Variational method combined with Frangi vesselness for tubular object segmentation - Université de Reims Champagne-Ardenne
Communication Dans Un Congrès Année : 2015

Variational method combined with Frangi vesselness for tubular object segmentation

Résumé

Tubular structure extraction from (bio)medical images is a prerequisite for many applications in bio- engineering. The two main issues related to such extraction, namely denoising and segmentation, are generally handled independently and sequentially, by dedicated methods. In this article, we model the problem of tubular structure extraction in an optimization framework and we show how a Hessian- based vesselness measure can be embedded in the formulation, allowing in particular robust vessel extraction. Preliminary experiments of this method, on synthetic and retinal images, emphasise the potential usefulness of this approach.
Fichier principal
Vignette du fichier
Miraucourt CMBE 2015.pdf (925.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01695072 , version 1 (03-03-2018)

Identifiants

  • HAL Id : hal-01695072 , version 1

Citer

Olivia Miraucourt, Anna Jezierska, Hugues Talbot, Stéphanie Salmon, Nicolas Passat. Variational method combined with Frangi vesselness for tubular object segmentation. Computational & Mathematical Biomedical Engineering (CMBE), 2015, Paris, France. pp.485-488. ⟨hal-01695072⟩
302 Consultations
196 Téléchargements

Partager

More