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Abstract: Simuleau is a modeling, analysis and simulation tool for discrete event models
expressed by batches Petri nets, a formalism that enriches hybrid Petri nets of David and Alla.
Batches PNs incorporate timed-transition discrete PNs, constant continuous PNs, and new types
of nodes called batch nodes. This formalism and Simuleau have been exploited among diverse
application areas such as manufacturing systems, communication networks, and traffic road.
After presenting batches PN formalisms and their application domains, this paper focuses on
the main characteristics of Simuleau, including the tool structure, its menu interface, the input
model description and the outputs obtained after simulation.
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1. INTRODUCTION

Petri nets (PNs) are a widely recognized formalism for
modeling and analyzing a very large range of discrete
event dynamic systems. Thanks to fluidization concepts
(Silva et al., 2011), continuous and hybrid PNs (David
and Alla, 2005) have emerged in the 90’s allowing the flow
of tokens to be considered as continuous variables. Few
years later, an extension of hybrid PNs has been proposed
(Demongodin and Prunet, 1992) to express variable delays
in continuous flows, but also to represent certain accu-
mulation phenomena with the concept of density related
to the flow. More precisely, generalised batches Petri nets
(GBPNs) (Demongodin, 2001) are considered as a class of
hybrid formalism, which enhance continuous and hybrid
PNs with special nodes, called batch places and batch tran-
sitions. Batch places are characterized by three continuous
parameters: a maximal speed, a maximal density, and a
length that, allowing a hybrid representation of the linear
relations between flow and density to be expressed within
a single node. The batch place markings are composed
of batches, i.e., a group of entities moving, at a certain
speed, inside a batch place. A batch place combines both
discrete events and switched linear continuous dynamics
in a single structure. In addition to this hybrid behavior,
GBPNs are a combination of timed-transition discrete PNs
and constant continuous PNs, also known as continuous
PNs with finite server semantics in the PN literature (Giua
and Silva, 2017). GBPN has the ability to model a larger
class of hybrid systems and to provide efficient algorithms
for simulation and/or analysis of such systems.
Several tools exist to model, analysis and, simulate PNs
and their extensions. An extensive list can be obtained at
⋆ This work has been partially supported by the French National Re-
search Agency under grant agreement ANR-22-CE10-0002. Version
under licence CC-BY-NC-ND 4.0.

https://www.informatik.uni-hamburg.de/TGI/Petri
Nets/tools/quick.html. To the best of our knowledge,
only few of them are dedicated to hybrid PNs, such as
SimHPN and Mochy, which appear to be the only tools
currently maintained. SimHPN (Júlvez et al., 2012) is
a MATLAB toolbox devoted to hybrid and continuous
PNs under infinite server semantics. Mochy (Hélouët and
Thébault, 2023) is a toolbox developed in Java that takes
into account stochastic, timed, and hybrid PNs. It has
been developed as a fast simulation platform with the aim
of testing traffic management policies for metro networks.
This paper is dedicated to Simuleau, a tool developed in
C++ that enables the modeling, simulation and analysis of
systems described by timed discrete PNs, continuous PNs
with single server semantics, hybrid PNs and of course
batches PNs.

The content of this paper is as follows. Section 2 presents
the concepts of the GBPN formalism, next describes some
extensions of such a formalism, and finally highlights its
efficiency in regards to some application areas. Section
3 is dedicated to Simuleau, the tool that supports the
class of batches PN formalisms. The final section includes
conclusions and perspectives.

2. CONCEPTS AND APPLICATIONS OF
GENERALISED BATCHES PETRI NETS

Let us first give some concepts taken from (Demongodin,
2001) and (Demongodin and Giua, 2014).

2.1 Concepts in GBPN

A generalised batches Petri net (GBPN) is a bipartite
graph composed of three types of places, P = PD ∪
PC ∪ PB , and three types of transitions, T = TD ∪
TC∪TB : discrete places and transitions, continuous places



and transitions, and batch places and transitions (see
Figure 1 for their graphical representation). A batch
place is characterized by three continuous parameters,
γ(pi) = (Vi, d

max
i , Si) ∈ R3

0+, which represent, respectively,
a maximal transfer speed, a maximal density and a length.
These characteristics associated with a batch place allow a
hybrid representation of the linear relations between flow
and density to be expressed in a single node. With each
transition is associated a non negative number: a firing
delay, dj , for a discrete transition, and a maximal firing
flow, Φj , for a continuous or batch transition. At time
τ , the marking, m(τ), assigns to each discrete place an
integer number, to each continuous place a nonnegative
real number and, to each batch place pi, a series of batches,
(i.e., a group of discrete entities) ordered by their head
positions, mi(τ) =

