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Abstract: The protection of 316L stainless steel in 3% NaCl by the essential oil of Thymus sat-
ureoides has been studied by many techniques such as potentiodynamic polarization, electrochemical
impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy
(SEM) coupled with energy dispersive X-ray spectroscopy analysis (EDXS). The results show that the
corrosion rate of 316L stainless steel decreases with the increase in the concentration of the inhibitor
up to an efficiency of 82% for a concentration of 1600 ppm. The Thymus satureoides oil acts as an
anode inhibitor. The values of the inhibition effectiveness obtained from the polarization curves and
electrochemical impedance spectroscopy (EIS) are in good agreement. Geometry optimization and
calculation of the structural and electronic properties of the inhibitor molecular system have been
carried out using density functional theory DFT (B3LYP, BMK and M062X) level with a 6-311++G**
basis set.

Keywords: 316L stainless steel; green corrosion inhibitor; EIS; polarization; 3% NaCl solution;
DFT calculation

1. Introduction

The corrosion of materials is one of the most important problems that represent
a real ubiquitous danger for many industries. Various metals such as iron, aluminum,
copper, magnesium, and their alloys are used in severe environments such as food, marine
environment, aircraft applications, chemical industries, nuclear power plants etc. [1].

The metals and their alloys are also known for their physical characteristics, such as
stiffness and high strength-to-weight ratios, but they are highly susceptible to corrosion
in aggressive environments [2]. Among these alloys, there are stainless steels that are
iron-based alloys with less than 0.3% carbon and at least 10.5% chromium by weight.
For example, one of the major reasons for using stainless steel in many applications,
is its good corrosion resistance in many aggressive environments which is attributed
to the presence of a thin film of oxides [1] characterized by stability, sustainability and
self-repair. However, these materials are susceptible to localized corrosion resistance in
some aggressive environments and they can suffer from pitting corrosion in chloride
environments [2–4].

The aggressiveness of chloride ions is due to their small size, their high diffusivity,
their strong anionic nature and the very high solubility of many chloride salts. The study
of the localized corrosion of stainless steels in chloride environments has high practical
importance. The deterioration of the passive film by chloride ions with the priming of
pitting appears at a critical potential called pitting potential (Epit). It is one of the most
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important parameters that characterize the sensitivity of the metals and alloys to pitting
corrosion [3].

The use of inhibitors is one of the most practical ways to protect metals against
corrosion. An inhibitor is generally added in small quantities in order to slow down
the corrosion rate by adsorption mechanism [3,5]. Over the years, many inhibitors have
been synthesized, these inhibitors contain one or several functional groups such as amine
(−NH−), hydroxide (−OH), mercapto (−SH), phosphonate (−PO3H), sulfonate (−SO3H),
carboxyl (−COOH) and their derivatives. However, these products are generally obtained
by chemical synthesis, and therefore, they have a negative effect on the environment.

This has led many researchers around the world to use new natural molecules which
are also nonpolluting for the environment, such as mentha spicata [6,7], perezone [8], jojoba
oil [9], vanillin [10], olive leaf extract [11], licorice extract [12], chitosan [13], passiflora
edulia Sims leaves extract [14] and food flavors [15]. The encouraging results obtained by
these natural compounds as corrosion inhibitors for different metals and alloys [16–18] have
encouraged us to examine the effect of the Thymus satureoides oil against the corrosion of
316L stainless steel in marine media (3% NaCl).

To the best of our knowledge, corrosion protection of 316L stainless steel in 3% NaCl
using the Thymus satureoides oil, has not been carefully studied so far [19]. For this
reason, the aim of the present work is to test the effectiveness of Thymus satureoides oil
as a corrosion inhibitor for 316L stainless steel in a 3% NaCl solution by potentiodynamic
polarization and electrochemical impedance spectroscopy methods. At the same time, the
316L stainless steel surfaces have been examined by atomic force microscopy (AFM) and
scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy
(EDXS) analyses. Additionally, thermodynamic data were obtained from Arrhenius plots
and theoretical calculation was carried out at the DFT level (B3LYP, BMK and M062X) with
a 6-311++G** basis set.

