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The chemical profiling of complex natural mixtures emerges as a pivotal avenue of investigation for the discovery of new 
bioactive compounds. It requires a dereplication step generally based either on liquid chromatography-high resolution 
tandem mass spectrometry (LC-HRMS2) or on nuclear magnetic resonance (NMR) to quickly identify known compounds. 
The high sensitivity of MS results in numerous but sometimes incorrect candidate compounds, whereas the greater uni-
versality of NMR leads to fewer but more accurate annotations. These two analytical techniques are rarely used in combi-
nation despite their complementarity. This study focuses on the chemical profiling of Larix decidua (Pinaceae) bark by 
joint LC-HRMS2 and 13C NMR data analysis and by querying custom in silico-generated chemical databases. MS-based 
dereplication allowed the annotation of 135 MS2 spectra with at least two different annotation tools. Twenty-five com-
pounds were annotated in parallel by NMR spectra analysis, including two previously undescribed myrtenic acid deriva-
tives. Sixteen of these compounds were already reported in the Pinaceae family. Twelve compounds were jointly annotat-
ed with a high confidence level by comparing LC-HRMS2 and 13C NMR dereplication results, including compounds not 
reported to date in Larix decidua. Our results show the benefits brought by combining LC-HRMS2 and 13C NMR data and 
by querying custom in silico chemical databases to enhance the confidence level of data annotation during the chemical 
profiling of complex natural extracts. 
 

Introduction 
 Living organisms produce low molecular weight organic 

natural products, called metabolites, to meet their functional 
needs. Primary metabolites are involved in vital biochemical 
pathways, while secondary or specialised metabolites medi-
ate the interactions of living organisms with their biotic and 
abiotic environment. The locution "natural product" (NP) 
generally refers to secondary or specialised metabolites and 
primary metabolites, excluding macromolecules such as pro-
teins, polysaccharides, or nucleic acids. Phytochemistry aims 
to chemically characterise NPs from various living organisms 
and to link this chemical information with biological activity 
profiles to address research questions mainly in chemical 
ecology or new active substances discovery for different eco-
nomic sectors such as pharmaceutical, cosmetic, and agro-
chemical industries.   
Three major events had a considerable impact on NP re-
search. The first, in 1992, is linked to the Rio Convention on 
Biological Diversity, which laid the foundations for the Nago-
ya Protocol on access to genetic resources and the fair and 
equitable sharing of benefits arising from their use. This new 
regulation has been perceived as a constraint by many phar-
maceutical companies and has contributed to a slowdown in 

research in the field. Nevertheless, an inventory of NPs intro-
duced as drugs between 1981 and 2019 has been carried out 
by Newman and Cragg. Of the 1,881 molecules brought to 
market during these 39 years, 71 are NPs stricto sensu, 356 
are derivatives of NPs, often obtained by semi-synthesis, and 
272 are obtained by organic synthesis while having a pharma-
cophore inspired by NPs. This demonstrates, if proof was 
needed, that NPs are still an essential source of inspiration for 
Western medicine. They are also playing an increasingly im-
portant role in the cosmetics industry.  
The second event concerns the advent of the bioeconomy 
and biobased chemistry concepts, which aims to add value to 
biomasses, mainly agricultural, algal or forestry, without 
competing with food resources. Therefore, while biodiversity 
hotspots have historically attracted the most significant re-
search interest, the chemical profiling of dedicated biomasses 
or co-products from existing industries has become an essen-
tial challenge for achieving carbon neutrality by 2050 via the 
circular economy concept. This aspect of NP research is rein-
forced by recent results demonstrating unambiguously that 
the planetary boundary related to the introduction of new 
chemical entities (i.e., derived from organic synthesis) has 
widely been exceeded. 
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The last event concerns the increasing number of phytochem-
ists who recently have actively engaged in addressing the 
principles of open science and promoting the production of 
FAIR data. Significant initiatives have been launched in this 
context, enabling our research activities to benefit from es-
sential open-access tools in spectral data processing and 
databases. 
Although the potential for NPs to reach high added value 
sectors and the interest in studying them for fundamental 
research questions are significant, the phytochemistry work 
often remains complex, time-consuming, tedious, and costly. 
Together with the entry into force of the Nagoya Protocol, 
this is one of the reasons for which industrial research pro-
grams on natural products have slowed down or even 
stopped since the beginning of the 2000s. Nevertheless, the 
massive arrival over the last 15 years of new dereplication 
approaches enabling known compounds to be chemically 
characterised as far upstream as possible in the process (1) 
has given new impetus to phytochemical research, both at 
academic and industrial levels.(2) Nevertheless, identifying 
unambiguous structures by describing their unequivocal mo-
lecular topology and their geometry, among mixtures, re-
mains challenging. Hence, “annotation” is commonly used 
when structural information is incomplete.  
The two main spectroscopic methods used to study complex 
mixtures of NPs are nuclear magnetic resonance (NMR) and 
mass spectrometry (MS), often hyphenated with HPLC for the 
latter.(3) Their sensitivity and universality performance af-
fects the number and the relevance of annotated com-
pounds. 
As stated by Sumner et al., exploiting the advantages of at 
least two unrelated techniques (e.g., NMR and MS) should 
improve the annotation reliability.(4) Various strategies 
(online versus offline combinations) were reported by 
Letertre et al.(3)  and Marshall et al.(5) and are shown in Fig. 
S1.  
When examined under the same conditions, a compound 
originating from two distinct biological sources is expected to 
display identical spectral features. Consequently, rapidly 
identifying well-known compounds, achieved by matching 
experimental data with established reference spectra, is gen-
erally straightforward, assuming the necessary spectral data 
is accessible. However, this process becomes considerably 
more intricate when dealing with complex mixtures. 
Presently, while structures within natural product structural 
databases are relatively easy to retrieve (e.g., LOTUS, COCO-
NUT-DB, NP-MRD, DNP, NPAtlas, ChEBI, KNApSAcK, etc.), the 
main challenge lies in locating databases where each struc-
ture is associated with its corresponding spectral data (e.g., 
GNPS, MarinLit). Access to comprehensive and easily search-
able experimental spectral data remains crucial to ensure a 
high confidence level in annotations. (6)  Nevertheless, natu-
ral product databases encounter limitations, such as incom-
pleteness, inconsistency, availability loss, and/or restricted 
query flexibility. Additionally, data from NMR and MS are 
scattered throughout scientific publications in formats that 
do not facilitate automated data extraction for constructing 

databases. As a result, even when such data exist in the liter-
ature, they are not uniformly incorporated into databases. 
Due to these limitations, querying a database for known nat-
ural products is hindered by barriers that significantly slow 
down the overall data mining process. As a solution, predict-
ing spectral data has emerged as a way to improve current 
spectral databases. In this context, existing spectral databases 
serve a broader purpose than expediting dereplication (i.e., 
identifying known compounds). They also serve as the cor-
nerstone for developing algorithms capable of predicting 
spectral data (e.g., MetFrag, CFM-ID, QCxMS). These tools can 
then enrich current experimental spectral databases by in-
corporating simulated in silico spectral data (e.g., UNPD-ISDB, 
FooDB, AntiBase, Mona, etc.), subsequently streamlining the 
dereplication process (e.g., Network Annotation propagation) 
or aiding to develop robust systems for automatic de novo 
elucidation (e.g., SIRIUS, Sherlock (7)). However, the DB size 
and content impact annotation performance, as a more ex-
tensive database increases the probability of returning irrele-
vant candidates, whereas a database that is too restricted a 
priori may lead to the omission of annotations.(8) DB content 
should be a priori restricted by taxonomy, either on biological 
and/or chemical grounds, to reduce the number of irrelevant 
matching spectra.(9)  
The build of such DB is nowadays an obstacle course. Large 
chemical libraries must be first surveyed for compounds, 
according to criteria defined by the purposes of the study. 
The molecular structures of the returned compounds must 
then be gathered into a structural DB. This implies all the 
issues concerning the stereochemistry description and the 
drawing of the molecular structures. Finally, these structural 
DBs should be able to be used as inputs for spectral predic-
tion software. Not all software is user-friendly, and the gen-
eral workflow, including all the required unit steps, is not 
automated and available under a single software package.  

This work aims to present a comprehensive workflow en-
compassing the creation of a relevant structural/spectral 
database and the combined exploitation of MS2 and 13C NMR 
data for the chemical profiling of a bio-based extract, with a 
specific focus on an ethyl acetate solid-liquid extract from 
Larix decidua bark. 

Results 
The dereplication workflow described hereafter and applied 
to the chemical profiling of Larix decidua (Pinaceae) bark 
ethyl acetate crude extract is based on the combination of LC-
HRMS2 and 13C NMR data to annotate as many NPs as possi-
ble with the highest confidence level. First, barks were 
ground to powder and then macerated with EtOAc to obtain 
a crude extract with a mass yield of 6.2 %. A 3.81 g portion of 
this extract was submitted to centrifugal partition chromatog-
raphy (CPC) fractionation, leading to 12 chemically simplified 
fractions. 
These fractions were submitted to LC-HRMS2 and to 13C NMR 
analysis. The resulting data were subjected to processing and 
visualisation procedures. The HRMS2 data were presented as 
molecular networks, using Ion Identity Molecular Network 
(IMN), Feature-Based Molecular Network (FBMN), and Prop-
agated Annotation Network (NAP) workflows.(10–12) 13C 
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NMR data were analysed by hierarchical cluster analysis after 
chemical shift alignment, and the resulting chemical shift 
clusters were visualised as a heatmap.(13) The HRMS2 and 
NMR data were then annotated using spectral comparison 
with structures contained in a custom DB created by selecting 
structures from the LOTUS DB according to taxonomic criteria 
and with the help of in silico, experimental and de novo eluci-
dation tools.(14) The results from both workflows were com-
piled, then ranked and finally a confidence score was as-
signed to each annotation using a script developed for this 
purpose. 
 