{
β1
i (τ), . . . , β

k
i (τ)

}
. A batch βr

i of
batch place pi is also characterized by three continuous
variables: βr

i (τ) = (lri (τ), d
r
i (τ), x

r
i (τ)) ∈ R3

0+, where lri (τ)
is the length, dri (τ) is the density and, xr

i (τ) is the head
position. If the head position of a batch is equal to the
length associated with the batch place, i.e., xr

i (τ) = Si,
this batch is called an output batch denoted as Oβr

i .
An output density douti (τ) = dri (τ), is associated with
batch place pi containing an output batch Oβr

i . Note that
douti = 0 when no output batch exists for batch place
pi. Moreover, a batch place can have at most one output
batch.
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Fig. 1. Nodes of batches Petri nets

Example 1. Figure 2 shows a simple example of a GBPN
model with discrete, continuous, and batch nodes (place/-
transition). The batch place is characterized by a maximal
speed of 20, a maximal density of 100, and a length of 10.
The marking of this batch place includes a batch OβBp

1
with a length of 5, a density of 50, and a position of 10,
which implies that this batch is an output batch. ♢
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Fig. 2. A simple GBPN model

During the dynamics, inside the batch places, batches can
be: i) created, when the input flow of the place is not null;
ii) merged, when two batches with the same density are
in contact; iii) destroyed , if the length of a batch becomes
null and if it is not a created batch. Their movements
are governed by hybrid dynamics that switch between
free behavior and accumulated behavior, depending on
the characteristics of the place and of the batch itself.
In free behavior, a batch moves at the speed of place
pi and the value of its density remains constant within
interval [0, dmax

i ]. In such a case, the flow of batch βr
i (τ)

is characterized by: φr
i (τ) = Vi.d

r
i (τ). In accumulated

behavior, it moves at a lower speed of the place and its
density is equal to the maximal density of place pi, i.e.,
dri (τ) = dmax

i . Thus, it is forced to adapt its own flow to
the output transition flow of the place. The flow-density
relation that governs batches moving through batch place
pi is represented in Figure 3.

Fig. 3. Flow-density relation in batch places

The enabling and firing conditions of discrete transitions
are those of the classical timed-transition PN (David
and Alla, 2005) with a preselection policy for which
the marking of discrete or continuous places is reserved.
Details on conditions of continuous and batch transitions,
could be found in Section 2.3 of Demongodin and Giua
(2014).

In order to represent the quantity of firing of transitions
by time unit, an instantaneous firing flow (IFF), noted
φj(τ) ≤ Φj , is associated with each continuous or batch
transition, tj ∈ TC ∪ TB . At time τ , the set of admis-
sible firing flows forms a convex set described by linear
equations (Demongodin and Giua, 2010). In particular,
the firing flow of continuous and batch transitions, and
the input/output flow of batch places must satisfy the
following constraints: the firing flow of a transition that is
not enabled is null; the total flow entering in batch place
pi should not be greater than its maximal flow Vi · dmax

i ;
the total flow exiting batch place pi should not be greater
than the exit flow Vi · douti generated by the output batch
of the place.

The behavior of a GBPN is based on a timed discrete event
dynamics with linear or constant continuous evolutions
between timed events. Between two consecutive events,
the system is said to be in an invariant behavior state (IB-
state), which corresponds to a period of time such that the
following elements remain constant: the total marking and
the reserved marking of the discrete places, the reserved
marking of continuous places, the IFF of continuous and
batch transitions, and the output density of batch places.
The IB-state changes if and only if one (or possibly several
at the same time) of the following kind of events occurs:
(i) Internal events of batch places: a batch becomes an
output batch βr = Oβr; two batches meet; a batch is
destroyed. (ii) External events of batch places: a discrete
transition is fired; a continuous place becomes empty; a
discrete transition becomes enabled; a batch becomes an
output batch; an output batch is destroyed.

2.2 GBPN extensions

Several extensions of the GBPN have been proposed in the
last decades.



a) GBPN and controlled characteristics: The first exten-
sion has been defined as controlled batches PN (CBPN)
(Audry and Prunet, 1994) that introduces the possibility
of controlling the maximal firing flow of transitions and/or
the speed of batch places. In the same spirit, the concept of
controllable batch has been defined in (Demongodin, 2009)
by a quadruple, Cβk

i (τ) = (lki (τ), d
k
i (τ), x

k
i (τ), v

k
i (τ)) ∈

R4
≥0, where lki (τ) is its length, dki (τ) is its density, xk

i (τ) is
its head position and vki (τ) is its speed. Hence, the speed
of a batch can be changed by controlled action as long as
it does not exceed the maximal speed of the batch place.
In this extension, batches inside a batch place can move
at different speeds.