2. Materials and Methods
2.1. Extraction of the Thymus satureoides Essential oil

The extraction of essential oil was obtained from the Morocco endemic Thymus sat-
ureoides by hydro-extractive steam distillation using a Clevenger distiller for 150 min. The
yield of the essential oil, calculated on the basis of the dry matter, was 1.1%. The obtained
oil was recovered and stored in a dark bottle at 4 ◦C before use. After extraction, a part of
the oil was used for chemical composition analysis by gas chromatography (GC) coupled
to mass spectroscopy (MS); the other part was used for the anti-corrosion study.

GC analyses were performed using a Shimadzu 2010 (Ipca Laboratories Limited,
Mumbai, India) with MS detector for characterization and an Agilent 6890 (Agilent Scientific
Instruments, Santa Clara, CA, USA) with FID detector for quantification. Both GC were
equipped with DB-17MS column (10 m × 0.1 mm × 0.1 m), and a split injector; hydrogen
was used as carrier gas.

2.2. Electrodes and Electrolyte

The material used for corrosion tests was commercial 316L stainless steel, whose
chemical composition (wt%) is 0.023 C, 0.034 P, 0.004 S, 0.57 Si, 1.37 Mn, 2.05 Mo, 16.4 Cr,
10.3 Ni, 0.14 Cu, 0.039 N and Fe balance [20]. This chemical composition was verified by
EDXS analyses.

The samples, in the form of a disc with a geometric area of 1.13 cm2, were coated with
epoxy resin to offer only one active flat surface exposed to the corrosive electrolyte. The
working surface was polished mechanically by using different grades of emery paper (180,
600, 1200, 2400 and 4000) and then rinsed with deionized water and ethanol.

The electrolyte was freshly prepared, before each experiment, by the dissolution of
NaCl powder (99.9%, Aldrich), in bi-distilled water. The Thymus satureoides essential oil
concentration was taken in parts per million (ppm) for all investigations. Each experiment
was conducted at least three times to ensure reliable and reproducible results. The experi-
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ments were carried out in the absence and presence of inhibitors at various concentration
ranges from 0 ppm to 1800 ppm and at different temperatures ranging from 25 ◦C to 80 ◦C.

2.3. Electrochemical Measurements

The electrochemical experiments were performed in a thermostated pyrex cell, equipped
with conventional electrodes: stainless steel as the working electrode, platinum as the aux-
iliary electrode and a saturated calomel electrode (SCE) as the reference electrode. Before
testing, the samples were allowed to reach the open circuit potential (OCP) in the test
solution of 3% NaCl without and with the inhibitor for 120 min. The potentiodynamic po-
larization measurements were performed by scanning the applied potential from −800 mV
vs. SCE to 600 mV vs. SCE, with a scan rate of 0.5 mVs−1.

Electrochemical impedance spectroscopy (EIS) measurements were carried out at OCP
using a PGZ potentiostat RADIOMETER 100. The frequency ranged from 10 kHz to 10 mHz
with ten points per decade and an amplitude of 10 mV. EIS measurements were initiated
about 120 min after the working electrode was introduced in the electrolyte to stabilize the
steady-state potential. The impedance data were modeled using the ZSimpWin software.

The corrosion kinetic parameters such as corrosion potential (Ecorr), corrosion current
density (icorr), and passivation current (ipass) were calculated using VoltaMaster software 4.
The percentage inhibition efficiency (EI%) was calculated from icorr values using the rela-
tionship noted 1:

EI(%) =
icorr − i′corr

icorr
× 100 (1)

icorr and i’corr represent, respectively, the current corrosion densities at the corrosion po-
tential without and with the inhibitor. These values have been determined by extrapolation
using the Tafel method with a potential range of 100 mV around Ecorr.

