001),
PFS (median: 9.1 vs 4.1 mths, p
< 0.001), and OS (median: not
reached vs 8 mths, p < 0.001) in
Camre + CT group

HyperCap
Kit
(1.6 Mb - 543
cancer-related
genes)

Prosp Defined as
bTMB ≥ 75%
level (absolute
value not
provided)
D bTMB ≥ 0

Only Sq-
NSCLC
tumors

(Continued)
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neoadjuvant treatment was also associated with improved PFS (HR:

0.26, p=0.038) and OS (HR: 0.04, p=0.015). These results illustrated

the feasibility and clinical relevance of detecting soluble biomarkers

in every stage of NSCLC treated by ICI. Prospective dedicated

studies are further needed to improve clinical outcomes under ICI

regimen, considering randomization with pre-specified soluble

biomarker expression and/or level at baseline.
6.3 Limitations and perspectives

ctDNA and its related biomarkers are highly promising for

cancer management. However, many limitations remain unsolved.

The baseline level of ctDNA, and particularly of MSAF could be

biased. An MSAF < 1% was associated with better OR in the

BF1RST study. However, this result could be driven by better

baseline values rather than by MSAF itself (180). Although the

findings are broadly consistent, establishing bTMB cut-off values

still requires further studies. For instance, the Keynote-189 trial

used a 15 mutation/Mb while the MYSTIC study was based on a

bTMB threshold of 20 mutation/Mb. Finally, OAK, B-F1RST, and

POPLAR trials used an intermediate threshold of 16 mutations/Mb.

Moreover, bTMB determination suffers from a major lack of

standardization. Gold standard techniques involve a WES

examination. Trying to reduce cost and time analysis, clinical
Frontiers in Immunology 21
studies were based on various NGS panels covering 150 to more

than 500 genes and thus covering variable amounts of the genome

(from 0.138 to 1.64 Mb of coding exome; the literature recommends

at least 1 Mb of DNA for reliable assay) without clear cut-off for

bTMB (187, 188).

These major reports highlight the need for a relevant bTMB cut-

off before conducting a randomized controlled trial with a

biological-driven treatment decision.
7 Perspectives for liquid biopsies into
the immune landscape

7.1 Current active clinical trials

As reviewed previously, many circulating markers might help

clinicians to predict ICI outcomes for NSCLC patients (189). We

summarized here current active clinical trials investigating one or

more soluble biomarkers in the ICI context for NSCLC and

discussed how their results could introduce a change into

clinical practice.

No active clinical trial is investigating (d)NLR in NSCLC despite

its high potential. The BUDDY trial (NCT04059887) explores

bTMB as a biomarker, whereas the endpoints do not drastically

differ from the BF1RST study previously discussed. The
TABLE 5 Continued

Study n Biomarker ICI
used

Time of
assessment

Conclusion Device
(coverage
of
genomic
regions)

Design Respective
cut-off
(If signifi-
cant)

Comment

(Kim
et al.,
2022
(180))

152 bTMB Atezo Baseline At 36.5-mths follow-up, an
exploratory analysis found that
bTMB was associated with
longer OS
bTMB remained associated with
higher ORR

F1CDx
(1.125 Mb)

Prosp bTMB ≥ 16 B-F1RST
study
bTMB was
not
associated
with PFS
ORR
improved as
bTMB
cutoffs
increased

(Rizvi
et al.,
2020
(181))

809 bTMB Durva
+/-
Treme

Baseline High bTMB improved OS for
Durva + Treme vs CT (median:
21.9 mths vs 10 mths, HR: 0.49)

F1CDx
(1.125 Mb)

Prosp bTMB ≥ 20 MYSTIC
study

(Chen
et al.,
2021
(182))

56 bTMB Not
provided

Baseline Pts with high bTMB had better
PFS (median: 5.8 mths vs 2.0
mths; p = 0.0029)

OncoScreen
(based on
plasma NGS
of 520 genes)
(1.64 Mb)

Prosp bTMB ≥ 11

(Ma
et al.,
2021
(183))

70 bTMB Not
provided

Baseline High bTMB was related to
better PFS (HR: 0.32, p < 0.01)
and ORR (83.3% vs 14.2%, p =
0.02)

F1CDx
(1.125 Mb)

