Component-trees and multivalued images-Part I: Structural Properties - Université de Reims Champagne-Ardenne
Reports (Research Report) Year : 2011

Component-trees and multivalued images-Part I: Structural Properties

Abstract

Component-trees model the structure of grey-level images by considering their binary level-sets obtained from successive thresholdings. They also enable to define anti-extensive filtering procedures for such images. We generalise the notion of component-tree, and its associated filtering framework, to deal with any (grey-level or multivalued) images. This work is divided in two articles. In this first article, we define a new data structure, the component-graph, which extends the notion of component-tree to images taking their values in any (partially or totally) ordered set. The component-graphs are declined in three variants, of increasing richness and size, whose structural properties are studied. In the second article, the standard filtering framework based on component-trees is generalised to component-graphs, thus relaxing the constraints linked to total orderings on image values. Some application examples are also proposed in this second article, illustrating the potential usefulness of component-graphs in the field of multivalued image processing.
Fichier principal
Vignette du fichier
Rapport_Component_Graphs.pdf (238.06 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

inria-00611714 , version 1 (27-07-2011)
inria-00611714 , version 2 (20-10-2011)
inria-00611714 , version 3 (26-02-2018)

Identifiers

  • HAL Id : inria-00611714 , version 1

Cite

Nicolas Passat, Benoît Naegel. Component-trees and multivalued images-Part I: Structural Properties. [Research Report] 2011, pp.10. ⟨inria-00611714v1⟩
400 View
609 Download

Share

More