For electrochemical impedance, the inhibition efficiency EIEIS(%) was evaluated from
charge transfer resistance Rct values using the following equation (noted 2):

EIEIS(%) =
R′ct − Rct

R′ct
× 100 (2)

where Rct and R’
ct are the charge transfer resistances of 316L in 3% NaCl without and with

the addition of the inhibitor, respectively.

2.4. Surface Analysis

The surface morphology and average surface roughness of 316L stainless steel were an-
alyzed by atomic force microscopy (AFM, Model Nanoscope III, Veeco, Plainview, NY, USA).
Tapping mode images were obtained in air using Silicon tips coated with an aluminum
reflective coating (Tap300Al-G) with a maximum radius of curvature equal to 10 nm and a
spring constant k = 40 N/m. The scanned area is presented over a 1 µm × 1 µm square.

A JSM-7900F Field Emission scanning electron microscope (Jeol, Tokyo, Japan) oper-
ating at 0–15 kV was used to observe the surface topography of 316L stainless steel with
and without Thymus satureoides oil. This microscope fitted with a super hybrid lens (SHL)
is also capable of electron energy selected imaging when combined with a new detection
system consisting of two differently placed detectors: an upper electron detector (UED)
and an upper secondary electron detector (USD), together with a filter located between
SHL and UED.

For surface analysis, the 316L stainless steel specimens were polished mechanically,
then immersed in the test solution without and with 1600 ppm inhibitor at 25 ◦C. After
24 h, the specimens were taken out from the solution, cleaned with distilled water, dried
and used for AFM and SEM analysis.
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2.5. Computational Details

Calculations were performed in the framework of density functional theory (DFT) us-
ing the GAUSSIAN09 package [21]. All calculations were conducted using the 6-311++G**
basis set [22,23]. The B3LYP [24,25] hybrid functional as well as BMK [26] and M062X [27]
functionals were used. Molecular structures were fully optimized using the analytical
gradients. The default grid was used. It was a pruned (75,302) grid, having 75 radial shells
and 302 angular points per shell, resulting in about 7000 points per atom. Calculations in so-
lution were conducted using the Polarizable Continuum Model (PCM) [28]. The molecular
frontier orbitals (HOMO—LUMO) and dipole moments of each molecule were calculated.

3. Results and Discussions
3.1. Chemical Composition of the Essential Oil

The essential oil chemical composition analysis has been carried out by GC-MS. The
obtained chromatogram is represented in Figure S1 in the electronic Supplementary Ma-
terial (SM). The retention time and the relative percentages of the essential oil’s various
components are presented in Table S1 (see the Supplementary Material). Thymus satureoides
essential oil belongs to the areoles botany family and presents the following elements: bor-
neol (13%), camphene (12%), p-cymene (12%), carvacrol methyl ether (10%), caryophyllene
(9%) and 25 other detected compounds (Table S1). The essential oil chemical composition
used in this study is similar to the published one by Houbairi et al. [29]. The chemical
structure of the majority of the compounds (borneol, camphene, p-cymene and carvacrol
methyl ether) is presented in Figure S2.

3.2. Open Circuit Potential

The potential evolution vs. time for 316L stainless steel in 3% NaCl solution with and
without the inhibitor, during 120 min is presented in Figure S3.

Monitoring the open circuit voltage (OCV) saves the changes to the interface between
the material and the environment. The evolution of the 316L free potential in 3% NaCl
for 120 min, respectively, for each test concentration, shows that the inhibitor addition
makes the steel nobler by the shift in the free potential to more positive values, which
demonstrates the formation of a protective film which increases the corrosion resistance of
stainless steel [30].

3.3. Potentiodynamic Polarization

The potentiodynamic polarization curves for 316L stainless steel in 3% NaCl with and
without the addition of the green inhibitor are illustrated in Figure 1. The electrochemical
parameters such as corrosion potential (Ecorr), corrosion current density (icorr), passivation
current density (ipass), pitting corrosion (Epit) and the effectiveness of inhibition (EI%) are
calculated and summarized in Table 1.
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Figure 1. Potentiodynamic polarization curves (scan rate of 0.5 mVs−1) for 316L stainless steel in
3% NaCl without and with inhibitor, at 25 ◦C.