Structural and in silico spectral database of compounds 
from Pinaceae 
Creating a database containing NPs associated with their 
spectral properties requires collecting the corresponding 
chemical structures. At first, in the framework of this study, a 
DB containing the NPs isolated from plants belonging to the 
Pinaceae family was created. The corresponding chemical 
structures were downloaded from the LOTUS database using 
the VersaDB GUI. VersaDB is a recently developed Python-
based graphical user interface that integrates the open-
source database and webserver LOTUS, CFM-ID, and 
nmrshiftdb2 in a unique dereplication workflow.(14) It has 
been designed to create local custom databases of NPs se-
lected according to biological and chemical taxonomic criteria 
from the LOTUS DB. The resulting structural DB and the cor-
responding MS and 13C NMR predicted spectral DBs can be 
further used to perform dereplication of complex mixtures 
through dedicated platforms and software such as SIRIUS, 
NAP (MetFrag algorithm will use the structural database to 
predict and compare spectra to experimental data), GNPS, 
MetGem and ACD/Labs DB.(14) 
Structure inquiry was initiated targeting the Pinaceae plant 
family. As a result, 2,790 non-redundant structures were 
obtained. The 5 most represented chemical superclasses 
were distributed as follow: diterpenoids (469, 16.8%), 
triterpenoids (316, 11.3%), sesquiterpenoids (306, 11.0%), 
flavonoids (287, 10.3%), and lignans (173, 6.2%). Structures 
which could not be classified by NPClassifier were labelled as 
“nan”. (Fig. S2B) 
The structural DB was then used to build the MS2 and the 13C 
NMR spectral DBs using VersaDB program. The default pre-
diction settings were applied for both prediction tools within 
the VersaDB application (CFM-ID4.2.6 and NMRShiftDB), and 
MS2 spectra were predicted for three collision energies in 
[M+H]+ mode. The prediction was operated in 1 h 15 min and 
26 sec with a PRECISION 3650 computer, equipped with an 
Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz 3.70 GHz pro-
cessor and with 64.0 Go RAM.  
The predicted 13C NMR chemical shift values were then im-
ported to the database management software ACD/NMR 
Workbook to check and correct the predicted chemical shift 
of each structure. Among inspected structures, 258 contained 
suspicious chemical shifts and thus were corrected using the 
ACD/NMR Workbook Suite. This database was then used for 
spectral matching with each chemical shift clusters resulting 
from the HCA of experimental spectra. 

Concerning MS2 spectra, CFM-ID failed to predict spectra 
from 3 compounds since these were molecules for which the 
SMILES retrieved from LOTUS contained more than one struc-
ture. Consequently, MS2 predicted spectral DB gathered 
8,361 MS2 spectra (3 collision energies x 2,787 compounds).  
To benefit from the NAP workflow as a complement to the 
forthcoming spectral matching with experimental databases, 
the structural database has been enriched, using the 
http://dorresteinappshub.ucsd.edu/, with the following in-
formation: "MonoisotopicMass InChI SMILES Identifier 
InChIKey2 InChIKey1 MolecularFormula kingdom_name su-
perclass_name class_name subclass_name”. (15) 
 
Compound identification from 13C NMR data by the Cara-
Mel workflow 
The CaraMel chemical profiling workflow (13) is based on the 
unsupervised clustering of experimental 13C NMR chemical 
shift values using the peak intensity profiles across centrifugal 
partition chromatography (CPC) fractions as discriminating 
features, as explained in the Method section (13C NMR derep-
lication: CaraMel workflow). The resulting heatmap highlight-
ed 25 chemical shift clusters (Fig. 1) from the 403 chemical 
shift values picked in the spectra of 12 CPC fractions of the 
EtOAc Larix decidua bark extract. 
The chemical shift values in each cluster were compared to 
those from the custom Pinaceae 13C NMR predicted database 
(2,790 structures associated with their predicted 13C NMR 
chemical shifts).  
As a result, 12 compounds were directly annotated, as shown 
in Fig. 1, by submitting the 13C chemical shifts of the corre-
sponding cluster from HCA to the 13C NMR Pinaceae data-
base, using the structure search engine included in the 
ACD/NMR Workbook database management tool. If relevant, 
the annotations of these compounds contained in the EtOAc 
bark extract and their relative configurations were confirmed 
by the complementary analysis of 1H and 2D NMR data (COSY, 
HSQC and HMBC spectra). These compounds, marked by a 
blue star symbol in Fig. 1, are catechin (cluster 1), epicatechin 
(cluster 2), quercetin-3-rhamnoside (cluster 3), trans-astringin 
(cluster 6), lavandoside (cluster 9), larixyl acetate (cluster 11), 
ferulic acid (cluster 13), larixinol isomers (cluster 14), 13-
epimanool (cluster 20), isopimaric acid (cluster 21), dehydro-
abietic acid (cluster 22) and 7-oxo-dehydroabietic acid (clus-
ter 23).  
Thirteen other structures were annotated (Fig.1) based on 
the initial proposals returned by ACD/NMR workbook (alt-
hough erroneous, they often provide very useful hints for 
"manual" annotation) and from 2D NMR data of chemically 
simplified fractions: acetic acid (cluster 4), piceatannol-3’-o-
glucoside(trans) (cluster 5), glucosyl frambinone (cluster 7), 
glycerol monoacetate (cluster 8), glucosyl-trans-para-
coumaric acid (cluster 10), 2-[2,4-
dihydroxybenzoyl)oxyphenyl]acetic acid (cluster 12), dian-
thoside (cluster 15), oleic acid (cluster 18), linoleic acid (clus-
ter 19), butanol (cluster 1’), tannins (catechic units) (cluster 
2’). Three of these NPs were not directly annotated even 
though they were present in the VersaDB Pinaceae database 
generated for this study because many of their chemical 
shifts have been clustered with those of other compounds 
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(e.g., trans-astringin (cluster 6) and trans-piceatannol-3’-o-
glucoside (cluster 5), or lavandoside (cluster 9) and glucosyl 
trans-para-coumaric acid (cluster 10). Moreover, the struc-
tures reported in Table S8 of two previously non-reported 
compounds: rhamnosyl-(1->6)-glucosyl-myrtenic acid and 
arabinosyl-(1->6)-glucosyl-myrtenic acid (respectively cluster 
17 and 16), were elucidated based on 1D and 2D NMR data of 
CPC fraction 3. HMBC correlations were observed between 
protons H-1’ and carbon C1, between proton H-1’’ and carbon 
C-6’, and between protons H-6’ and carbon C-1’, thus con-
firming the structure of arabinosyl-(1→6)-glucosyl-myrtenic 
acid. In addition, the correlation between carbons C-4’’ and C-
5’’ and proton H-6’’ confirmed the rhamnosyl-(1→6)-glucosyl-
myrtenic acid structure. These two compounds were also 
detected while analysing CPC fraction 3 by mass spectrome-
try, and the corresponding features have been annotated 
with their molecular formula (respectively C21H32O11: feature 
248, 483.18 m/z, [M+Na]+, feature 294, 499.16 m/z,[M+K]+; 
and C22H34O11: feature 306, 497.20 m/z, [M+Na]+). Their 
structures are close to that of sacranoside A, but with 
myrtenic acid as aglycon moiety instead of myrtenol. Interest-
ingly, the monoterpene myrtenol and oxidised derivatives 
have also been previously identified from the bark of Picea 
abies (Pinaceae).(16) 
As a result, 16 of the 25 compounds identified by the NMR 
workflow were previously reported in the Pinaceae and are 
marked with the PNC symbol in Fig. 1. The chemical diversity 
of the 25 identified compounds was studied according to 
NPClassifier output, including five diterpenoids (larixyl ace-
tate, 13-epimanool, isopimaric acid, dehydroabietic acid, 7-
oxo-dehydroabietic acid), five flavonoids (catechin, epicate-
chin, suercetin-3-rhamnoside, larixinol isomers, tannins (cate-
chic units)), three phenylpropanoids (lavandoside, glucosyl-
trans-para-coumaric acid, ferulic acid), three fatty acids (oleic 
acid, linoleic acid, butanol), two stilbenoids (trans-astringin, 
piceatannol-3-o-glucoside), two monoterpenoids arrabinosyl-
glucosyl-myrtenic acid, rhamnosyl-glucoside-myrtenic acid), 
one aromatic polyketide (2-[2,4-
dihydroxybenzoyl)oxyphenyl]acetic acid), one cyclic polyke-
tide (dianthoside), two undefined compounds (glucosyl-
frambinone, glycerol monoacetate), and the erroneous anno-
tation from NPClassifier for acetic acid as small peptide. Fig. 
S2B shows the global chemical distribution for these com-
pounds. 
Table 1 and Fig. 1 show the distribution of the identified 
compounds within the 12 fractions. The 13C and 1H chemical 
shifts of the annotated compounds are reported in Table S8. 
 
LC-HRMS2 data annotations through molecular network 
workflows 
Dereplication applied to CPC fractions was performed using 
LC-HRMS2, and experimental spectral data were subjected to 
annotation using specific algorithms, including IIMN (17), 
FBMN (18), NAP (10), and SIRIUS (19). The experimental data 
were also compared (18) to the simulated MS data of the 
custom Pinaceae structural and spectral DB using the open-
source software MetGem (17). However, these results are 
not reported due to the low annotation rate, attributed to 
the poor quality of the predicted spectra as shown in Fig. S4. 

The raw data processing resulted in the detection of 1,958 
sets of signals corresponding to a chemical entity, also called 
features. MS2 spectra similarity-based molecular network was 
generated using the Feature Based Molecular Network 
(FBMN) workflow (see GNPS platform (18)). The chromato-
graphic peak shape correlation analysis was integrated into 
the molecular network by connecting and collapsing the dif-
ferent ion species of the same molecule via the Ion Identity 
Molecular Networking (IIMN), which enhances annotations 
within the fragmentation pattern similarity molecular net-
work. Annotations of MS2 spectra through spectral matching 
with reference spectra (FBMN) were improved through the 
use of an in silico approach known as Network Annotation 
Propagation (NAP), as well as employing a de novo strategy 
provided by the SIRIUS software 
 
IIMN + FBMN 

The FBMN workflow returned 83 matches with the GNPS 
speclibs collection, 54 unique spectra (46 unique com-
pounds): seven candidates were validated by the IIMN, en-
compassing six distinct spectra associated with unique com-
pounds: epicatechin, quercetin, and curcumin, as well as 
norethindrone, gestoden and a piperazine-derivative antihis-
tamine: cyclizine. The annotation of these three latter com-
pounds within the natural substance mixture is indeed sur-
prising, considering that they are of synthetic origin. Howev-
er, norethindrone and gestoden, two synthetic steroids, could 
be considered as natural product-like compounds when cal-
culating their natural product likeness scores (NaPLeS = 1.8 
and 2, respectively), in comparison to cyclizine (NaPLeS = -
0.6). The more positive the score, the higher the NP-
likeness.(19)  The most representative annotated chemical 
class were steroid (29%), diterpenoïd (23%), and flavonoid 
(17%), as shown in Fig. S2. B. 
 
NAP 

Fifty-three of the FBMN matches were also annotated with 
NAP. Thirty-seven of these annotations result from at least 
one structure candidate of the in silico fragmentation search 
with the MetFrag algorithm (20), including 25 unique spectra. 
NAP allowed the annotation of 156 not previously annotated 
features, using only in silico fragmentation search with Met-
Frag. Hence, the in silico fragmentation search allowed the 
annotation of 39.8% of all the considered features by the NAP 
algorithm versus 4.2% of all data set using only experimental 
spectral database search. In total, NAP led to the annotation 
of 9.9% of all the detected features. 
 