When the instantaneous firing flow of continuous and
batch transitions, and the transfer speed of batch places
are considered as control inputs in GBPN, this leads
to the definition of Controlled GBPN (CGBPN). It has
been shown by (Demongodin and Giua, 2014) that the
stationary behavior of this model without discrete nodes
can be characterized using structural analysis. Moreover,
by controlling only the flow of continuous and batch
transitions of a CGBPN model without discrete nodes, the
system can be driven to a steady state, (ms,φs), where the
marking ms and the instantaneous firing flow vector φs

remain constant for τ ≥ τs.

b) Triangular Batches PN: A new formalism of batches
PN, called Triangular Batches Petri Nets (TBPNs) has
been defined (Gaddouri et al., 2016), where the batch
places are replaced by Triangular batch places (TB-places)
and controllable batches form their marking. As previously
defined for batch place, each TB-place has the three
previous characteristics, i.e., a maximal speed, a maximal
density and a length, and a new one, called a maximum
flow. Precisely, with each TB-place pi are associated the
quadruple γ(pi) = (Vi, d

max
i , Si, Φ

max
i ) and a new flow-

density relation that governs batches behavior (see Figure
4). The accumulation behavior of GBPN is thus extended
to a congested behavior which imposes to batches a
congested speed and a congested density in accordance
to a propagation speed of congestion, denoted Wi, and
a critical density, denoted dcrii , of TB-place pi. Hence,
each batch inside a TB-place has its own specific speed,
density, and an hybrid dynamics switching between free
and congested behaviors. Note that the controlled GBPN
has been extended to define Controlled TBPN (CTBPN)
(Gaddouri et al., 2016).

0

ϕ

d
dcrii dmax

i

Wi

Φmax
i
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Fig. 4. Flow-density relation in triangular batch places

c) Other extensions: Several other extensions have been
defined in the literature. We can cite Coloured batches
PNs (Caradec and Prunet, 1997) in which it is possible to
identify several batches with different characteristics mov-

ing in the same batch place. We can also cite the extension
proposed by Wang and Zhou (2004) that combines batches
PN and stochastic Petri nets to integrate a stochastic
behavior over discrete transitions. In this extension, the
set of discrete transitions is partitioned into immediate,
deterministic timed, and stochastic transitions.

2.3 Applications

Batches PNs and their extensions have been exploited
by several authors for different purposes and variety of
application domains. We next focus on three domains
related to the use of Simuleau tool.

a) High speed production systems: Batches PNs are
very well suited to describe high-throughput systems in
which there is a transfer of material moving through
space at a predefined speed and, in which the density
of the transferred material could change in the presence
of accumulation. The first application in this context
concerns the Perrier mineral water bottling production line
system. The BPN model was mainly composed by batch
nodes representing machines connected by multi conveyor
belts. With this model, it has been possible to evaluate the
performance of the bottling lines. Subsequently, sensors
were integrated into the system and a CBPN model was
proposed (Audry et al., 1994) to provide control of the
manufacturing system by modifying the throughput of the
machines as well as the speed of conveyors. CBPN has been
also used to model flexible manufacturing systems such as
the Perrier spring water processes.

b) Traffic road: The traffic road phenomena have been
modeled by batches PNs and its extensions, where a sec-
tion of road is simply modeled by one batch place and
so, there is no need to divide a section into cells, as it is
usually done by discrete traffic models. Moreover, a batch
represents a group of vehicles that move together with
the same speed in a section. In (Demongodin, 2009), the
traffic road is characterized by multiple batches with the
possibility that a given batch overpasses another one with
a lower speed. In (Gaddouri et al., 2016) CTBPN has been
proposed and used to model traffic road networks where
the flow of each batch inside the place must respect the
triangular diagram of the traffic road. CTBPN models are
particularly well adapted to represent the congestion/de-
congestion phenomena of flows of vehicles and to deter-
mine the length of traffic congestion.

c) ON/OFF control: The control of GBPN models
without discrete nodes allow us to drive a system from
its initial state to its steady state (ms,φs). Three control
laws, based on an event-driven ON/OFF control strategy,
have been developed on CGBPNs without discrete nodes.
The first one, called steady-flow control (Liu et al., 2020a)
limits the IFF to be lower than the steady-flow value.
The second one, called maximal-flow control (Liu et al.,
2020b), relaxes this limitation, and governs the transient
behavior by minimizing the transitory delay at the expense
of a larger number of events. The last one, called ZF-
control (Liu et al., 2023), drives the GBPN model from
any blocking marking to an attractive region of the steady
state.



d) Other applications: Dedicated to communication sys-
tems, Svadova and Hanzalek (2003) have represented the
signal propagation on the physical layer of the media
access control and analyzed the transmission delay. In
transportation systems, the traveller connection time on
multimodal hub has been evaluated by Kaakai et al.
(2005), while Durmus et al. (2012) have described the
movement of consecutive trains for monitoring the train
movements in railway networks.