Lubricants 2023, 11, 56 5 of 16

Table 1. Electrochemical parameters and the effectiveness of inhibition for 316L stainless steel after
2 h in 3% NaCl solution without and with inhibitor, at 25 ◦C, calculated from (a) potentiodynamic
polarization curves (EI) and (b) electrochemical impedance measurements (EIEIS). χ2 is the error
factor for the fitted values of the impedance measurements.

(a) (b)

Inhibitor
Conc.
(ppm)

Ecorr
(V/SCE)

icorr
(µA/cm2)

ipass
(µA/cm2)

Epit
(V/SCE)

EI
(%)

Re
(Ω.cm2)

Rct
(kΩ.cm2)

Cdl
µF/cm2 n

χ2

(Error
Factor)

EIEIS
(%)

Blank −0.383 3.38 7.74 0.290 6.7 140 17.7 0.81 0.001

400 −0.358 2.33 5.85 0.316 31 5.9 172 21.1 0.86 0.003 18

800 −0.323 0.95 5.87 0.376 73 6.2 337 11.5 0.84 0.001 58

≥1600 −0.287 0.62 5.55 0.380 82 6.1 972 4.8 0.87 0.005 86

From Figure 1 and Table 1 it is clear that the effectiveness of inhibition (EI%) increases
with increasing concentration of Thymus satureoides oil to reach a maximum value of ~ 82%
at a concentration equal to 1600 ppm and then remains constant for 1800 ppm.

This suggests that increasing the inhibitor concentration increases the number of
molecules linked by adsorption on the surface, blocking the active sites and protecting
the surface of the electrode. An inhibitor can be classified as anodic or cathodic if the
difference between corrosion potentials (Ecorr) is above 85 mV [31]. We note that the Ecorr
difference between 1600 ppm and blank samples is positive and equal to ~100 mV. This
result indicates that this oil acts as an anodic-type inhibitor.

As we can see, it is clear that with increasing the concentration of Thymus satureoides oil,
the differences between Ecorr and Epit, remain almost constant. Moreover, the passivation
current density (ipass) decreases by 25% to reach an almost constant value whatever the
concentration of the inhibitor [32]. These results show that the oil is a good pitting inhibitor
for the corrosion of 316L in a 3% NaCl solution.

3.4. Electrochemical Impedance Measurements

Electrochemical impedance spectroscopy (EIS) is one of the most helpful and revealing
methods for metal corrosion measurements. It provides more information on both the
resistive and capacitive behavior at the metal/solution interface and it is appropriate
for in situ and non-destructively probing relaxation phenomena over a wide frequency
range [33,34]. The measured impedance data are given as typical Nyquist and Bode plots.

EIS plots for different Thymus satureoides oil concentrations are represented in Figure 2a–c.
All Nyquist curves (Figure 2a) appear to be similar with respect to their shape, but their
amplitudes vary significantly. The Bode diagrams (Figure 2b) show one time constant at
intermediate frequencies. Moreover, the impedance value increases with increasing the
inhibitor concentration (Figure 2c). These results show that inhibitor adsorption occurs on
a large surface of the electrode and the corrosion takes place on a very small fraction of the
total stainless steel area.

The EIS spectra of all tests were analyzed using the electric equivalent circuit (EEC)
shown in Figure 2d. This electric equivalent circuit is a parallel combination of the charge
transfer resistance (Rct) and the constant phase element (CPE), both in series with the
electrolyte resistance (Re). This type of electrochemical circuit was used previously to model
the metal/inhibitor interface [35,36]. The electrochemical parameters such as electrolyte
resistance, charge transfer resistance and CPE constants (Y0 and n) were obtained from
fitting the experimental data of Nyquist plots using ZView software 3.6 and the equivalent
circuit is shown in Figure 2d and is presented in Table 1.
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CPE is used as a substitute for the capacitor to fit more accurately the impedance
behavior of the electric double layer. The values of double-layer capacitance (Cdl) have been
calculated from electrolyte resistance and CPE constants (Y0 and n) using the relationship
noted, which is derived from Brug’s formula [35] when the electrolyte resistance Re is much
smaller than the transfer resistance Rct.

