Deep Learning Based Barley Disease Quantification for Sustainable Crop Production - Université de Reims Champagne-Ardenne Access content directly
Journal Articles Phytopathology Year : 2024

Deep Learning Based Barley Disease Quantification for Sustainable Crop Production

Abstract

Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley (Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep-learning model to quantify net blotch disease symptoms on different days post-infection on seedling leaves using Cascade R-CNN (Region-Based Convolutional Neural Networks) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4-days post infection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.
No file

Dates and versions

hal-04676278 , version 1 (23-08-2024)

Identifiers

Cite

Yassine Bouhouch, Qassim Esmaeel, Nicolas Richet, Essaid Ait Barka, Aurélie Backes, et al.. Deep Learning Based Barley Disease Quantification for Sustainable Crop Production. Phytopathology, 2024, ⟨10.1094/PHYTO-02-24-0056-KC⟩. ⟨hal-04676278⟩
0 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More