Convexity invariance of voxel objects under rigid motions

Abstract : Volume data can be represented by voxels. In many applications of computer graphics (e.g. animation, simulation) and image processing (e.g. shape registration), such voxel data are required to be manipulated. Among the simplest manipulations, we are interested in rigid motions, namely motions that do not change the shape of voxel objects but does change their position and orientation. Such motions are well-known as isometric transformations in continuous spaces. However, when they are applied on voxel data, some important properties of geometry and topology are generally lost. In this article, we discuss this issue, and we provide a method for rigid motions of voxel objects that preserves the global convexity properties of objects, with digital topology guarantees. This method is based on the standard notion of H-convexity, and a new notion of quasi-regularity.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition (ICPR), 2018, Beijing, China. 2018
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.univ-reims.fr/hal-01695388
Contributeur : Phuc Ngo <>
Soumis le : mercredi 25 avril 2018 - 09:26:54
Dernière modification le : jeudi 5 juillet 2018 - 14:23:41

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01695388, version 2

Citation

Phuc Ngo, Nicolas Passat, Yukiko Kenmochi, Isabelle Debled-Rennesson. Convexity invariance of voxel objects under rigid motions. International Conference on Pattern Recognition (ICPR), 2018, Beijing, China. 2018. 〈hal-01695388v2〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

20