Cdl = (Y0Re
1−n)1/n (when Re << Rct) (3)

A good correlation between experimental and simulated data was obtained (the error
of the fitted parameters is calculated by the chi-squared χ2, which is included for all
adjustments between 0.001 and 0.005).

The values presented in Table 1 show that the value of Rct increases with increasing
the concentration of inhibitor as compared to the blank sample. These values indicate the
formation of a protective layer at the metal/solution interface. The Cdl value decreases
with increasing the inhibitor concentration, indicating the decrease in the local dielectric
constant and/or the increase in the thickness of the electrical double layer. These values
are considered inferior to that of the blank value, which confirms the specific adsorption of
the inhibitor at the metal/solution interface [36].

The effectiveness of the inhibition determined from the polarization curves and elec-
trochemical impedance measurements (Table 1) increases with the increase in the inhibitor
concentration. These values are in good agreement.
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3.5. Influence of Temperature on the Effectiveness of the Inhibitor

Temperature is an important factor that can have an effect on the corrosion phenomena.
The measurements have been taken at different temperatures (25–80 ◦C), in the absence
and presence of 1600 ppm of the inhibitor Thymus satureoides oil in 3% NaCl.

3.5.1. Potentiodynamic Polarization

The following curves (Figure 3a,b) show the potentiodynamic behavior of 316L stain-
less steel in a solution of 3% NaCl in the absence and presence of 1600 ppm of the inhibitor
at different temperatures.
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Figure 3. Potentiodynamic polarization curves (scan rate of 0.5 mVs−1) for 316L in 3% NaCl: (a) with-
out and (b) with 1600 ppm inhibitor, at different temperatures.

The electrochemical parameters such as the potential corrosion, the corrosion current
density, the passivation current density and the pitting potential obtained using these po-
tentiodynamic polarization curves are shown in Supplementary Material Tables S2 and S3.

Figure 3a,b and Supplementary Material Tables S2 and S3 indicate that there is a
general increase in the corrosion rate when increasing the temperature from 25 to 80 ◦C.
The solution becomes more corrosive with the temperature rise and the protective inhibitor
power decreases. This implies that this inhibitor is adsorbed on the metal by electrostatic
bonds (weak bonds). This type of temperature-sensitive link cannot fight effectively against
corrosion with increasing temperature [5,6,9,11].

Additionally, we note that the addition of the inhibitor makes the pitting potential
(Epit) shift toward positive values for all temperatures. Therefore the Thymus satureoides oil
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inhibits pitting corrosion for all studied temperatures, even if the effect is less important
with an increase in temperature.

3.5.2. Determination of the Activation Energy (Adsorption Isotherms)

According to some authors [37,38], the logarithm of the corrosion rate (icorr) is a linear
function with the inverse of the absolute temperature 1/T (Arrhenius equation noted 4):

ln(icorr) = −
Ea

RT
+ ln(A) (4)

where Ea is the activation energy, T is the absolute temperature, R is the gas constant and A
is the pre-exponential factor of the Arrhenius equation, ∆S* is the activation entropy and
∆H* is the activation enthalpy.

Some conclusions on the action mechanism of the inhibitors can be obtained by
comparing Ea measured both in the presence and in the absence of the corrosion inhibitor.
The variation in the corrosion current logarithm as a function of T−1 for 316L samples in 3%
NaCl in the absence and presence of 1600 ppm of the Thymus satureoides oil is represented
in Figure 4.
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The variation in the current corrosion logarithm as a function of T−1 provides straight
lines indicating that the Arrhenius law is respected. The values of the activation energies
obtained from these straight lines are, respectively, 22.2 kJmol−1 and 34.4 kJmol−1 for the
solution without and with inhibitor.