SIRIUS 

The de novo strategy facilitated the annotation of 1,786 fea-
tures with at least one molecular formula and corresponding 
adduct type. Among these, 896 features garnered multiple 
proposals, while 890 features were associated with a single 
proposal, resulting in a cumulative count of 2,847 proposals. 
Following the subsequent re-ranking step, 1,300 distinct mo-
lecular formulas were attributed to the 1,786 features.  
Integration of the Pinaceae structural database into the anno-
tation workflow enabled the annotation of 498 features, each 
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associated with at least one potential structural candidate 
retrieved from the Pinaceae structural database, encompass-
ing the assignment of 196 distinct structures as primary can-
didates. The five most frequently assigned structures the 
following: LTS0139452 (C19H28O2, 22 times), LTS0056945 
(C20H28O4, 16 times), LTS0251392 (C20H28O3, 15 times), 
LTS0084143 (C20H30O3, 13 times) and LTS0241153 (C20H32O2, 
11 times). Ultimately, 1,728 features have been annotated up 
to the chemical class level using the webservice CANOPUS 
integrated in SIRIUS. These annotations are categorised 
across seven biosynthesis pathways: terpenoids (663 instanc-
es), fatty acids (307 instances), polyketides (234 instances), 
shikimates and phenylpropanoids (160 instances), alkaloids 
(116 instances), amino acids and peptides (106 instances), 
and finally carbohydrates (41 instances). 
 
Combination of 13C NMR and LC-HRMS2 data annotations 
The experimental spectra were annotated through three 
strategies: experimental spectral databases matching, in silico 
spectral databases matching, and de novo annotation. The 
first one relies on the use of GNPS workflows and FBMN. The 
in silico annotation workflow relies on NAP and CaraMel. The 
manual analysis of NMR data and the application of the SIRI-
US software, both employed in this study, are integral com-
ponents of the third strategy. The latter allowed for the anno-
tation of experimental spectra without depending on spectral 
databases, even in cases undisclosed chemical structures 
were involved. A new workflow was created to combine the 
annotations from all the GNPS workflows (i.e., FBMN, NAP), 
SIRIUS and the 13C NMR annotation workflow called CaraMel. 
This new workflow named « CATHEDRAL » for « Combining 
THE DiffeRent Annotation tooLs. » is an in-house script writ-
ten in Python. This script allows the assignment of a confi-
dence level score using a custom confidence level system, 
determined based on the outcomes of the comparative anal-
ysis. 
First, FBMN and NAP results are merged to retrieve the spec-
tral matches versus experimental spectral libraries from GNPS 
and Pinaceae in a silico database simulated by MetFrag.  
Secondly, the resulting metadata is exported as a “recap.csv” 
file. A PRED column is added to the table, and features are 
“scored” as follows: 1 for the FBMN annotated features, 2 for 
the features without any FBMN annotation but with at least 
one NAP – MetFrag candidate, and 3 for all the remaining 
features.  
The comparison process starts with the SMILES from the 
FBMN workflow and the MetFragSMILES from the NAP work-
flow. The corresponding InChIKeys are then generated via 
functions from the RDKit Python library.  
The canonical SMILES from 13C NMR annotations structures, 
obtained from ChemDraw 20.1.1., and gathered into a file 
called «smile_nmr.txt», follow the same process as above. 
The resulting InChiKeys for each feature and CaraMel annota-
tions are thus compared to the corresponding SIRIUS annota-
tions InChiKeys.  

CATHEDRAL.py can be executed through a detailed step-
by-step jupyter notebook (CATHEDRAL.ipynb) under an RDKit 
anaconda environment. The recap.csv file is first opened, and 
features corresponding to the PRED score = 1 are selected. 

FBMN annotations are compared to MetFrag candidates for 
each feature. In the second place, FBMN annotations are 
compared to the corresponding SIRIUS candidates. In the 
third place, the FBMN, NAP (MetFrag), and SIRIUS annota-
tions are compared to each other to highlight those with the 
same candidate through the three annotation tools. The 
greater the number of tools giving the same annotation, the 
better the score and priority accorded to annotation tools 
based on their effectiveness in providing a relevant structural 
candidate (c.f. CASMI). Thus, a spectral match with a refer-
ence experimental spectrum (i.e., FBMN) will be prioritised 
over a predicted spectrum (i.e. MetFrag). However, de novo 
annotations (i.e., SIRIUS) will be ranked higher than the latter. 
Furthermore, the scores are better when a candidate is cor-
roborated by NMR, unlike cases where the annotation solely 
relies on MS/MS tools. Consequently, the features with con-
sistent annotation along the three mass annotation tools are 
scored with a Confidence_Level = 9. The features with con-
sistent annotations between FBMN and SIRIUS are scored 10, 
the features with consistent annotations between FBMN and 
MetFrag are scored 12, and features with consistent annota-
tions between MetFrag and SIRIUS are scored 11+. The corre-
sponding annotation for each scored feature is then com-
pared to the CaraMel candidates. If the MS2 candidate is part 
of CaraMel annotations, the header « Is_NMR_Annotated_SU 
» = 1, and the corresponding molecular name is given to the 
header « Molecular_Name_SU » else « 
Is_NMR_Annotated_SU » = 0, where SU means Sum-Up. Con-
sequently, features previously scored (9, 10, 11, 11+, 12), also 
annotated by CaraMel, are respectively re-scored 1,2, 3+ or 4. 
Then, only the data with a PRED score = 2 are selected. The 
features with consistent annotations between MetFrag and 
SIRIUS are scored 11. The annotation is then compared to the 
CaraMel annotations, as previously explained. If these fea-
tures are also annotated with CaraMel, the score is raised to 
3. 
If an annotation is common to at least two MS2 annotation 
tools, the third tool annotation is equally compared to the 
CaraMel annotations. If it matches, the corresponding molec-
ular name is reported in the header « 3rd_Tool_SU » of the 
sum-up file. 
All the other features that do not have consistent annotations 
between the different MS2 tools are equally compared to the 
CaraMel annotations. If the annotation from FBMN matches, 
Confidence_Level corresponds to 5; if one annotation candi-
date matches for at least the NAP workflow, Confidence Level 
is equal to 7. Finally, if only a candidate annotated from SIRI-
US matches with a CaraMel annotation, Confidence_Level will 
be 6. CaraMel annotations that do not correspond to any 
mass annotation are scored 8. All the corresponding confi-
dence levels are reported in Table. 2. 
The comparison outcomes are then written as a table in a 
sum-up file called « df_resume_confidence.tsv » starting with 
the following table column headers: « 3rd_Tool_SU, Confi-
dence_Level, Feature_SU, GNPS_SU, Is_NMR_Annotated_SU, 
Molecular_Name, NAP_SU, 
Not_Matching_Tool_Annotation_SU, Rt_SU, SIRIUS_SU, m/z 
». This sum-up file is then imported to the previously created 
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network collection in Cytoscape software, and metadata are 
overlayed on the graph via the in-house style, as exemplified 
in Fig. 2.  

CATHEDRAL workflow highlights up to 41 unique com-
pounds, annotated with at least two indiscriminately MS/MS 
or NMR dereplication tools, including 7 compounds in Fig. 3. 
The outcomes are reported in Tables. S1-S7. The best confi-
dence level annotated structures correspond to those with 
the same candidates for all annotation tools. They are all 
classified as flavonoid derivatives and FBMN / SIRIUS jointly 
annotated features. In addition, 21 among the 27 structures 
jointly annotated by NAP / SIRIUS correspond to diterpenoids 
(abietane and derivatives) and triterpenoids. Most features 
annotated jointly by at least two different tools are [M+H]+ 
(37 among the 50 iterations of annotated compounds). The 
structure candidates highlighted by NAP / SIRIUS and SIRIUS / 
CaraMel comparisons also include other ion species and in-
source modifications, respectively [M+Na]+ and [M+K]+ ad-
ducts or in-source modifications.  
As a result, the strategy for matching experimental spectral 
databases appears to prioritize annotating features associat-
ed with flavonoid chemical families and [M+H]+ adducts over 
other chemical families and ion species. Moreover, the chem-
ical diversity is more prominent when considering the chemi-
cal classes related to annotated compounds from in silico and 
de novo strategies. 
Finally, the de novo strategy for mass data annotation al-
lowed the annotation of nine of the 25 structures found by 
13C NMR data annotation. Five compounds among them were 
neither jointly listed by experimental nor predicted mass 
spectral database matching. 
 

Conclusion & Discussion 
Summary 

Untargeted metabolomics produces vast amounts of ana-
lytical data, yet the laborious analysis does not always result 
in a high annotation confidence level.  

Due to the complementarity of 13C NMR and LC-HRMS2, 
their combined use can potentially increase the number of 
detected compounds and significantly enhance the confi-
dence level in their identification. Consequently, various 
strategies have been developed recently, such as online (e.g., 
LC-MS-SPE-NMR) and offline approaches (e.g. multiblock).(3) 
However, the former requires bulky and expensive equip-
ment (i.e., ensuring compatibility of experimental conditions), 
while the latter enables in-depth data exploration but re-
quires advanced expertise in chemometrics. 

Hence, our strategy revolves around the cross-comparison 
of annotations from both 13C NMR and LC-HRMS2 spectral 
datasets. Despite the high simplicity of our cross-comparison 
process, two major challenges persist. On one hand, automa-
tion should make conventional manual procedures more 
efficient. On the other hand, the expected gain in confidence 
is noticeable only for compounds detected by both tech-
niques.  

Consequently, compound annotation by a single tech-
nique remains ambiguous and requires more traditional 
strategies, such as exploiting multidimensional NMR data. 

Additionally, the quality of the annotation process, which 
heavily relies on spectral comparison, depends on the availa-
bility of relevant high-quality spectral or structural databases. 

The initial step of the developed workflow involved the 
automatic compilation of tailored structural and predicted 
spectral databases, including the biological origin of the sam-
ple. This approach grants the crucial role of contextualization 
in NP research by narrowing down the pool of candidate 
structures whose affiliation with a specific plant species, ge-
nus, or family has been previously documented. It is also 
imperative to clarify that this step relies on queries from the 
LOTUS natural product database, built directly from Wikidata. 
The data are organized in triples, containing referenced struc-
ture-organism pairs that establish relationships between 
distinct molecular structures and the living organisms from 
which they were identified. Furthermore, the information 
comprised in LOTUS is associated to research findings provid-
ed by the scientific community, and as a result, it can suffer 
from the voluntary or involuntary omission of certain com-
pounds in the chemical description of a given species, genus, 
or family. Nevertheless, to our knowledge, LOTUS represents 
the most extensive structural database available, including 
numerous metadata and is well-suited for automated online 
queries.  