3. SIMULEAU

Simuleau is a tool written in C++, which allows the
modeling, simulation and analysis of systems described
using Petri net formalisms. It is dedicated to timed discrete
PNs, continuous PNs with single server semantics, hybrid
PNs and batches PNs. As an academic and research tool,
Simuleau has been developed to be open-source (it can
be freely downloaded from https://gitlab.lis-lab.fr/
leonardo.brenner/simuleau), simple to use (the inter-
face, input and output file are easy to be written and read),
easy to extend (textual interface allows new graphical tools
to be easily plugged). In the following, we present the main
features and characteristics of the tool.

3.1 Tool architecture

Simuleau’s architecture is organized in four main modules:
the Simuleau module, the interface module, the Batches
PN module, and the scheduler module. Figure 5 shows the
class diagram with the main components of Simuleau tool.

Fig. 5. Simuleau tool class diagram

a) Simuleau module. Simuleau module itself manages
the other three modules and implements the main simu-
lation loop. This loop represents the evolution algorithm,
illustrated in Figure 6, that drives the dynamic of Batches
PN models. The main steps can be summarized as: de-
termining the state and flow of transitions, computing
and updating the state and behavior of places for GBPN

models and batches for Controllable GBPN and TBPN
models (BPN evolution block), and computing the date
of the next events (scheduler block). Some steps of this
algorithm depend on the kind of the places and events
considered in the model. For instance, the characteristics
of places do not change if they are not controlled.

yes

no

no

yes

BPN evolution

Scheduler

Initial marking

Compute the new dynamic characteristics of batch places

Modify in the maximum flows of continuous and batch transitions

Determine the enable transitions

Compute the instantaneous firing flows

Create new batches

Compute the new behaviours and states of batches

or scheduler empty
current date > max simulation time

End

Compute the next events dates

Shift to the nearest time event date

Compute the new marking

Destruct and merge batches

Controlled events
at the current date

Fig. 6. Evolution algorithm of a Batches PN model

b) Interface module. To make the tool user-friendly, the
interface module of Simuleau implements textual menus
and a compiler for the input model file. The textual menu
interface displays different options to the user, as shown
in Figure 7. Option 1 allows the user to compile the input
file and verifies the model (see Section 3.2 for the syntax
of the input file).
+--------------------------------------------------------+
| This is Simuleau - the BPN tool |
+--------------------------------------------------------+

1) Compile a BPN model 4) Inspect data structures
2) Simulate a compiled BPN model 5) Dynamics facilities
3) Preferences 6) About this version

0) Exit Simuleau (Option 0 always exits the current menu)

Fig. 7. Simuleau main menu

Option 2 of the main menu leads the user to the sim-
ulation menu (see Figure 8). The user can now select an
option from different simulation algorithms. One of the op-
tions simulates the system’s evolution without controlled
events (autonomous). The remaining options simulate the
system’s evolution using external controlled events (with
maximal transitions flow) or controlled methods that drive
the system’s evolution to a steady state.

The other options of the main menu are dedicated to
parameters or information on Simuleau, and are not de-
scribed in this paper.



******* Simulating a BPN model *******

1) With controlled events 3) SF-On/Off control method
2) Without controlled events 4) MF-On/Off control method

Fig. 8. Simuleau simulation menu

c) BPN module. The BPN module implements all the
structures and methods required to store and simulate a
batches PN model. Each class in this module describes a
type of place and transition that is taken into account in
Simuleau. Additional types of nodes (places and transi-
tions) can easily be implemented to extend the tool. The
places and transitions classes are specialized versions of
the general class and inherit its behaviors. The methods
implemented in each class compute the evolution of the
system between events.

Instantaneous Firing Flow (IFF) computation is a part
of the BPN module and it is one of the main features
of Simuleau. In the current version of the algorithm,
the computation of IFF is based on linear programming
methods, specifically the GLPK library is used to describe
the constraints and to compute the IFF. According to the
control laws, the linear system and its objective function
differ. For instance, it could be a maximization of flows, or
a more complex one for controlled GBPN without discrete
nodes, as briefly described in Section 2.3.c.

d) Scheduler module. The scheduler module calculates,
from a current IB-state, the future dates for all possible
events that can occur in the model. A set of 13 events are
taken into account (some of them are mentioned in section
2, others are only taken into account in specific extensions
of Batches PN). The events that drive the simulation of the
system are divided into three types: internal, external and
controlled events. More information on these events can
be found in Demongodin (2001); Demongodin and Giua
(2014); Gaddouri et al. (2016); Liu et al. (2020b).