It is clear that the presence of the inhibitor increases the activation energy. This
behavior demonstrates the phenomenon of physical adsorption of the inhibitor on the
metal surface.

The kinetic parameters, the enthalpy and the entropy of the corrosion process are
also evaluated from the study of the temperature effect. An alternative formulation of the
Arrhenius equation is given by the relationship noted:

icorr =
RT
Nh

exp
(

∆S∗

R

)
exp

(
−∆H∗

RT

)
(5)



Lubricants 2023, 11, 56 9 of 16

where h is the Planck constant, N is the Avogadro number, T is the absolute temperature, R
is the gas constant, ∆S* is the activation entropy and ∆H* is the activation enthalpy [39].
Figure 5 shows plots of ln(icorr/T) as a function of 1/T. The straight lines are obtained with
a slope of −∆H*/R and an interception of (ln R/Nh + ∆S*/R), from which the values of
∆S* and ∆H* can be calculated.
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The activation free energy ∆G* of the corrosion process at each experimental tempera-
ture can be calculated using equation noted 6. The activation parameters values (∆H*, ∆S*
and ∆G*) at 25 ◦C are given in the Supplementary Material Table S4.

∆G∗ =∆H∗ − T × ∆S∗ (6)

The positive sign of ∆H* reflects that the corrosion phenomenon is an endothermic process.
The difference between the two values of entropy ∆S* shows that the activation entropy

is less negative with a great extent of the inhibitor than in its absence. The calculated ∆G*
values are more positive for the inhibited system. They are consistent with the electrostatic
interaction between the charged molecules and the charged 316L stainless steel. This fact
reflects the formation of a stable layer controlled by the inhibitor physicosorption on the
surface alloy 316L [39,40].

3.6. AFM and SEM

Steel specimens after immersion for 24 h in 3% NaCl without and with Thymus sat-
ureoides oil were observed by AFM. The recorded 2D and 3D images of surface topography
are shown in Supplementary Material Figure S4.

These images show the rough surface of 316L stainless steel immersed in 3% NaCl
and a reduction in surface roughness in the presence of an inhibitor. Supplementary
Material Figure S5 shows the calculated difference between the roughness (z) and the
mean roughness factor (z*) noted (z-z*) corresponding to a profile from the respective 2D
images. It is noted that the roughness profile of the steel surface immersed in 3% NaCl
solution increased. However, the addition of a 1600 ppm inhibitor decreased the z-z* factor
indicating the adsorption of the inhibitor on the steel surface [31].

These results are confirmed by SEM micrographs (Supplementary Material Figure S6)
of 316L stainless steel in 3% NaCl in the absence and presence of a 1600 ppm inhibitor. The
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samples were observed after immersion for 24 h. The surface of the polished stainless steel
sample (Figure S6a) is very smooth and shows no corrosion while stainless steel dipped in
3% NaCl in the absence of the inhibitor (Figure S6b) is very rough. However, the presence of
1600 ppm decreases the rate of corrosion and the surface damage diminished considerably
(Figure S6c) suggesting the formation of a protective inhibitor film at the 316L stainless
steel surface [41].