Consequently, integrating the Pinaceae family structural 
database with MS annotation tools resulted in a notable in-
crease in annotated features. Interestingly, the Pinaceae 
contextualization of databases employed in NAP and SIRIUS 
processes enabled us to achieve 25% and 10% annotation 
rates, respectively, surpassing the 5% annotation rate 
achieved using the GNPS spectral library. However, the in 
silico annotation strategy is still limited by the accuracy of 
spectral prediction algorithms (e.g., the MS2 predicted data-
base generated by CFM-ID 4.0). According to LOTUS, this 
trend was also observed with NMR, where 16 of the 25 iden-
tified compounds were associated with the Pinaceae family. 
The remaining nine compounds were manually verified not to 
be genuinely related to any Pinaceae species: only dian-
thoside was an exception.(21) Furthermore, the last eight 
molecules correspond to substances that can be considered 
handling pollutants, such as butanol. Another concerns tan-
nin, for which the complete molecular structure has not been 
elucidated. Others are not previously documented com-
pounds, such as the myrtenic acid glycosides derivatives. The 
last molecules, piceatannol-3’-o-glucoside (i.e., a positional 
isomer of trans-astringin previously associated with Pina-
ceae), 2-[2,4-dihydroxy-6-(4-hydroxybenzoyl)oxyphenyl]acetic 
acid glycerol acetate and its hydrolysis product acetic acid, 
are likely the only compounds in the set that have never been 
described in Pinaceae, despite previous documentation. Giv-
en its meticulous compilation work, these results affirm our 
choice of considering LOTUS as the optimal starting point for 
contextualizing our databases. 

The second step of this workflow involved efficiently scor-
ing candidates through the CATHEDRAL script, using a custom 
confidence level system. Hence, a confidence level was as-
signed to 52 compounds, annotated with at least two annota-
tion tools. This original scoring strategy markedly enhances 
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the compound annotation reliability and reinforces the struc-
ture-organism pairs. This approach also reduces the require-
ment for tedious manual analysis, including successive purifi-
cation and structural elucidation steps to confirm the pres-
ence of compounds in the studied matrix. As a result, it accel-
erates chemical profiling through dereplication. 

Recent research has ultimately shown that expanding ana-
lytical dimensions for multidimensional metabolite annota-
tion (e.g. Rt, m/z, chiroptical data, etc.) offers a significant 
boost, enhancing the accuracy and coverage of metabolites. 
More specially, ion mobility (IM) MS has emerged as a power-
ful technology that allows for the metabolite measurement of 
collision cross‐section values (CSS). Consequently, the CCS 
aids in isomer characterization by providing an additional 
separation dimension to mass, increasing the identification 
confidence. (22–25) Similar to the four-dimensional untarget-
ed metabolomic concept introduced by Cai et al.(26), includ-
ing multidimensional data and/or metadata (i.e., chemical 
ontology, scoring strategies, etc.) would significantly benefit 
our assessment methodology and, consequently, the con-
sistency of identifications.  

In turn, data from new identified compounds will partici-
pate to the completion of existing databases, thereby improv-
ing our understanding of the diversity of specialized metabo-
lites biosynthetic pathways. This knowledge will contribute to 
optimizing the production of high added value compounds in 
the pharmaceutical industry, as seen in the case of artemis-
inin production in Artemisia annua through the up-regulation 
of amorphadiene synthase (multiplying yield by 2.3).(27) 

Finally, the past and present habits in natural product 
chemistry research and publishing have led to issues, such as 
poorly defined chemical composition of plants. Insufficient 
description and standardization in the natural product prac-
tices, coupled with the irresponsible and inefficient manage-
ment of experimental reference data, can render further 
research unreliable due to inherent inconsistencies in the 
substance reporting. This has contributed to the relative ne-
glect of pharmacological studies on natural substances.(28) 
Additionally, it is essential to enhance the user-friendliness of 
tools to encourage phytochemists to persevere with better 
practices.  

Despite the need for basic programming skills, this user-
friendly approach contributes to global standardization in 
natural product research, following the ChemBioPrint® 
framework. Its consistency in providing high confidence levels 
for identified components in complex mixtures of natural 
products eases the selection of authentic molecules for 
pharmacological studies, such as reverse docking, thereby 
reducing compound to drug development time. 
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dence level score determined based on the outcomes of the comparative 
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https://github.com/Jcrdnr/CATHEDRAL. 
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Materials and Methods 
The dereplication workflows are summarised in Fig. 4. 
Plant material 
The Nagoya Protocol was adopted by France in 2010 and entered into force 
in 2014. The French “Office National des Forêts” (ONF) granted the authors 
permission to collect samples and to use bark extracts at the University of 

Reims Champagne-Ardenne. Larix decidua bark was collected on a standing 
tree by M. Verdeaux in Signy-L’Abbaye (Ardennes, France), route forestière 
Roban, 70th plot on the 11th of May 2017. The sample was dried for three 
days at 30°C before being finely powdered by a hammer mill (VEM Motors 
GmbH, Germany). The botanical identification of trees was made following 
the phenotypic characteristics, such as the shape, arrangement, and contours 
of leaves.(29) 

Sample preparation 
Collected Larix decidua barks were cleaned to remove unwanted materials 
such as moss and soil particles, and the crude extract was prepared by mac-
eration of 70 g bark powder in 1 l ethyl acetate (EtOAc) at room temperature 
for 24 under magnetic stirring. After filtration under vacuum on a 40 µm 
sintered glass, the solvent was evaporated under vacuum to leave a dry 
EtOAc extract. The extraction of Larix decidua bark by EtOAc yielded 4.34 g 
(6.2 %) of crude extract. 

Sample fractionation 
The crude extract was fractionated by Centrifugal Partition Chromatography 
(CPC). It is based on liquid–liquid compound partitioning between two non-
miscible liquid phases that stay close to their thermodynamic equilibrium. 
The absence of solid chromatographic support facilitates the fractionation of 
complex samples, eliminates the risk of stationary phase overloading or 
clogging, and avoids the potential deterioration of chemical compounds, thus 
leading to mass recovery rates close to 100 %. 
CPC apparatus 
CPC experiments were performed on an FCPC200 ® apparatus (Rousselet 
Robatel Kromaton) equipped with a rotor containing 800 cells (260 ml total 
column capacity) and connected to Smartline Preparative Pump 1800 (Knau-
er). The eluent was collected with a LABOCOL Vario-4000 fraction collector 
(Knauer) in fractions of 20 ml. 
Solvents system 
The CPC fractionation of the extract was performed in two consecutive steps 
(CPC1 and CP2) to obtain the broadest possible diversity of fraction polarity. 
Gradient elution system n-heptane/ethyl acetate/methanol/water: 
The initial mobile phase (lower phase of system 1: n-heptane/ethyl ace-
tate/methanol/water (5:5:5:5, v/v)), the final mobile phase (lower phase of 
system 3: n-heptane/ethyl acetate/methanol/water (7:3:7:3, v/v)) and the 
organic stationary phase (upper phase of system 2: n-heptane/ethyl ace-
tate/methanol/water (6:4:6:4, v/v)) were prepared separately. 
Isocratic elution system ethyl acetate/acetonitrile/water: 
The system composed of ethyl acetate/acetonitrile/water (3:3:4) (system 3) 
was used in the normal-phase mode (upper phase mobile). 
Injection and CPC operating procedure  
CPC 1 
The column was filled with the stationary phase of the gradient elution 
system and equilibrated with the initial mobile phase at 10 ml/min and 1600 
rpm. The crude extract (3.81 g) was dissolved in 3 ml of lower phase + 3 ml of 
upper phase and injected into the CPC column through a 20 ml loop. As 
described in Table, the mobile phase was pumped in descending mode for 
110 minutes. 3. The column was extruded by switching the mode selection 
valve for 15 minutes at 20 ml/min. Fractions of 20 ml were collected over the 
whole experiment (elution and extrusion) and combined according to their 
thin layer chromatography profiles (TLC). 
CPC 2 
The column was filled with the stationary phase (upper phase) of the isocrat-
ic system and equilibrated with the lower phase at 10 ml/min and 1800 rpm. 
Then the CPC1 first fraction (252 mg) was dissolved in 3 ml of lower phase + 
3 ml of upper phase and injected into the CPC column by a 20 ml loop. The 
mobile phase was pumped in ascending mode for 90 minutes. The column 
was extruded by switching the mode selection valve for 20 minutes at 20 
ml/min. Fractions of 20 ml were collected over the elution step and com-
bined according to their TLC profiles. 
TLC of CPC fractions 
The 20 ml fractions of the two CPC experiments (elution and extrusion) were 
characterised by TLC. TLC was performed on pre-coated silica gel 60 F254 
Merck plates, with the migration solvent system consisting of ethyl ace-
tate/toluene/acetic acid/formic acid (4/6/1/1, v/v). Compound migration was 
visualised under UV light at 254 nm and 366 nm and revealed by spraying 
consecutively the dried plates with 50% (v/v) H2SO4 acid and vanillin (10 g / l) 
ethanolic solution followed by heating. As a result, six fractions were ob-
tained from CPC1. The first fraction (consisting in the seven first elution 
minutes (t0 of the experiment)) was used for CPC2. The other fractions were 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/Jcrdnr/CATHEDRAL
https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   9 