Retro bTMB ≥ 6
ICI, Immune checkpoints inhibitors; bTMB, Blood-Tumor mutational burden; Atezo, Atezolizumab; Pts, patients; mths, months; PFS, Progression Free-survival; HR, Hazard ratio; CT,
Chemotherapy; F1CDx, FoundationOne CDx; Retro, retrospective; ORR, Objective response rate; LAF, Low allele frequency; NCC, National Cancer Center; Durva, Durvalumab; Treme,
Tremelimumab; Tisle, Tislelizumab; Pembro, Pembrolizumab; NSCLC, Non-small cell carcinoma; RCT, Randomized controlled trials; Prosp, Prospective; Sq, Squamous; L2, 2nd line; Camre,
Camrelizumab; Mb, Megabases; NGS, next-generation sequencing; n, effective.
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NCT03373955 trial (non-randomized design) aims to construct an

immune repertoire for patients treated with Atezolizumab, mainly

based on T-cell repertoire and cfDNA. This approach might

provide additional promising soluble markers.

The NCT04720339 prospectively enrolls NSCLC patients

treated with Atezolizumab, assessing the predictive value for

quantification of plasma cfDNA at the time of the first

radiological evaluation and on clinical benefit. The ATLAS and

CIRCULAR trials have similar secondary endpoints, based on

Nivo lumab- Ip i l imumab or Pembro l i zumab reg imen

(NCT04966676 and NCT04912687, respectively). Complementary

results from observational studies are also expected with the same

scope (NCT03892096; NCT04791215).

The COPE trial is an ambitious biological-driven protocol,

where implementing sequential ctDNA to improve the

management of patients with advanced cancer and therefore their

survival is tested. AstraZeneca also supports a recruiting trial

assessing the benefit of adjuvant concomitant chemotherapy plus

Atezolizumab for resected NSCLC patients with post-operative

detectable ctDNA (NCT04367311) named molecular residual

disease (MRD). The clearance of ctDNA will also serve as a

surrogate for DFS and OS. Some trials are also recruiting based

on MRD positivity (detectable cfDNA) with other ICI regimens like

Durvalumab + Tremelimumab (NCT04625699) also in post-

operative context, post stereotactic radiotherapy for stage I

(SCION trial - NCT04944173) or Pembrolizumab metastatic

frontline (NCT05198154).

The terms of CTC use remain challenging. Many trials aim to

use CTC as a surrogate of tumor response in ICI treatment through

plasma clearance (NCT05091190; NCT03481101). The largest
Frontiers in Immunology 22
study dedicated to CTC in NSCLC is currently the IMMUNO-

PREDICT trial, aiming to enroll about 200 patients with an NSCLC.

Its main objective is to demonstrate the feasibility of the analysis of

PD-L1 expression on CTC.

These active trials reflect the need to implement biomarkers

into clinical management, especially with ICI treatment and in each

NSCLC stage.
7.2 Future directions and potential impact
on clinical practice

The experimental strategies do not converge on the same aims,

challenges, and difficulties according to the stage of the disease. We

discuss here how soluble biomarkers could be integrated into clinical

practice with their respective potential interest. At the baseline

evaluation, soluble biomarkers could thus allow the selection of the

more appropriate treatment with a higher predictive value of clinical

benefit (190). It could also predict patients with worse prognoses to

propose more aggressive treatment and combine ICI with

chemotherapy rather than ICI alone. At the early on-treatment

phase, soluble biomarker variations could identify patients with

biological progression and predict patients with a higher risk of

progression to closely monitor the disease (191), and even identify

patients with early-stage hyper progression (192). The prolonged

monitoring of soluble biomarkers for patients treated by ICI also

exhibits additional interest such as response assessment. The pseudo-

progression or prediction of biological residual disease in long-term

responders could also be identified with prolonged monitoring of

soluble biomarkers (193) (Figure 2).
FIGURE 2

Perspectives for liquid biopsies into the immune landscape. Liquid biopsy for patients with NSCLC and treated by immunotherapy can improve many
clinical challenges such as baseline evaluation, real-time monitoring, and prediction of response or progression. Created with BioRender.com.
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8 Conclusion

Recent advances in lung cancer management are particularly

impressive in ICI. However, only a sub-population benefits from

immunotherapies. The currently available biomarkers, including

tumor PD-L1 expression, remain largely perfectible. Liquid biopsy

is now well-admitted into NSCLC with oncogenic addiction treated

by TKIs showing promising results in the ICI field. Easy-to-use

parameters derived from blood numerations and more complex

scores and parameters can predict ICI outcomes for patients with

NSCLC. However, each parameter harbors various limitations

growing roots from a low level of evidence to technical difficulties

before the integration into clinical practice. The design of specific

and dedicated clinical trials is necessary to improve patient survival

with biological-driven randomization and/or management.
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