3.7. DFT Study

We have computed the electronic properties of the four majority compounds (Supple-
mentary Material Figure S2), both in the gaseous phase and in water. In order to investigate
the possible adsorption sites of these compounds, Figure 6 shows their HOMO (Highest
Occupied Molecular Orbital) distribution and Figure 7 their LUMO (Lowest Unoccupied
Molecular Orbital) distribution in the gaseous phase and in water.
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There are very few changes in the distributions between the gaseous phase and solu-
tion, except for the LUMO of carvacrol methyl ether. For borneol, the HOMO distribution
focuses on the O-H group while the LUMO distribution shows, in addition to the O-H
group, a contribution of some CH3 or CH2 groups. Thus, the possible adsorption sites on
the borneol structure may be mainly the O-H group and, to a lesser extent, some methyl
or methylene groups. Regarding camphene, the HOMO distribution focuses on the C=C
group while the LUMO distribution shows a large delocalization of the whole molecule.
Then, the whole molecule may participate in adsorption. For carvacrol methyl ether, the
HOMO distribution is centered on the oxygen atom and the aromatic cycle while the LUMO
distribution is located on the aromatic cycle (in water). This last distribution is the same
as the one for the molecular orbital immediately above the LUMO in the gaseous phase
(difference of 0.1 eV). This inversion is probably due to an artifact at this level of theory.
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Thus, the possible adsorption sites on carvacrol methyl ether structure may be the oxygen
atom and the aromatic cycle. As for p-cymene, the HOMO and LUMO distributions focus
on the aromatic cycle, which may be the possible adsorption site on the p-cymene structure.
The corrosion inhibition performance can be evaluated by the energy of the HOMO and
the LUMO. The energy of the LUMO characterizes the electron-accepting ability of the
inhibitor, and a lower energy value for the LUMO may be better for a corrosion inhibitor.
With higher energy of the HOMO, the inhibitor tends to donate electrons and is adsorbed
on the metal surface.

Tables 2–4 present the HOMO and LUMO energies of the four majority compounds in
the gaseous phase and in water, respectively. In both cases, the highest HOMO corresponds
to carvacrol methyl ether. Following the molecule, in the gaseous phase, borneol and
p-cymene show the lowest LUMO while in water, it is carvacrol methyl ether (except in
BMK for which p-cymene is the one).

Table 2. Energies of the HOMO (Highest Occupied Molecular Orbital) in a gaseous phase and b water.

Functional B3LYP BMK M062X

a b a b a b

Borneol −7.35 −7.40 −8.39 −8.44 −9.02 −9.06

Camphene −6.65 −6.73 −7.50 −7.60 −8.04 −8.14

Carvacrol methyl ether −5.93 −6.10 −6.69 −6.89 −7.25 −7.45

P-cymene −6.45 −6.57 −7.23 −7.38 (−7.75) * (−7.89) *
* We have not obtained a geometry corresponding to a strict energy minimum. One small imaginary frequency
remains that we have not been able to remove.

Table 3. Energies of the LUMO (Lowest Unoccupied Molecular Orbital) for the four majority com-
pounds in: a gaseous phase and b water.

Functional B3LYP BMK M062X

a b a b a b

Borneol −0.38 −0.26 0.30 0.40 −0.15 −0.04

Camphene −0.26 −0.20 0.35 0.40 −0.07 −0.02

Carvacrol methyl ether −0.31 −0.35 0.31 0.36 −0.15 −0.10

P-cymene −0.37 −0.21 0.36 0.26 (−0.07) * (−0.06) *
* We have not obtained a geometry corresponding to a strict energy minimum. One small imaginary frequency
remains that we have not been able to remove.

Table 4. Energy gap HOMO-LUMO ∆E for the four majority compounds in: a gaseous phase and
b water.

Functional B3LYP BMK M062X

a b a b a b

Borneol 6.97 7.14 8.69 8.84 8.87 9.02

Camphene 6.39 6.53 7.85 8.00 7.97 8.12

Carvacrol methyl ether 5.62 5.75 7.00 7.25 7.10 7.35

P-cymene 6.08 6.36 7.59 7.64 (7.68) * (7.83) *
* We have not obtained a geometry corresponding to a strict energy minimum. One small imaginary frequency
remains that we have not been able to remove.

Therefore, the value of the energy gap HOMO-LUMO (∆E) provides a measure for
the stability of the formed complex on the metal surface. The high inhibition efficiency of a
molecule can be attributed to the high value of dipole moment and low value of ∆E [42–44].