noted F08, F09, F10, F11 and F12 (Figure S2). The fractions from CPC2 were 
arranged in reverse order of collection (because CPC1 was performed in 
descending mode while CPC2 was performed in the ascending mode) to 
obtain a chemical profile continuity between the two fractionation steps. The 
fractionation of the bark extract resulted in twelve chemically simplified 
fractions of polarity ranging from the highest (F01) to the lowest (F12) (Fig. 
S2), ten produced by elution and two by subsequent column extrusion.  
The fractions were then analysed in parallel by LC-HRMS2 and 13C NMR. 
Experimental spectral data were then processed and annotated while taking 
advantage of purposely created databases. A comparison of the resulting 
candidate structures from both workflows was carried out to enhance confi-
dence in the final profiling outcomes. 
Generation of custom structural and spectral databases: VersaDB 
The VersaDB GUI was employed for constructing customised structural and 
spectral databases. The methodology previously outlined was subsequently 
applied. (14) Briefly, the process involved an automated structural inquiry 
utilising the 'for all selected categories' function of VersaDB. This function 
allowed the transmission of HTTP requests via the LOTUS API, applying a 
singular chosen criterion: 'T: All_Taxonomy_DB: family: Pinaceae'. This ap-
proach entailed a comprehensive search for structures documented within 
botanical species affiliated with the Pinaceae family. This was executed by 
leveraging the entirety of available taxonomic databases originating from the 
LOTUS Natural Product Occurrence Database. 
The resultant compilation of structures, each accompanied by its respective 
LOTUS ID, was archived in two analogous files: cfmidinput.txt and structur-
aldb.txt. These files served as input for the MS2 and 13C NMR spectra predic-
tion or were employed as the structural database within the SIRIUS and NAP 
platforms. However, it requires formatting adjustments before it can be 
utilised in the NAP workflow. To achieve this, the file was subjected to pro-
cessing using the http://dorresteinappshub.ucsd.edu/ web server. The origi-
nal data, initially presented in the 'SMILES - CompoundID' format, undergo 
enhancement and transformation into a novel arrangement: “Monoisotop-
icMass InChI SMILES Identifier InChIKey2 InChIKey1 MolecularFormula king-
dom_name superclass_name class_name subclass_name.”. Additional 
metadata from LOTUS, encompassing chemical and physical attributes, 
taxonomic classification, and chemontology information according to the 
NPClassifier ontology, were consolidated and stored within a file named 
“cfmid input.tsv.". 
The “predict both properties” functionality within VersaDB was subsequently 
employed to predict both MS2 and 13C NMR spectral properties. 
Concerning 13C chemical shifts prediction, the VersaDB system incorporated 
an adaptation of Kuhn and Nuzillard's approach, leveraging the nmrshiftdb2 
packages. The outcome was the “13CNMRDatabase.sdf” file containing the 
structures, their 13C nmrshiftdb2-predicted chemical shifts in the style of 
ACD/Labs CNMR Predictor, and all compound-related metadata gathered 
from LOTUS, encompassing biological, chemical taxonomy, and physicochem-
ical properties. This “13CNMRDatabase.sdf” file was then imported into 
ACD/NMR Workbook Suite 2012 (ACD/Labs, Ontario, Canada), where the 
predicted 13C chemical shifts underwent validation using the “check chemical 
shifts” option. 
The prediction of MS2 spectra was conducted using the CFM-ID 4.2.6.0 dock-
er image. MS2 spectra were predicted across three collision energies, em-
ploying the pre-trained CFM-ID models. This process culminated in the crea-
tion of the definitive custom in silico mass spectral database file, denoted as 
“MSMSspectraDatabase.mgf”, along with the “annotationGNPSformat.tsv” 
file containing the compound's metadata. These outputs were fashioned to 
meet the requirements for publishing the database on the GNPS platform. 
13C NMR dereplication: CaraMel workflow 
Data acquisition  
All samples were analysed using the same acquisition and processing param-
eters. Fractions were dried under vacuum, and aliquots (up to about 20 mg 
when possible) of CPC fractions were dissolved in 600 μl DMSO-d6 and ana-
lysed by nuclear magnetic resonance (1H, 13C, HSQC, HMBC, and COSY) at 298 
K on a Bruker Avance AVIII-600 spectrometer (Karlsruhe, Germany) equipped 
with a TCI cryoprobe. 13C NMR spectra were acquired at 150.91 MHz using a 
standard udeft pulse sequence with an FID acquisition time of 0.36 s, a 
relaxation delay of 3.00 s, and the accumulation of 1,024 scans. 
Data processing 
The absolute intensities of all 13C NMR signals detected in all spectra were 
collected by automatic peak picking, after spectra processing (manually 
phased, baseline corrected, and referenced by setting the central resonance 
of DMSO-d6 at δ 39.80 ppm) using the TOPSPIN 4.1.3 software (Bruker, 
Rheinstetten, Germany). Each peak list was converted into a text file contain-

ing peak positions and absolute peak intensities. Peaks positions from the 
whole set of spectra were then aligned by an algorithm written in the Python 
language. The principle was to divide the 13C spectral width (from 0 to 240 
ppm) into regular bins of 0.2 ppm width and to place the absolute intensity 
of each 13C peak into the corresponding bin. The bins without any signal, 
regardless of fraction, were removed from the bin list. The resulting global 
table contains 12 columns, each corresponding a CPC fraction, and 403 rows, 
corresponding to the NMR spectral buckets for which at least one 13C NMR 
peak was detected in at least one spectrum. This table was imported into the 
PermutMatrix software (version 1.9.3, LIRMM, Montpellier, France) for 
hierarchical clustering analysis (HCA). This operation reordered the rows of 
the global peak table so that similar rows, corresponding to similar chroma-
tographic emergence profiles, were grouped together and lead to define 
clusters of chemical shifts values, with ideally one cluster defined per com-
pound contained in the EtOAc extract of Larix decidua bark. The similarity 
between table rows was measured by the Euclidian distance, and data ag-
glomeration was performed with the Ward’s method. The resulting clusters 
of 13C NMR chemical shifts were visualised as dendrograms on a heat map.  
Each 13C NMR chemical shift cluster obtained from HCA was manually sub-
mitted to the VersaDB-generated database containing the structures and 
corresponding predicted NMR chemical shifts values (nmrshiftdb2) of 2790 
natural metabolites found in the Pinaceae family (April 2022), via the struc-
ture search engine from ACD/NMR Workbook Suite 2012 (ACD/Labs, Ontario, 
Canada). This dereplication procedure was described in a previous article.(13) 
A 13C NMR chemical shift difference between the predicted and experimental 
spectra was tolerated between 2 and 3 ppm, and the minimum number of 
13C query shift values to match was set at about 80% of the number of chem-
ical shifts in the cluster. Finally, each structure proposal provided by the 
database query and its associated relative configurations was confirmed by 
interpretation of 1D and 2D NMR data (1H, 13C, HSQC, HMBC, COSY). 
LC-HRMS2 dereplication 
Data acquisition 
LC analyses were performed with Waters QSM Acquity, equipped with an 
UPTISPHERE Strategy C18 column (2.2µm x 150 mm x 2.1 µm, Interchim). The 
eluent consisted of H2O + 0.1% formic acid (A) and MeCN (B), following a 
gradient 5-30 % B in 4 min, then 30-80 % B in 14 min, then 80-100 % in 0.50 
min, then maintaining 100 % B for 9.5 min at a flow rate of 0.5 ml/min.  The 
wavelength range of the UV detector was set from 210 to 400 nm. 
Mass data were acquired with a Waters SYNAPT G2-Si (QTof) mass spec-
trometer. The electrospray ionisation source was set as follow: positive mode, 
source temperature 100°C, capillary 3 kV, desolvation temperature 450°C, 
nebuliser gas flow 5 Bar, desolvation gas flow 700 l/h. MS scans were per-
formed in full-scan mode from m/z 100 to 1200 (scan time 0.1 sec) with a 
resolution of 40 000 (FWHM). An MS1 scan was followed by MS2 scans of the 
three most intense ions above a threshold of 3000 counts (exclusion window 
3 sec). The selected parent ions were fragmented according to the following 
energy ramp: low mass start: 35 eV, low mass end: 55 eV, high mass start: 70 
eV high mass end: 130 eV. Leucine-enkephalin (1 ng/µL) was used as a refer-
ence mass via a lock spray interface at a flow rate of 10 μl/min for positive 
ion mode monitoring ([M + H]+ = 556.277). 
MZMine 3 data processing  
The 12 MS2 raw files were converted from the .raw (Waters) standard data 
format to .mzml format using the MSConvert software, part of the Prote-
oWizard package (version 3.0.21349, Palo Alto, CA). All .mzml were pro-
cessed by MZMine 3 v0.21 beta(30) in batch mode. 
The mass detection was realised by keeping the noise level at 50. The ADAP 
chromatogram builder was used with a minimum group size of scans of 5, a 
group intensity threshold of 5000, a minimum highest intensity of 7500, and 
m/z tolerance of 0.005 (or 20 ppm). The ADAP feature resolver was used for 
the deconvolution step and the wavelets deconvolution algorithm was ap-
plied with the following standard settings: S/N threshold = 5, minimum 
feature height = 7500, coefficient/area threshold = 20, peak duration range 
0.01−1 min, RT wavelet range 0.01−0.12 min.  MS2 scans were paired using 
an m/z tolerance range of 0.05 Da and RT tolerance range of 0.5 min. Isotop-
ologues were grouped using 13C isotope filter (isotopic peak grouper) algo-
rithm with an m/z tolerance of 0.005 (or 20 ppm) and a retention time (RT) 
tolerance of 0.2 min and a maximum charge of 3. The peak alignment was 
performed using the join aligner module [m/z tolerance = 0.004 (or 10 ppm), 
weight for m/z = 2, weight for RT = 1, absolute RT tolerance 0.5 min]. The 
peak list was gap-filled with the same RT and m/z range gap filler module 
[m/z tolerance of 0.004 (or 10 ppm)]. The feature list was filtered using the 
feature filter algorithm as follow: Duration 0-3 min, data points 3-10000. 
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Features were then filtered using the row filter algorithm as minimum fea-
tures in an isotope pattern set to 2. 
Finally, the metaCorrelate algorithm was applied to the dataset with the 
following parameters, RT tolerance 0.1 min, feature height correlation and 
intensity correlation threshold were set to 0. Min sample in all 1, Min % 
intensity overlap 40%, Exclude estimated features (gap-filled) turn on. Con-
cerning correlation grouping parameter, min datapoints 5, min data points 
on edge 2, measure Pearson, min feature shape correlation 85%. Concerning 
the feature height correlation parameters, min datapoints 3, measure Pear-
son, min correlation 60%. For the next step, the Ion Identity Networking 
algorithm was used as follow: m/z tolerance 0.001 (10 ppm), check all fea-
tures, min-height 0, MS mode positive, maximum charge 2, maximum mole-
cules/cluster 2, adducts: [M+H]+, [M+Na]+, [M+NH4]+, [M+2H]2+, [M-H+2Na]+, 
[M+H+Na]2+, modifications: [M-H2O], [M-2H2O]. Less common adducts were 
then added: [M+K]+, [M+Ca]2+, [M+Fe]2+, [M+H+NH4]2+, [M+H+K]2+, [M+Ca-
H]+, [M+Fe-H]+. Finally, adducts that tend to form clusters/in-source frag-
ments were added: [M+H]+, [M+NH4]+, [M+2H]2+, and modifications: 
[M+HFA], [M+ACN], [M-H2O], [M-2H2O], [M-3H2O], [M-4H2O]. Ion identity 
network refinement was applied using the following parameters: minimum 
size 3, delete smaller networks: link threshold 5. All ion identities were 
checked with m/z tolerance (MS2) 0.002 (15 ppm), with checking for multi-
mers and neutral losses (MS1→MS2). 
Eventually, the .mgf preclustered spectral data file and its corresponding .csv 
metadata files (for RT, areas, and formulas integration and edges MS1 anno-
tation) were exported using the dedicated “Export for GNPS” built-in options. 
Processed spectral data were exported to SIRIUS with m/z tolerance of 0.002 
(10 ppm) without merging MS/MS. 
SIRIUS annotation 
SIRIUS 4 is considered a state-of-the-art metabolite annotation solution, 
which combines molecular formula calculation and the prediction of a mo-
lecular fingerprint of a query compound from its fragmentation tree and 
spectrum.(31) Although the SIRIUS algorithm is integrated into GNPS, it was 
executed locally with Sirius 4.8.2 GUI, as it allows to use an in-house data-
base for the CSI FingerID contrarily to GNPS. The parameters used to proceed 
to the spectral data analysis were the following for SIRIUS molecular formula 
calculation: possible ionisation [M+H]+, [M+K]+, [M+Na]+, instrument: Q-TOF, 
ppm tolerance 10 ppm, Top molecular formula candidates: 5, filter: formulas 
from all available DBs, Elements allowed in Molecular Formula: H, C,  O, N 
(max: 3). Zodiac algorithm was used for re-ranking predicted formula as 
follow: [candidates 300m/z 10, candidates 800 m/z 50, use 2-step approach, 
Edge Threshold 0.95, min local connections 10, iterations 20 000, burn-in 
2000, separates runs 10]. For the CSI: FingerID step, the parameters were the 
following: possible adducts: [M+H]+, [M+K]+, [M+Na]+, [M-H2O+H]+, filter: 
compounds present in the in-house PINACEAE DB, the maximal number of 
returned candidate structures: unlimited. Eventually, the CANOPUS algo-
rithm was applied to predict the chemical class of compounds based on 
NPClassifier chemical ontology. 
Ion Identity Molecular Network 
The molecular networks are based on matching spectral patterns between 
paired mass spectra, accomplished by calculating cosine similarity. This 
metric measures the cosine of the angle between the vectors representing 
non-zero spectral data points in a multidimensional hyperspace, where the 
dimensions correspond to the considered mass-to-charge ratio (m/z) varia-
bles. The intensity of each data point corresponds to the coordinate value 
along the respective mass axis within this hyperspace. (26,32)  
The molecular networks were created using the online workflow at Global 
Natural Products Social molecular networking (http://gnps.ucsd.edu). An Ion 
Identity Molecular Network (IIMN) was created (job: 
25b1448341ab454c9002c1767fba98e1) where edges were filtered to have a 
cosine score above 0.4 and at least 4 matching peaks. Further edges between 
two nodes were kept in the network if and only if each of the nodes ap-
peared in each other’s respective top 10 most similar nodes. All matches kept 
between the network spectra and the library spectra were required to have a 
score above 0.7 and at least 4 matched peaks. The default speclibs from the 
GNPS platform were used for the spectral library search. A Feature Based 
Molecular Network was realised (job: 
0f64e360d2ba4227beb6a2e0a03a5335) to decrease the library search co-
sine-score threshold from 0.7 to 0.4, with at least 4 matching peaks. The 
default speclibs from the GNPS platform were used for the spectral library 
search. The FBMN results were used for Network Annotation Propagation 
(NAP) step (job: 35984a76a5794491acd88cb694e30843). The parameters 
used to proceed with analysis were the following: N first candidates for 
consensus score 10, Accuracy for exact mass candidate search (ppm) 20, 

