Hierarchical segmentation of multiresolution remote sensing images - Université de Reims Champagne-Ardenne Access content directly
Conference Papers Year : 2011

Hierarchical segmentation of multiresolution remote sensing images

Abstract

The extraction of urban patterns from very high spatial resolution optical images presents challenges related to the size, the accuracy and the complexity of the data. In order to efficiently carry out this task, a multiresolution hierarchical approach is proposed. It enables to progressively segment several images (of increasing resolutions) of a same scene, based on low level criteria. The process, based on binary partition trees, is partially performed in an interactive fashion, and then automatically completed. Experiments on urban images datasets provide encouraging results which may be further used for detection and classification purpose .
Fichier principal
Vignette du fichier
Kurtz_ISMM_2011.pdf (12.61 Mo) Télécharger le fichier
Kurtz ISMM 2011 Slides.pdf (18.81 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01718349 , version 1 (27-02-2018)

Identifiers

Cite

Camille Kurtz, Nicolas Passat, Anne Puissant, Pierre Gançarski. Hierarchical segmentation of multiresolution remote sensing images. International Symposium on Mathematical Morphology (ISMM), 2011, Intra, Lake Maggiore, Italy. pp.343-354, ⟨10.1007/978-3-642-21569-8_30⟩. ⟨hal-01718349⟩
716 View
199 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More