Both in the gaseous phase and in water, the carvacrol methyl ether molecule shows
the lowest ∆E (Table 4). In order to evaluate the possible influence of hydrogen bonding
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for the two oxygenated molecules (borneol and carvacrol methyl ether), we have examined
the system “molecule + H2O” in water. The optimized geometries are shown in Figure 8
and the HOMO and LUMO energies are given in Supplementary Material Table S5. This
confirms the lowest ∆E for the carvacrol methyl ether.
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The dipole moment in the gaseous phase for the four majority compounds is presented
in Supplementary Material Table S6. Without surprise, borneol and carvacrol methyl ether
correspond to the highest dipole moments. Borneol and carvacrol methyl ether seem to be
interesting corrosion inhibitors.

4. Conclusions

The following conclusions can be drawn from this study:

• This study shows that the essential oil extracted from Thymus satureoides endemic
to Morocco provides good protection for 316L in a 3% NaCl solution under severe
conditions such as a seawater cooling system. Thymus satureoides oil is an effective
anodic corrosion inhibitor of 316L stainless steel in a solution of 3% NaCl. The
electrochemical measurements show that the efficiency of the inhibitor increases
with the concentration and that the corrosion current is reduced by 82% when the
concentration reaches a value of 1600 ppm.

• Thermodynamic analyses give evidence that the adsorption of the Thymus satureoides oil
on stainless steel 316L in 3% NaCl solution is an endothermic physicosorption process.

• Physical analyzes by AFM and SEM show a decrease in the roughness of 316L stainless
steel samples after corrosion in a saline solution containing 1600 ppm of Thymus
oil compared to a solution without an inhibitor. AFM and SEM studies showed a
roughness decrease for the 1600 ppm inhibitor.

• Theoretical studies show that carvacrol methyl ether and borneol can be the best
inhibitors among all components of Thymus satureoides oil, some additional studies
may be undertaken separately to analyze their intrinsic properties as stainless steel
corrosion inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/lubricants11020056/s1, Figure S1: Chromatogram of the Thymus sat-
ureoides essential oil. Constituents a,q are given in Supplementary Material Table S1; Figure S2: Chemical
structure of majority compounds: a borneol, b camphene, c p-cymene and d carvacrol methyl ether;
Figure S3: Potential follow-up in open circuit of the stainless steel immerged in 3% NaCl solution
without and with the inhibitor; Figure S4: 2D and 3D atomic force micrographs of 316L stainless
steel: (a-a’) before immersion (polished), (b-b’) after immersion in 3% NaCl and (c-c’) after immersion
in 3% NaCl+1600 ppm during 24 h; Figure S5: Calculated roughness (z-z*) factor for 316L stainless
steel: (a) before immersion (polished), (b) after immersion in 3% NaCl and c after immersion in

https://www.mdpi.com/article/10.3390/lubricants11020056/s1
https://www.mdpi.com/article/10.3390/lubricants11020056/s1
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3% NaCl+1600 ppm inhibitor during 24 h; Figure S6: SEM image of 316L stainless steel: a before
immersion (polished), b after immersion in 3% NaCl and c after immersion in 3% NaCl+1600 ppm
inhibitor during 24 h; Table S1: Main constituents of the Thymus satureoides essential oil; Table S2. Elec-
trochemical parameters (corrosion potential (Ecorr), corrosion current density (icorr), passivation
current density (ipass), pitting corrosion (Epit)) of 316L in 3% NaCl without inhibitor at different
temperatures; Table S3: Electrochemical parameters (corrosion potential (Ecorr), corrosion current
density (icorr), passivation current density (ipass), pitting corrosion (Epit)) of 316L stainless steel in
3% NaCl with 1600 ppm inhibitor at different temperatures; Table S4: The activation parameters
values (activation enthalpy (∆H*), activation entropy (∆S*) and activation free energy (∆G*)) of 316L
stainless steel in 3% NaCl without and with 1600 ppm of the Thymus satureoides oil; Table S5: Energies
of the HOMO (Highest Occupied Molecular Orbital) and the LUMO (Lowest Unoccupied Molecular
Orbital) of the two oxygenated compounds in water with one H2O molecule. ∆E is the energy gap
HOMO-LUMO; Table S6: B3LYP dipole moment (in Debye) for the four majority compounds in
gaseous phase.
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