acquisition mode Positive, Multiple adduct types [M+H]+, [M+Na]+, [M-
H2O+H]+, user-provided database: NAP formatted in house Pinaceae struc-
tural database. The maximum number of candidate structures in the graph 
was set to 3.  
Merging and comparing SIRIUS annotations with IIMN, NAP 
IIMN, FBMN, NAP, and MolNetEnhancer results were downloaded from the 
GNPS platform as archive folders. Metadata from the different GNPS annota-
tion workflows were merged via Cytoscape 3.8.2 software 
(https://cytoscape.org/), following the method explained in Fig. S3. The IIMN 
graph was kept visualising the molecular network. Quantification table and 
the “df_resume_confidence.tsv” file resulting from the CATHEDRAL compari-
son data were overlayed on the molecular network using custom style.  
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Figure 1: Annotated heatmap, built with 13C NMR chemical shifts of the twelve fractions from EtOAc L. decidua extract.  
(M) Compound equally annotated through MS2 data, orange compounds: previously undescribed compounds, (PNC) Compound structure 
described in the 13C NRM predicted Pinaceae database, (Blue star) Compound directly annotated by Caramel workflow  
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Figure 2: IIMN visualization with CATHEDRAL comparison outcomes overlayed 
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Figure 3: Comparison of MS/MS clusters A to C to the annotated CaraMel heatmap. 
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Figure 4: Dereplication workflows based on 13C NMR (CaraMel) and LC-HRMS2 of Larix decidua EtOAc crude extract by Centrifugal Parti-
tion Chromatography 
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CPC fractions Mass (mg) % Crude extract Composition 
01 – elution 42 10.8 % dianthoside (Maj – cluster 15)  

02 – elution 12 3.1 % 

glucosyl-frambinone (Min – cluster 7); glycerol-
monoacetate (Maj – cluster 8); lavandoside (Min 
– cluster 9); glucosyl trans-para-coumaric acid 
(Min – cluster 10); rhamnosyl-(1->6)-glucosyl-
Myrtenic acid (Min – cluster 17) 

03 – elution 18 4.7 % 

glucosyl-frambinone (Med – cluster 7); arabino-
syl-(1->6)-glucosyl-myrtenic acid (Maj – cluster 
16); rhamnosyl-(1->6)-glucosyl-myrtenic acid 
(Maj – cluster 17) 

04 – elution 85 22.0 % 

acetic acid (Min – cluster 4); astringin (trans) 
(Maj – cluster 6); piceatannol-3’-O-glucoside 
(Maj – cluster 5); tannins (catechin unit) (Med – 
cluster 2’) 

05 – elution 29 7.5 % 

catechin (Maj – cluster 1); epicatechin (Min – 
cluster 2); quercetin-3-rhamnoside (Med – clus-
ter 3); acetic acid (Min – cluster 4); oleic acid 
(Min – cluster 18); linoleic acid (Min – cluster 19) 

06 – elution 26 6.7 % 

epicatechin (Min – cluster 2); acetic acid (Min – 
cluster 4); 2-[2,4-dihydroxy-6-(4-
hydroxybenzoyl)oxyphenyl]acetic acid (Maj - 
cluster 12); ferulic acid (Med – cluster 13); lar-
ixinol isomer 1 (Min – cluster 14); quercetin-3-
rhamnoside (Min – cluster 3); oleic acid (Min – 
cluster 18); linoleic acid (Min – cluster 19) 

07 – elution 38 9.8 % 

larixinol isomer 1 (Maj - cluster 14); larixinol 
isomer 2 (Med – cluster 14); acetic acid (Min – 
cluster 4); oleic acid (Min – cluster 18); linoleic 
acid (Min – cluster 19) 

08 – elution 16 4.1 % 

catechin (Med – cluster 1); astringin (trans) (Min 
– cluster 6); piceatannol-3’-O-glucoside (Min – 
cluster 5); glycerol-monoacetate (Min – cluster 
8); ferulic acid (Med – cluster 13); oleic acid (Min 
– cluster 18); linoleic acid (Min – cluster 19) 

09 – elution 8 2.1 % 
oleic acid (Med – cluster 18); linoleic acid (Min – 
cluster 19); 7-oxodehydroabietic acid (Min – 
cluster 23) 

10 – elution 17 4.4 % 

glycerol-monoacetate (Min – cluster 8); larixyl 
acetate (Maj – cluster 11); oleic acid (Min – clus-
ter 18); linoleic acid (Min – cluster 19); 7-
oxodehydroabietic acid (Min – cluster 23) 

11 – extrusion 83 21.4 % 
larixyl acetate (Min – cluster 11); oleic acid (Med 
– cluster 18); linoleic acid (Med – cluster 19); 
dehydroabietic acid (Min – cluster 22) 

12 – extrusion 13 3.4 % 

glycerol-monoacetate (Min – cluster 8); oleic 
acid (Med – cluster 18); linoleic acid (Min – clus-
ter 19); 13-epimanool (Maj – cluster 20); isopi-
maric acid (Maj – cluster 21); dehydroabietic 
acid (Med – cluster 22) 

Table 1: Mass and global composition of the CPC fractions. (Maj=major; Med=medium; Min=minor). Compounds are related to their corre-
sponding cluster on Fig.1. 
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Feature jointly annotated with Confidence 
level 

FBMN, NAP, SIRIUS, CaraMel 1 
FBMN, SIRIUS, CaraMel 2 
NAP, SIRIUS, CaraMel  

3+ 
(+ other FBMN annotation)  
NAP, SIRIUS, CaraMel 

3 
(no other FBMN annotation) 
FBMN, NAP, CaraMel 4 
FBMN, CaraMel 5 
SIRIUS, CaraMel 6 
NAP (one structure candidate of 
the in silico fragmentation search 
with MetFrag), CaraMel 

7 

CaraMel 8 
FBMN, NAP, SIRIUS 9 
FBMN, SIRIUS 10 
NAP, SIRIUS 

11+ 
(+ other FBMN annotation)  
NAP, SIRIUS 

11 
(no other FBMN annotation) 
FBMN, NAP 12 

 
 
Table 2: Custom confidence levels established according to the tools for which the feature was jointly annotated with. 
 
 

Time (min) Flow rate (ml / min) % Lower phase system 
1  

% Lower phase 
sytem2 

0 1 100 % 0 % 
3 10 100 % 0 % 
15 10 100 % 0 % 
90 10 0 % 100 % 
110 10 0 % 100 % 
125 Extrusion (20 ml / min) Extrusion Extrusion 

 
Table 3: Mobile phase composition during CPC 1 fractionation. 
  

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   17 

 

Improving the chemical profiling of complex natural 
extracts by joint 13C NMR and LC-HRMS2 analysis 
and the querying of in silico generated chemical 
 
Julien Cordonnier,a,b  Simon Remy,b* Alexis Kotland,d Ritchy Leroy,b Pierre Darme,a,b, Benjamin Ber-
taux,b Charlotte Sayagh,b Agathe Martinez,b Nicolas Borie,b Jane Hubert,d Dominique Aubert,a,c Isa-
belle Villena,a,c Jean-Marc Nuzillard,b Jean-Hugues Renaultb* 
aUniversity of Reims Champagne Ardenne, ESCAPE EA7510, 51097 Reims, France  
b University of Reims Champagne Ardenne, CNRS, ICMR 7312, 51097 Reims, France   
c University of Reims Champagne Ardenne, CRB National reference Centre on Toxoplasmosis, 51097 Reims, France 
d NatExplore, 51140 Prouilly, France 
*Correspondence should be addressed to S.R. (simon.remy@univ-reims.fr) 
 
 

Table of contents 
 
 
Table S1: Summary of compounds annotated during chemical profiling of Larix decidua bark crude extract, after the comparison of the 
candidate coming from each annotation tool (c.f. Excel file Table_S1.xlsx). 
Table S2: Summary of compounds jointly annotated by all annotation tools (c.f. Excel file Table_S2.xlsx). 
Table S3: Summary of compounds jointly annotated by NAP, SIRIUS and eventually CaraMel, with another FBMN candidate (c.f. Excel file 
Table_S3.xlsx). 
Table S4: Summary of compounds jointly annotated by NAP, SIRIUS and eventually CaraMel, without any FBMN candidate (c.f. Excel file 
Table_S4.xlsx). 
Table S5: Summary of compounds jointly annotated by SIRIUS and CaraMel (c.f. Excel file Table_S5.xlsx). 
Table S6: Summary of compounds jointly annotated by NAP and CaraMel (c.f. Excel file Table_S6.xlsx).  
Table S7: Summary of compounds jointly annotated by FBMN and SIRIUS (c.f. Excel file Table_S7.xlsx).  
 
