A non-local Chan-Vese model for sparse, tubular object segmentation

Abstract : To deal with the issue of tubular object segmentation, we propose a new model involving a non-local fitting term, in the Chan-Vese framework. This model aims at detecting objects whose intensities are not necessarily piecewise constant, or even composed of multiple piecewise constant regions. Our problem formulation exploits object sparsity in the image domain and a local ordering relationship between foreground and background. A continuous optimization scheme can then be efficiently considered in this context. This approach is validated on both synthetic and real retinal images. The non-local data fitting term is shown to be superior to the classical piecewise-constant model, robust to noise and to low contrast.
Type de document :
Communication dans un congrès
International Conference on Image Processing (ICIP), 2014, Paris, France. IEEE, pp.907-911, 2014, Image Processing (ICIP), 2014 IEEE International Conference on. 〈10.1109/ICIP.2014.7025182〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.univ-reims.fr/hal-01695066
Contributeur : Nicolas Passat <>
Soumis le : mercredi 7 février 2018 - 14:12:24
Dernière modification le : mercredi 29 août 2018 - 13:08:01
Document(s) archivé(s) le : jeudi 3 mai 2018 - 19:17:13

Identifiants

Citation

Anna Jezierska, Olivia Miraucourt, Hugues Talbot, Stéphanie Salmon, Nicolas Passat. A non-local Chan-Vese model for sparse, tubular object segmentation. International Conference on Image Processing (ICIP), 2014, Paris, France. IEEE, pp.907-911, 2014, Image Processing (ICIP), 2014 IEEE International Conference on. 〈10.1109/ICIP.2014.7025182〉. 〈hal-01695066〉

Partager

Métriques

Consultations de la notice

135

Téléchargements de fichiers

45