3.2 Input of Simuleau: model description

Another important feature of Simuleau is the input model
description. PN models are described in a simuleau-specific
input format that favors human-readability. The input file
is structured in three blocks.

The first block gives a name to the model and sets the
length and time units.
// double "/" for comments
model example;
length unity=km;
time unity=h;

Listing 1. Name and unity definition

The second block is dedicated to the model description.
It is organized into two sub-parts. The former, indicated
by the keyword places, describes the places of the model
and its output arcs, while the latter, indicated by the
keyword transitions, specifies the transitions and their
output arcs. Different types of places (discrete, continu-
ous, batch, and triangular) and transitions (discrete, con-
tinuous, batch) can be described. Each one has specific
parameters, and some are optional (as output arc, if the
node does not have it, for instance).

Example 2. A description of the batch place and batch
transition Bt2 is given below.

places
place Bp (batch)

function (20, 100, 10)
// speed , max density , and length

initial marking {(5, 50, 10)}
// list of initial batches
// {(length , density , position), ..}
output arc Bt2

transitions
transition Bt2 (batch)

flow (200.0) // real value

Listing 2. Network description

The third block of the input file concerns controlled events.
Following the formalism definitions, it is possible to change
the maximal flow of a transition and the maximal speed
of a place. These controlled events will be included in the
scheduler, and the changes will be made at the specified
time.
// the section of controlled events are optional
controlled events

max_speed_change =(speed , Bp, 100, 0.4);
// event type , concerned place , new speed , time

Listing 3. Controlled events and time inspection

3.3 Outputs of Simuleau

To analyse the behavior of batches PNs, an evolution
graph could be constructed. It is composed by nodes,
representing an IB-state. In a node of a GBPN (see
Figure 9), the first part presents the marking and reserved
marking of discrete places; the second part presents the
flow of continuous transitions and the reserved marking
of continuous places, while the marking of the continuous
places is given for the begin and the end of the IB-state;
the third part presents the flow of batch transitions and
the marking of batch places. The characteristics of each
batch are given at the right side of the node. Two nodes
are linked by a transition labelled with the next event and
the ∆τ between them. A node of a TBPN slightly differs
from the one given in Figure 9, as the global state of a
place is replaced by the values of speed, state and behavior
associated with each batch.

(mn)

(mC) : begin (mB) : begin

φC

φB
R

(mr) (mr)

β(τ) = (lr, dr, xr)

β(τ +∆τ) = (lr, dr, xr)

(mB) : end(mC) : end

event/∆τ

behavior of the places

Fig. 9. Node of the evolution graph of a GBPN

When a compiled model is simulated, an output file is
generated. For each date that drives the system’s evolu-
tion, Simuleau writes the current date, the state of each
place and transition, and a list of all upcoming events with
their respective dates. The upcoming events that will be
processed are listed at the end of each step.



Example 3. Thanks to Simuleau, we can easily construct
the evolution graph (see Figure 10) of the GBPN model
given in Figure 2.
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φBt2 = 50
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φBt2 = 0 β2 = (10, 2.5, 10)
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(25)
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φBt2 = 200 Oβ1 = (2.222, 100, 10)

Oβ1 = (5, 50, 10)Free
({Oβ1})

({Oβ1})

(0)

(0)
Oβ1 : batch becomes dense / 0.139

Dt : discr. trans. fire / 1.111

β2 : batch becomes output batch / 0.5

Cp : cont. place becomes empty / 0.5

Oβ2 : output batch destruction / 0.5

Fig. 10. Evolution graph of example of Figure 2

4. CONCLUSION

Simuleau is a tool for modeling and simulating some
classes of PN models, such as timed discrete PNs, con-
stant continuous PNs, hybrid PNs and, batches PN. The
program implements various extensions of batches PNs,
such as CBPN and TBPN. Several methods to compute
the instantaneous firing flow are implemented to analyse
the system evolution in different scenarios.

Since its first development in 1993, the tool is in con-
stant evolution to implement new extensions or developed
analysis methods. Future development plans include an
independent graphical user interface for drawing batches
PN models and analyzing the results, adding more features
such as other extensions of batches PN, make Simuleau
input file compatible with other PN tools and, finally,
enlarge compatibility of Simuleau with several operating
systems.
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