Figure S1: The reported strategies for the joint use of MS and NMR analytical data, with their benefits and constraints 
Figure S2: Chemical distributions 
Figure S3: Merging the annotations produced by the MS workflows, leading to the recap.csv file 
Figure S4: Comparison of experimental spectra of dehydroabietic acid from GNPS library to predicted spectra of dehydroabietic acid 
from LOTUS structure (LTS0252977) from CFM-ID 4.0 algorithm. 
 

  

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   18 

 
  

Ta
bl

e 
S1

: S
um

m
ar

y 
of

 c
om

po
un

ds
 a

nn
ot

at
ed

 d
ur

in
g 

ch
em

ic
al

 p
ro

fil
in

g 
of

 L
ar

ix
 d

ec
id

ua
 b

ar
k 

cr
ud

e 
ex

tr
ac

t, 
af

te
r t

he
 c

om
pa

ris
on

 o
f t

he
 c

an
di

da
te

 c
om

in
g 

fr
om

 e
ac

h 
an

no
ta

tio
n 

to
ol

 (c
.f.

 
Ex

ce
l f

ile
 T

ab
le

_S
1.

xl
sx

). 
 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   19 

 
  

Ta
bl

e 
S2

: S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
al

l a
nn

ot
at

io
n 

to
ol

s 
(c

.f.
 E

xc
el

 fi
le

 T
ab

le
_S

2.
xl

sx
). 

Ta
bl

e 
S3

: S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
N

A
P,

 S
IR

IU
S 

an
d 

ev
en

tu
al

ly
 C

ar
aM

el
, w

ith
 a

no
th

er
 F

B
M

N
 c

an
di

da
te

 (c
.f.

 E
xc

el
 

fil
e 

Ta
bl

e
S3

.x
ls

x)
. 

 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   20 

 
  

Ta
bl

e 
S4

 (P
ar

t 1
.):

 S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
N

A
P,

 S
IR

IU
S 

an
d 

ev
en

tu
al

ly
 C

ar
aM

el
, w

ith
ou

t a
ny

 F
B

M
N

 c
an

di
da

te
 (c

.f.
 

Ex
ce

l f
ile

 T
ab

le
_S

4.
xl

sx
). 

 
 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   21 

 
  

Ta
bl

e 
S4

 (P
ar

t 2
.):

 S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
N

A
P,

 S
IR

IU
S 

an
d 

ev
en

tu
al

ly
 C

ar
aM

el
, w

ith
ou

t a
ny

 F
B

M
N

 c
an

di
da

te
 (c

.f.
 

Ex
ce

l f
ile

 T
ab

le
_S

4.
xl

sx
). 

 
 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   22 

 
  

Ta
bl

e 
S4

 (P
ar

t 3
.):

 S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
N

A
P,

 S
IR

IU
S 

an
d 

ev
en

tu
al

ly
 C

ar
aM

el
, w

ith
ou

t a
ny

 F
B

M
N

 c
an

di
da

te
 (c

.f.
 

Ex
ce

l f
ile

 T
ab

le
_S

4.
xl

sx
). 

 
 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   23 

 Ta
bl

e 
S5

: S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
SI

R
IU

S 
an

d 
C

ar
aM

el
 (c

.f.
 E

xc
el

 fi
le

 T
ab

le
_S

5.
xl

sx
). 

 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   24 

 Ta
bl

e 
S6

: S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
N

A
P 

an
d 

C
ar

aM
el

 (c
.f.

 E
xc

el
 fi

le
 T

ab
le

_S
6.

xl
sx

). 
 

 Ta
bl

e 
S7

: S
um

m
ar

y 
of

 c
om

po
un

ds
 jo

in
tly

 a
nn

ot
at

ed
 b

y 
FB

M
N

 a
nd

 S
IR

IU
S 

(c
.f.

 E
xc

el
 fi

le
 T

ab
le

_S
7.

xl
sx

). 
 

 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   25 

 
 
 

Fi
gu

re
 S

1:
 T

he
 re

po
rt

ed
 s

tr
at

eg
ie

s 
fo

r t
he

 jo
in

t u
se

 o
f M

S 
an

d 
N

M
R

 a
na

ly
tic

al
 d

at
a,

 w
ith

 th
ei

r b
en

ef
its

 a
nd

 c
on

st
ra

in
ts

 

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   26 

 

Figure S2: Chemical distributions (A) HPTLC profile of the 12 CPC fractions of the Larix decidua EtOAc extract. The plate was sprayed with 
vanillin/H2SO4 derivatization reagent, heated, and observed under white light (B) Sunburst charts representing the chemical distribution of the 
Pinaceae structural database, CaraMel annotations, FBMN annotations 
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Figure S3: Merging the annotations produced by the MS workflows, leading to the recap.csv file 
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Figure S4: Comparison of experimental spectra of dehydroabietic acid from GNPS library to the predicted spectra of dehydroabietic acid 
from LOTUS structure (LTS0252977) from CFM-ID 4.0 algorithm. (A) GNPS spectra vs. predicted spectra (10 eV). (B) GNPS spectra vs. pre-
dicted spectra (20 eV).  (C) GNPS spectra vs. predicted spectra (40 eV). Red spectrum: CCMSLIB00000840371 Blue spectra: CFM-ID 4.0 predict-
ed spectrum. 
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Table S8: Annotated structures by CaraMel workflow, linked to their 13C NMR and 1H chemical shifts. 
 

catechin 

 
 

C15H14O6 290.3 g/mol CAS 154-23-4 

Atom number 13C (ppm) 1H (ppm) 

2 81.5 4.48 
3 66.6 3.81 
4 28.3 2.66/2.35 

4a 99.6 - 
5 156.6 - 
6 94.1 5.68 
7 156.8 - 
8 95.6 5.89 

8a 155.7 - 
1’ 131.0 - 
2’ 114.9 6.72 
3’ 145.2 - 
4’ 145.3 - 
5’ 115.3 6.68 
6’ 118.8 6.59 
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epicatechin 

 
 

C15H14O6 290.3 g/mol CAS 490-46-0 

Atom number 13C (ppm) 1H (ppm) 

2 78.3 4.73 
3 65.3 4.00 
4 28.7 2.67/2.47 

4a 98.9 - 
5 156.0 - 
6 94.4 5.72 
7 156.5 - 
8 95.6 5.89 

8a 156.1 - 
1’ 130.9 - 
2’ 118.3 6.65 
3’ 144.7 - 
3’ 144.7 - 
4’ 144.8 - 
5’ 115.2 6.66 
6’ 115.4 6.88 
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quercetin 3-O-rhamnoside 
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C21H20O11 448.4 g/mol CAS 522-12-3 

Atom number 13C (ppm) 1H (ppm) 

2 156.8 - 
3 134.5 - 
4 178.1 - 

4a 104.4 - 
5 161.6 - 
6 99.0 6.21 
7 164.6 - 
8 94.0 6.40 

8a 157.7 - 
1’ 121.1 - 
2’ 121.5 7.25 
3’ 115.8 6.87 
4’ 148.8 - 
5’ 145.5 - 
6’ 116.0 7.29 
1’’ 102.1 5.25 
2’’ 70.4 3.98 
3’’ 70.7 3.51 
4’’ 71.5 3.15 
5’’ 71.0 3.20 
6’’ 17.9 0.81 
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acetic acid 

 
 

C2H4O2 60.5 g/mol CAS 64-19-7 

Atom number 13C (ppm) 1H (ppm) 

1 172.3 - 
2 21.4 1.91 

 
  

2
1

OH

O
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astringin (trans) 
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HO OH
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C20H22O9 406.4 g/mol CAS: 29884-49-9 

Atom number 13C (ppm) 1H (ppm) 

1 129.0 - 
2 113.7 6.99 
3 145.8 - 
4 146.0 - 
5 116.1 6.73 
6 119.2 6.85 
7 129.3 6.96 
8 125.5 6.79 
1’ 139.8 - 
2’ 105.2 6.73 
3’ 159.3 - 
4’ 103.1 6.34 
5’ 158.7 - 
6’ 107.5 6.58 
1’’ 101.0 4.81 
2’’ 73.7 3.23 
3’’ 77.1 3.28 
4’’ 70.2 3.18 
5’’ 77.5 3.37 
6’’ 61.1 3.50/3.74 
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piceatannol-3’-O-glucoside (trans) 
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C20H22O9 406.4 g/mol CAS: 94356-26-0 

Atom number 13C (ppm) 1H (ppm) 

1 139.6 - 
2 104.8 6.40 
3 158.9 - 
4 102.3 6.14 
5 158.9 - 
6 104.8 6.40 
7 126.8 6.85 
8 128.2 6.91 
1’ 129.3 - 
2’ 114.6 7.45 
3’ 146.1 - 
4’ 147.0 - 
5’ 116.3 6.80 
6’ 122.4 7.06 
1’’ 102.9 4.75 
2’’ 73.8 3.34 
3’’ 76.4 3.33 
4’’ 70.5 3.18 
5’’ 77.8 3.43 
6’’ 61.3 3.50/3.79 
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glucosyl-frambinone 

 
 

C16H22O7 326.3 g/mol CAS: 38963-94-9 

Atom number 13C (ppm) 1H (ppm) 

1 30.2 2.09 
2 208.2 - 
3 44.7 2.72 
4 28.7 2.72 
1’ 134.8 - 

2’/6’ 129.3 7.11 
3’/5’ 116.5 6.93 

4’ 156.0 - 
1’’ 100.9 4.79 
2’’ 73.5 3.22 
3’’ 76.7 3.24 
4’’ 70.0 3.15 
5’’ 77.3 3.28 
6’’ 60.9 3.47/3.68 
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glycerol monoacetate 

 
 

C5H10O4 134.1 g/mol CAS 106-61-6 

Atom number 13C (ppm) 1H (ppm) 

1 170.9 - 
2 21.3 2.00 
1’ 63.1 3.33 
2’ 69.7 3.63 
3’ 66.0 3.88/4.02 

 
  

2
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OH
OH
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glucosyl-trans-para-coumaric acid 

 
 

C15H8O8 326.3 g/mol CAS 14364-05-7 

Atom number 13C (ppm) 1H (ppm) 

1 168.3 - 
2 117.4 6.41 
3 144.1 7.59 
1’ 128.3 - 

2’/6’ 130.2 7.65 
3’/5’ 116.8 7.05 

4’ 159.3 - 
1’’ 100.3 4.95 
2’’ 73.6 3.26 
3’’ 76.9 3.27 
4’’ 69.9 3.16 
5’’ 77.6 3.35 
6’’ 61.1 3.46/3.68 
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lavandoside 

 
 

C16H20O9 356.3 g/mol CAS: 177405-51-3 

Atom number 13C (ppm) 1H (ppm) 

1 168.3 - 
2 118.2 6.46 
3 143.7 7.50 
1’ 128.5 - 
2’ 115.1 7.09 
3’ 122.3 7.17 
4’ 148.5 - 
5’ 149.3 - 
6’ 111.3 7.32 
7’ 55.9 3.82 
1’’ 99.9 4.97 
2’’ 73.4 3.27 
3’’ 77.3 3.29 
4’’ 70.0 3.16 
5’’ 77.4 3.35 
6’’ 60.9 3.45/3.66 
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larixyl acetate 

 
 

C22H36O3 348.5 g/mol CAS: 4608-49-5 

Atom number 13C (ppm) 1H (ppm) 

1 38.8 1.04/1.67 
2 18.8 1.45/1.48 
3 43.4 1.21/1.32 
4 33.4 - 
5 56.9 1.44 
6 72.6 4.90 
7 44.2 2.02/2.54 
8 145.0 - 
9 55.8 1.61 

10 39.7 - 
11 17.9 1.27/1.48 
12 41.6 1.16/1.56 
13 72.1 - 
14 146.6 5.84 
15 111.1 4.94/5.11 
16 28.0 1.13 
17 109.5 4.65/4.88 
18 36.3 1.00 
19 22.4 0.81 
20 15.9 0.67 
1’ 169.8 - 
2’ 21.9 2.00 
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2-O-(4-Hydroxybenzoyl)-2,4,6-trihydroxyphenylacetic acid 

 
 

C15H12O7 304.3 g/mol CAS: - 

Atom number 13C (ppm) 1H (ppm) 

1 163.9 - 
2 119.8 - 

3/7 132.4 7.92 
4/6 115.9 6.92 
5 162.8 - 
1’ 172.7 - 
2’ 29.3 3.28 
3’ 106.1 - 
4’ 151.0 - 
5’ 101.0 6.09 
6’ 157.1 - 
7’ 100.0 6.24 
8’ 157.1 - 
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ferulic acid 

 
 

C10H10O4 194.2 g/mol CAS: 1135-24-6 

Atom number 13C (ppm) 1H (ppm) 

1 168.2 - 
2 115.9 6.36 
3 144.8 7.49 
1’ 126.0 - 
2’ 111.4 7.28 
3’ 148.2 - 
4’ 149.3 - 
5’ 115.9 6.8 
6’ 123.0 7.08 
7’ 56.0 3.82 
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larixinol isomer 1 + 2 

 
 

C30H22O10 542.5 g/mol CAS: 101046-79-1 

Atom number 13C (ppm) 1H (ppm) 

2 77.7 / 78.4 4.60 / 4.90 
3 64.5 / 63.7 4.02 / 4.23 
4 28.6 / 28.6 2.46/2.51 / 2.67/2.82 

4a 103.4 / 103.8 - 
5 156.7 / 157.2 - 
6 90.1 / 90.7 6.08 / 6.20 
7 150.7 / 151.8 - 
8 104.2 / 104.4 - 

8a 151.9 / 151.7 - 

9 129.6 / 129.5 - 
10/14 127.7 / 127.9 6.93 / 7.09 
11/13 114.8 / 114.8 6.69 / 6.69 

12 156.5 / 156.7 - 
2’ 92.9 / 88.9 5.72 / 6.14 
3’ 60.1 / 59.9 - 
4’ 178.7 / 174.7 - 
5’ 154.1 / 154.9 - 
6’ 96.1 / 96.1 5.88 / 5.79 
7’ 160.3 / 160.2 - 
8’ 89.8 / 89.4 5.90 / 5.88 
9’ 162.1 / 163.1 - 

10’ 104.9 / 104.1 - 
11’ 126.2 / 126.2 - 

12’/16’ 127.0 / 127.3 6.90 / 6.91 
13’/15’ 114.8 / 115.2 6.52 / 6.68 

14’ 157.2 / 157.8 - 
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dianthoside 

 
 

C12H16O8 288.3 g/mol CAS: 20847-13-6 

Atom number 13C (ppm) 1H (ppm) 

2 161.8 - 
3 142.1 - 
4 174.6 - 
5 116.5 6.44 
6 156.0 8.14 
7 15.6 2.37 
1’ 104.0 4.74 
2’ 74.3 3.15 
3’ 76.7 3.19 
4’ 69.9 3.10 
5’ 77.7 3.10 
6’ 31.3 3.44/3.64 
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arabinosyl-(1->6)-glucosyl-myrtenic acid 
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C21H32O11 460.5 g/mol CAS: - 

Atom number 13C (ppm) 1H (ppm) 

1 164.1 - 
2 138.9 - 
3 138.6 6.91 
4 32.1 2.41/2.48 
5 40.0 2.11 
6 37.5 - 
7 40.9 2.70 
8 31.1 1.03/2.46 
9 25.9 1.31 

10 21.2 0.76 
1’ 94.6 5.36 
2’ 72.8 3.16 
3’ 76.6 3.24 
4’ 70.1 3.08 
5’ 76.6 3.41 
6’ 67.2 3.38/3.88 
1’’ 108.7 4.71 
2’’ 82.3 3.79 
3’’ 77.5 3.63 
4’’ 84.0 3.70 
5’’ 31.5 3.41/3.54 
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rhamnosyl-(1->6)-glucosyl-myrtenic acid 
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C22H34O11 474.5 g/mol CAS: - 

Atom number 13C (ppm) 1H (ppm) 

1 164.1 - 
2 138.9 - 
3 138.6 6.91 
4 32.1 2.41/2.48 
5 40.0 2.11 
6 37.5 - 
7 40.9 2.70 
8 31.1 1.03/2.46 
9 25.9 1.31 

10 21.2 0.76 
1’ 94.7 5.37 
2’ 72.8 3.16 
3’ 76.6 3.24 
4’ 69.8 3.10 
5’ 76.7 3.36 
6’ 66.5 3.45/3.78 
1’’ 100.8 4.53 
2’’ 70.9 3.40 
3’’ 70.7 3.59 
4’’ 72.2 3.17 
5’’ 68.7 3.42 
6’’ 18.2 1.10 
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oleic acid 

 
 

C18H34O2 282.5 g/mol CAS: 112-80-1 

Atom number 13C (ppm) 1H (ppm) 

1 174.8 - 
2 34.0 2.17 
3 24.8 1.46 

4-7 28.8-29.4 1.22-1.30 

8 26.9 1.97 
9 129.9 5.32 

10 129.9 5.32 
11 26.9 1.97 

12-15 28.8-29.4 1.22-1.30 

16 31.6 1.23 
17 22.3 1.25 
18 14.3 0.85 
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linoleic acid 

 
 

C18H32O2 280.4 g/mol CAS: 60-33-3 

Atom number 13C (ppm) 1H (ppm) 

1 174.7 - 
2 34.0 2.16 
3 24.9 1.48 
4 29-30 1.25 
5 29-30 1.2-1.3 
6 29-30 1.2-1.3 
7 29-30 1.31 
8 27.0 2.00 
9 129.9 5.32 

10 128.0 5.30 
11 25.6 2.73 
12 128.0 5.30 
13 129.9 5.32 
14 27.0 2.00 
15 29-30 1.31 
16 31.3 1.25 
17 22.4 1.25 
18 14.2 0.85 
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13-epimanool 

 
 

C20H34O1 290.5 g/mol CAS: 1438-62-6 

Atom number 13C (ppm) 1H (ppm) 

1 38.7 1.05/1.80 
2 19.2 1.44/1.50 
3 42.0 1.14/1.36 
4 33.5 - 
5 55.1 1.08 
6 24.2 1.24 
7 38.0 1.81/2.32 
8 148.5 - 
9 56.9 1.49 

10 39.6 - 
11 17.9 1.48 
12 41.6 1.12/1.56 
13 72.0 - 
14 146.6 5.83 
15 111.1 4.93/5.11 
16 27.9 1.12 
17 106.9 4.52/4.79 
18 21.8 0.77 
19 33.7 0.85 
20 14.6 0.62 
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isopimaric acid 

 
 

C20H30O2 302.5 g/mol CAS: 5835-26-7 

Atom number 13C (ppm) 1H (ppm) 

1 38.8 1.05/1.80 
2 17.9 1.47 
3 36.9 1.53/1.65 
4 45.6 - 
5 44.9 1.83 
6 25.0 1.55/1.90 
7 121.1 5.31 
8 135.5 - 
9 51.8 1.69 

10 34.8 - 
11 18.4 1.63/1.71 
12 35.8 1.32/1.44 
13 36.8 - 
14 45.8 1.86/1.93 
15 150.2 5.80 
16 110.0 4.87/4.93 
17 21.5 0.83 
18 179.8 - 
19 17.5 1.16 
20 15.3 0.85 
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dehydroabietic acid 

 
 

C20H28O2 300.4 g/mol CAS: 1740-19-8 

Atom number 13C (ppm) 1H (ppm) 

1 38.1 1.31/2.30 
2 18.4 1.63/1.72 
3 36.6 1.56/1.68 
4 46.7 - 
5 45.0 2.02 
6 21.4 1.41/1.75 
7 29.8 2.75/2.82 
8 134.4 - 
9 147.1 - 

10 36.7 - 
11 124.3 7.15 
12 124.0 6.97 
13 145.3 - 
14 126.7 6.84 
15 33.2 2.77 
16 24.3 1.16 
17 24.3 1.16 
18 179.7 - 
19 16.7 1.16 
20 25.1 1.13 

 
  

2

3 4
5

10

1

6

7

8

9
14

13
12

1120

H
19 18 OH

O

15

17

16

https://doi.org/10.26434/chemrxiv-2024-rkb6b ORCID: https://orcid.org/0000-0003-2247-6862 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rkb6b
https://orcid.org/0000-0003-2247-6862
https://creativecommons.org/licenses/by/4.0/


Cordonnier J et al. 2023 (preprint)   52 

7-oxodehydroabietic acid 

 
 

C20H26O3 314.4 g/mol CAS: 18684-55-4 

Atom number 13C (ppm) 1H (ppm) 

1 37.3 1.47/2.37 
2 Not detected Not detected 
3 37.2 1.49/2.37 
4 46.0 - 
5 44.3 2.53 
6 37.9 2.24/2.72 
7 198.2 - 
8 130.5 - 
9 153.8 - 

10 37.4 - 
11 124.5 7.41 
12 132.8 7.50 
13 146.5 - 
14 124.0 7.70 
15 33.2 2.92 
16 23.9 1.20 
17 23.9 1.20 
18 179.8 - 
19 16.8 1.20 
20 23.9 1.20 
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